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ABSTRACT
Unitarily invariant norms on finite von Neumann algebras
by
Haihui Fan
University of New Hampshire, September, 2018

John von Neumann’s 1937 characterization of unitarily invariant norms on the n X n matrices
in terms of symmetric gauge norms on C" had a huge impact on linear algebra. In 2008 his results
were extended to //; factor von Neumann algebras by J. Fang, D. Hadwin, E. Nordgren and J.
Shen. There already have been many important applications. The factor von Neumann algebras are
the atomic building blocks from which every von Neumann algebra can be built. My work, which
includes a new proof of the /1, factor case, extends von Neumann’s results to an arbitrary finite
von Neumann algebra on a separable Hilberts space. A major tool is the theory of direct integrals.
The main idea is to associate to a von Neumann algebra R a measure space (A, ) and a group
G (R) of invertible measure-preserving transformations on L>° (A, \). Then we show that there
is a one-to-one correspondence between the unitarily invariant norms on R and the normalized

G (R)-symmetric gauge norms on L™ (A, \).

vii



CHAPTER 1

INTRODUCTION

Since John von Neumann’s beautiful characterization of the unitarily invariant norms for the
n X n complex matrices M, (C), there have been over four hundred papers related to this sub-
ject. In [17] von Neumann showed that there is a natural one-to-one correspondence between the
unitarily invariant norms on M, (C) and the normalized symmetric gauge norms on C". More
recently, Junsheng Fang, Don Hadwin, Eric Nordgren, and Junhao Shen [10] showed that there
is an analogous correspondence between the unitarily invariant norms on a //; factor von Neu-
mann algebra M and the normalized symmetric gauge norms on L> [0, 1]. Although the proofs of
both results relied on s-numbers, the proof of the latter result was different from von Neumann’s
proof. We provide a new proof of the //; factor result that more closely parallels the proof for
ML, (C). The key ingredient is an "approximate" version of the Ky Fan Lemma that is used in the
finite-dimensional case.

It is our goal to find a similar characterization of all the unitarily invariant norms on a finite von
Neumann algebra R acting on a separable Hilbert space /. To make these two examples look the
same, we want to view C" as L> (J,,, d,,) , where (J,,, d,,) is a probability space. We also want to

have J,, C [0, 1]. Our choice is J,, = {%, el %} and 9,, is normalized counting measure, i.e.,
1
op (F) = —=Card (E) .
n
We define J,, = [0, 1] and J., to be Lebesgue measure. It turns out that every finite von Neu-

mann algebra on a separable Hilbert space has a central decomposition, which means it can be

decomposed as a direct sum of direct integrals of factor von Neumann algebras, which are either



isomorphic to M, (C) or are /1 factors. Each finite factor von Neumann algebra has a unique tra-
cial state. From the central decomposition we can define a tracial state 7 on R. The problem is to
identify the corresponding measure space (A, A). A key observation is that every maximal abelian
selfadjoint subalgebra (masa) of M, (C) is isomorphic to C"* = L* (J,,d,,) and each masa in a
I'1; factor is isomorphic to L™ [0, 1] = L™ (Jw, 0x ). If A is a masa in R, then the central decom-
position of R decomposes A to a direct integral of algebras that are masas in the corresponding
factor. We must analyze this decomposition carefully to see that the masas are all isomorphic, in a
very special way, to L> (A, \) for some measure space (A, \). Once we find the measure space,
we have to show how the unitarily invariant norms on R correspond to the normalized symmetric
gauge norms on L> (A, \). This involves defining the analogue of the "s-numbers" and proving
a general approximate Ky Fan Lemma. To show that things are independent of the choices of the

masas we use, we need a result on approximate unitary equivalence.



CHAPTER 2

PRELIMINARIES

2.1 Unitarily invariant norms

If A is a unital C*-algebra, U (.A) denotes the set of all unitary elements of A. If T" € A we define
T = (7).

Lemma 1. Suppose A is a unital C*-algebra and « is a norm on A such that o (1) = 1. The

following are equivalent.

1. Forevery T € Aand forevery U € U (A),

a(T)=a(|T|) =a(UTU).

