3,854 research outputs found

    Decomposing numerical ranges along with spectral sets

    Full text link
    This note is to indicate the new sphere of applicability of the method developed by Mlak as well as by the author. Restoring those ideas is summoned by current developments concerning KK-spectral sets on numerical ranges

    Optimal General Matchings

    Full text link
    Given a graph G=(V,E)G=(V,E) and for each vertex v∈Vv \in V a subset B(v)B(v) of the set {0,1,…,dG(v)}\{0,1,\ldots, d_G(v)\}, where dG(v)d_G(v) denotes the degree of vertex vv in the graph GG, a BB-factor of GG is any set F⊆EF \subseteq E such that dF(v)∈B(v)d_F(v) \in B(v) for each vertex vv, where dF(v)d_F(v) denotes the number of edges of FF incident to vv. The general factor problem asks the existence of a BB-factor in a given graph. A set B(v)B(v) is said to have a {\em gap of length} pp if there exists a natural number k∈B(v)k \in B(v) such that k+1,…,k+p∉B(v)k+1, \ldots, k+p \notin B(v) and k+p+1∈B(v)k+p+1 \in B(v). Without any restrictions the general factor problem is NP-complete. However, if no set B(v)B(v) contains a gap of length greater than 11, then the problem can be solved in polynomial time and Cornuejols \cite{Cor} presented an algorithm for finding a BB-factor, if it exists. In this paper we consider a weighted version of the general factor problem, in which each edge has a nonnegative weight and we are interested in finding a BB-factor of maximum (or minimum) weight. In particular, this version comprises the minimum/maximum cardinality variant of the general factor problem, where we want to find a BB-factor having a minimum/maximum number of edges. We present an algorithm for the maximum/minimum weight BB-factor for the case when no set B(v)B(v) contains a gap of length greater than 11. This also yields the first polynomial time algorithm for the maximum/minimum cardinality BB-factor for this case

    Convexity of tableau sets for type A Demazure characters (key polynomials), parabolic Catalan numbers

    Full text link
    This is the first of three papers that develop structures which are counted by a "parabolic" generalization of Catalan numbers. Fix a subset R of {1,..,n-1}. Consider the ordered partitions of {1,..,n} whose block sizes are determined by R. These are the "inverses" of (parabolic) multipermutations whose multiplicities are determined by R. The standard forms of the ordered partitions are refered to as "R-permutations". The notion of 312-avoidance is extended from permutations to R-permutations. Let lambda be a partition of N such that the set of column lengths in its shape is R or R union {n}. Fix an R-permutation pi. The type A Demazure character (key polynomial) in x_1, .., x_n that is indexed by lambda and pi can be described as the sum of the weight monomials for some of the semistandard Young tableau of shape lambda that are used to describe the Schur function indexed by lambda. Descriptions of these "Demazure" tableaux developed by the authors in earlier papers are used to prove that the set of these tableaux is convex in Z^N if and only if pi is R-312-avoiding if and only if the tableau set is the entire principal ideal generated by the key of pi. These papers were inspired by results of Reiner and Shimozono and by Postnikov and Stanley concerning coincidences between Demazure characters and flagged Schur functions. This convexity result is used in the next paper to deepen those results from the level of polynomials to the level of tableau sets. The R-parabolic Catalan number is defined to be the number of R-312-avoiding permutations. These special R-permutations are reformulated as "R-rightmost clump deleting" chains of subsets of {1,..,n} and as "gapless R-tuples"; the latter n-tuples arise in multiple contexts in these papers.Comment: 20 pp with 2 figs. Identical to v.3, except for the insertion of the publication data for the DMTCS journal (dates and volume/issue/number). This is one third of our "Parabolic Catalan numbers ..", arXiv:1612.06323v

    UNITARILY INVARIANT NORMS ON FINITE VON NEUMANN ALGEBRAS

    Get PDF
    John von Neumann’s 1937 characterization of unitarily invariant norms on the n × n matrices in terms of symmetric gauge norms on Cn had a huge impact on linear algebra. In 2008 his results were extended to Ifactor von Neumann algebras by J. Fang, D. Hadwin, E. Nordgren and J. Shen. There already have been many important applications. The factor von Neumann algebras are the atomic building blocks from which every von Neumann algebra can be built. My work, which includes a new proof of the Ifactor case, extends von Neumann’s results to an arbitrary finite von Neumann algebra on a separable Hilberts space. A major tool is the theory of direct integrals. The main idea is to associate to a von Neumann algebra R a measure space (Λ, λ) and a group G (R) of invertible measure-preserving transformations on L∞ (Λ, λ). Then we show that there is a one-to-one correspondence between the unitarily invariant norms on R and the normalized G (R)-symmetric gauge norms on (Λ, λ)
    • …
    corecore