research

Large scale ab-initio simulations of dislocations

Abstract

We present a novel methodology to compute relaxed dislocations core configurations, and their energies in crystalline metallic materials using large-scale ab-intio simulations. The approach is based on MacroDFT, a coarse-grained density functional theory method that accurately computes the electronic structure with sub-linear scaling resulting in a tremendous reduction in cost. Due to its implementation in real-space, MacroDFT has the ability to harness petascale resources to study materials and alloys through accurate ab-initio calculations. Thus, the proposed methodology can be used to investigate dislocation cores and other defects where long range elastic effects play an important role, such as in dislocation cores, grain boundaries and near precipitates in crystalline materials. We demonstrate the method by computing the relaxed dislocation cores in prismatic dislocation loops and dislocation segments in magnesium (Mg). We also study the interaction energy with a line of Aluminum (Al) solutes. Our simulations elucidate the essential coupling between the quantum mechanical aspects of the dislocation core and the long range elastic fields that they generate. In particular, our quantum mechanical simulations are able to describe the logarithmic divergence of the energy in the far field as is known from classical elastic theory. In order to reach such scaling, the number of atoms in the simulation cell has to be exceedingly large, and cannot be achieved with the state-of-the-art density functional theory implementations

    Similar works