2. ForallU,VinU (A),
a(l)=a(UTV).

Proof. Suppose T' € A and for every U € U (A), we have o (T') = o (|T'|) = a(U*TU) . Then
a(UT) = a(UT]) = o ([(UT)*(UT)]?) = a (T"T)"?) = a (IT]) = a(T),
and similarly, o (T'V') = a (T') . Therefore, a (T') = a (UTV).

Suppose 7' € A and o (T) = o« (UTV) for every U,V € U (A). It is clear that o (T') =
a(U*TU). To prove o (T) = a(|T

), the Russo-Dye Theorem [3] says the norm closed convex

hull of U (A) is {A € A : ||A|| < 1}, and therefore we know that 7" is in the closed convex hull



of {||T||U : U is unitary}; thus a(T)) < ||T|| for every T € A. Also suppose T = W1 |T| =
|T'| Wa, where Wy, W are in the norm-closed convex hull of the set of unitaries, which implies
T is in the norm closed convex hull of {U |T| : U is unitary} and |T| is in the closed convex
hull of {VT : V is unitary}. Hence o (T) < o (|T|) and o (|T']) < «(T'). Therefore a (|T|) =
a(T). O

Definition 2. If A is a unital C*-algebra and « is a norm on A satisfying o (1) = 1 and either of

the two conditions in Lemma 1, we say that « is a unitarily invariant norm on A.
Below are some properties about unitarily invariant norms.

Proposition 1. If A is a unital C*-algebra and « is a unitarily invariant normon A, and T, A, B €

A, we have the following:
1oo(T) < T,
2. a(T) =a(TY),
3. a(ATB) < Al a(T) [|B]],
4. 0 < A < Bimplies o (A) < a(B).

Note: Whenever we discuss a measure space ({2, %, 1) we always assume that the space is

complete in the sense that, whenever £ C F and p (F') = 0, we have £ € ¥.

Lemma 3. If « is a unitarily invariant norm on a unital C*-algebra R, S, T € R, and {U;} is a

net of unitary operators in ‘R such that
lim||S — UTU;|| =0,

then



Proof. We have

0<|a(S)—a(T)|= lilm|a(5) — o (UTU;)|

<lima (S — UTU;) < lim ||S — U;TU;|| = 0.
O

Definition 4. If (2, 1) is a probability space, then L™ (u) is a von Neumann algebra, and a
unitarily invariant norm o on L* () is called a normalized gauge norm on L (u). In this case
all we require of cvis that a (1) = 1 and o (f) = « (| f|) for every f € L™ (). We let MIP (€2, 1)
denote the group (under composition) of all invertible measure-preserving transformations from §2
to ). We say that a gauge norm o on L™ () is symmetric if; for every v € MP (Q, i) and every

f € L*® (i), we have
a(fory)=al(f).

In [17], J. von Neumann characterized all of the unitarily invariant norms on M, (C), which
is the n x n full matrix algebra with entries in C. In [10], J. Fang, D. Hadwin, E. A. Nordgren
and J. Shen characterized the unitarily invariant norms on a //; factor von Neumann algebra.
The goal of this thesis is to give a characterization of all unitarily invariant norms of a finite von
Neumann algebra acting on a separable Hilbert space. Along the way we give a new proof of the

characterization of unitarily invariant norms on a //; factor.

2.1.1 Unitarily invariant norms on M, (C)

Let 7, be the normalized trace on M, (C) , i.e., 7, = %Tmce.

Lemma 5. Suppose T' € M, (C) , then there exists a unitary U € U (M, (C)) , such that

st(z) 0 - 0
0 2 :
U*|T|U = a o7 (3) ,
0 0 sr(2)



ey (—) are unique and are
n

S,

n

and st (%) > sp (2) > ...s%(T) > 0. The numbers ST(
1

) s

called the s-numbers of the matrix T. Define s (T) = ( (

If «v is a unitarily invariant norm on M, (C), then

()0 0

_ e 0 sr(3) :
o) =a(T)=a@m)=al T
0 0 s (2)

and thus « (7") depends only on the s-numbers of 7'.
Note that s (7') € C", and in classical matrix theory [2] the standard notation is sj (1) instead of
our st ( ) for 1 < k < n. We know that C" is isomorphic to L> (4,,), where 4,, is normalized
counting measure on {%, ceey 1}. Let S,, be the permutation group (i.e., all the bijective functions
on {%, - 1}). It is clear that S,, = MP (J,,, d,,).

In this case a normalized gauge norm 5 on C" = L (§,) is symmetric if, for every f €

L*>(6,) andevery o € S,,,
B(f)=B(fe0),

that is

B((ar,...,an)) =B ((as@)s-- -, towm)))
We know that for each x = (z1,...,2,) in C" and |z| = (|x4|,...,|z,]), there is a o € S, such
that

e = oo+ Jeaol) 3 (52 (5) o (3) oo (2)).

where s, (%) > S, (%) > 2> 8, (%) > 0. We call s|,| the nonincreasing rearrangement of |z|.

Note that, although o may not be unique, s, is unique.



Given a unitarily invariant norm « on M, (C) , define 3, on C" by

& Slaf ()
Ba (ZL‘) :ﬁa(l’l,...l’n) =« -«

n
Tn Sjaf (%)

Clearly, permutation on C" corresponds to unitary conjugation by permutation matrices in M, (C).
Hence £, is a normalized gauge norm on L™ (4,,) = C".

Given a symmetric normalized gauge norm /3 on C", we would like to define ag on M, (C) by

=) () )

We need to check that ag is a norm. Clearly, syr ( ) |A| s ( ) SO

ag(AT) =p (3/\T (%) s SAT (%) T SAT <%)) = Mg (T).

Also, ap (T) > 0 and ag (T) = 0 implies 7' = 0. The big problem is the triangle inequality:

sasn () < sa(5) +sp5 () canfail if k > 1. When k = 1, s7 (£) = ||T.

0

—
e}

Example 1. A =
0

l\)

In this example, s p 5 = % (—) =3

In order to prove the triangle inequality of g, Ky Fan Norms are involved. For 1 < k < n we

define K Fx : M, (C) — [0,00) and K Fx : C" — [0, 00), by

3=

(8o () o m @) es ()

k k

KFy (T) =

To prove K F'x is a norm on M, (C) and on C™, we use the following Lemma whose proof can
be found in [3]. Once we know a@ = K F'x is a norm on M, (C), it easily follows that K F'» = f3,,

is a symmetric gauge norm on C".



Lemma 6. For T € M, (C), KF (T) = sup{Tr (UTP) , U is unitary, P is a projection of rank

We easily obtain the following corollary.

Corollary 7. > saip(L) <3 [sa(L) + sp(L)] for A,B €M, (C)and 1 < k < n.
i=1 =1

n
(2
The key result relates the Ky Fan norms to arbitrary unitarily invariant norms. The proof can

be found in [9].

Lemma 8. Suppose n € N, a = (ay,...,a,),b = (b1,...,b,) € C", a1 > ay

v

: Z (7% >
0,00 2 by > ---b, 2 0,and if KFx (a) < KFx (b) for 1 < k < n, then there exists N € N,

N N
o1, ,0n €Sy, 0<t; <1, with ) t; = 1suchthata < ) t;(booj)
j=1 =1

Corollary 9. Suppose a,b € C" with KFx (a) < KFx (b) for 1 < k < n, then, for every

=

3|

symmetric gauge norm 3 on C", 3 (a) < ().
N N N
= j=

Jj=

Proof. ((a) <8 (

Lemma 10. If 3 is a symmetric normalized gauge norm on C", then g is a unitarily invariant

norm on M, (C).

Proof. We just need to prove the triangle inequality. Suppose A, B € M, (C).If

o = (saenDsaen)saen)) ana

n n n
1 1 2 2 n n
) (o) ) )
n n n n n n
then, by Corollary 7, we know that K Fx (a) < KFx (b).for 1 < k < n. It follows from Corollary
9 that 5 (a) < 5 (b) . However,

ap(A+B) = B(a) < B(8) = B(sa+s8) < Blsa) +B(s5) = as (4) + a3 (B).



It is easy to see that ag, = o and f3,, = [ always hold. This give us von Neumann’s charac-

terization of unitarily invariant norms on M, (C) .

Theorem 11. [17]There is a one to one correspondence between symmetric gauge norms on C"

and unitarily invariant norms on M, (C).

2.1.2 Unitarily invariant norms on a //; factor

Suppose M is a [I; factor von Neumann algebra. Then M has a unique faithful normal
tracial state 7 with the property that if P and () are projections in M, then P and () are unitarily
equivalent in M if and only if 7 (P) = 7 (Q). In this case the measure space (.J,,, d,,) is replaced
with the measure space (Ju, 0 ), Where Jo, = [0, 1] and 0, is Lebesgue measure. A normalized
gauge norm 5 on L>®[0,1] = L™ (0s) is symmetric if, for every v € MP (J, d») and every
f € L (6) , we have B(f) = B(f o).

The main result in [10] is that there is a one-to-one correspondence between the unitarily in-
variant norms on M and the symmetric normalized gauge norms on L (0, ). This looks just like
von Neumann’s result for M, (C).

The definition of the s-numbers for a function in L* [0, 1] can be obtained from nonincreasing
rearrangements in measure theory. The proof in [10] doesn’t use a version of the Ky Fan Lemma
(Lemma 8); we present a new proof here using an "approximate" version of the Ky Fan Lemma

(Theorem 20).

Lemma 12. Suppose [ : [0,1] — C is measurable. Then there is a v € MP (Jo, 0o ) such that
Sf = | f| © 7 is nonincreasing on [0, 1]. The transformation ~y may not be unique, but sy is unique

(a.e.). It therefore follows that fi, f2 : [0,1] — C are measurable, then

sy = sp, ifand only if | f1] = |fa] 0 for some v € MP (J.c. 0uc)



For 0 < ¢t < 1, we define the Ky Fan norm K F; on L* [0, 1] by

1 t
0

For an operator 7' € M and 0 < ¢t < 1, the t*" s-number of T, denoted by st (t), was defined

by Fack and Kosaki in [8] as
sy (t) = inf{||TE| : E is a projection in M with 7(E*) < t}.

It is clear that the map t — st (¢) is nonincreasing on [0, 1]. The t"* Ky Fan norm K F} (T) is

defined as

I ift =0
KF,(T) =
Lo () don if 0 < £ < 1.
In the matrix case |T'| is unitarily equivalent to a diagonal matrix, which naturally corresponds

to an element of C". In the //; factor case we need a more complicated approach.

Definition 13. A normal x-isomorphism 7 : L (do) — M such that, for every f € L™ (do0),

(tom)(f) = fdds.

Joo

is called a tracial embedding.
The following Lemma is a consequence of Hadwin-Ding in [5].

Lemma 14. If 7 and p are tracial embeddings into a 11, factor M, then 7 and p are approximately
unitarily equivalent in M, i.e., there is a net {U,;} of unitary operators in M such that, for every
f € L®(00),

|UFw (f) Ui = p (f)]| = 0.

10



Corollary 15. If 7 : L™ (0s) — M is a tracial embedding and v € MP (J,0s), then p :
L™ (0s,) — M defined by p(f) = m(f o~) is also a tracial embedding. Hence, there is a net

{U;} of unitary operators in M such that, for every f € L™ (do0),

\Uim (f) Ui =7 (foy)| — 0.

In the matrix case, the assertion that |T'| is unitarily equivalent to a diagonal matrix can be
rephrased as |T'] is contained in a maximal abelian selfadjoint algebra (i.e., masa) of M, (C), and
every masa in M, (C) is unitarily equivalent to the algebra of diagonal n x n matrices. Here is the

analogue for a /1; factor.

Lemma 16. Suppose A is a masa in a type 11, factor M. Then there is a surjective tracial
embedding 7w : L™ (0o,) — A. Moreover, if f € L>[0,1] and 7 (f) = T, then, for almost every
t €10,1],

sy (t) = sa(p) (t)-

As in the matrix case we need to prove K F; is a norm on M by giving an alternate characteri-

zation.

Lemma 17. If T € M and 0 <t < 1, then

KF,(T) =sup{|7 (UTP)|:U €U (M), P is a projection, T (P) = t}.

It was proved in Lemma 5.1 in [10].

Suppose « is a unitarily invariant norm on M. We can choose a tracial embedding 7 :

L (Js,000) — M and define a norm f3, on L™ (J, ds) by

Pa (f) = a(m (f)) -

11



We need to show that the definition does not depend on the embedding 7. If p : L™ (J, 0s0) — M
is another tracial embedding, then by Lemma 14, there is a net {U;} of unitary operators in M such

that, for every f € L™ (J,0)

[UFm (F)Usi = p(f)]| = 0.

Since

we see that 5 (7 (f)) = B (p(f)). Moreover, it follows from Corollary 15 that, the gauge norm
Lo 1s symmetric. A simple consequence is that K'F; = fgp, is a symmetric gauge norm on
L (Jsoy 000)-

Next suppose [ is a symmetric gauge norm on L> (J, d~). We want to define avg on M. If
T € M, we can choose a masa .4 in M such that |T'| € .A. We then choose a surjective tracial
embedding 7 : L™ (Jy,0s) — A and choose f € L (J, do) such that 7 (f) = |7'| and then
define

Since

sp(t) = sx(p) () = s () ,
we see that the definition is independent of .4 and 7. As in the matrix case, the main difficulty is
proving that ag satisfies the triangle inequality. In [10] this was done using an approach that avoids
proving an analogue of the matrix Ky Fan Lemma (Lemma 8). Here we prove a general version of

the Ky Fan Lemma that we will need later in our paper.

Lemma 18. Suppose f,h € L>[0,1],and 0 < f, h < 1,|fll., = 1. Suppose f,h are non-

increasing, then there exist step functions sgﬁn] > f and sﬁj”] < h with ranges contained in

12



{%:ng;gm}suchthat% < s™ < 1 and 0 gs[g”] < mT’landf < sgfn] < f—i—%and
max (h - %,0) < sﬁfﬁ] < h. It follows that K F; <S£:n]> < KF,(h)and KF, (f) < KF, (sgcm]>
foreveryt € (0, 1].

Proof. Foreverym € N, letp; = sup f~* (1 — 4,1 —-=1]) ¢ =infh™ ((1—-£,1—=1]),

1=1,...,m. Let pg = qo = 0. Then define

m—1 .
m 1 .
sgc ](x): (1——) Xipspirn) (@) fori=0,...,m — 1.
=0

m—1 .
m i+1 ,
sg ](w) = (1— ) Xlgigisr) () fori=0,...,m — 1.

It is easy to see that f < sgfn] < f+ %; thus Hf — sgfm]H < % Also max (h — %,0) <
sﬁf‘] < h; so Hh — ST]HOO <

i.
Therefore, KF, (s"™) < KF, (h) and KF, (f) < KF, (s™) forevery ¢ € (0,1 0
h f y

Lemma 19. Suppose f is a step function on |a,b] and k € N, then there exists an invertible

measure preserving map ¢y, : [a,b] — [a, b] such that

4
<0l

1 : 1 b
ioreel -t [ riaas.
kal b—a J,

o0

where n = card f ([a, b)), go,(f) is the composition of j ©},’s, i.e., P © Y} O + -+ 0 Yy,.

Proof. Define ¢y, : [a,b] — [a, b] by

ac—l—b%a ifagxgb—b’T“

or (1) =
T+t —bta ifb—t<a<b

Then gpék) is the identity map.

k A
Denote pi (f) = £>_f © gp,(j) - = fab fdds, then py is linear and ||py| < 2 (with pj, acting
i=1

13



as an operator on L™ (J,d)). Suppose 0 < j < k. Then py (X[a—i-j boa g4 (j+1))t= a)) =0 ae.

(0so)- Since py is linear, py (X[a+gl—a+(g2)) a)> = 0 whenever 0 < j7; < jo < k. Suppose
a < a < f < b We choose j; and j, such that j; is the largest j, 1 < j < k such that

a+ jlb% « and choose j, to be the smallest j, 1 < 7 < k such that § < a + j2 ¢ Then

Xlatj1 5% a+(52)) 152) — XlaB) = Xjatji 5%,0) — X[B,a+(j2)) 552)

Hence

b;a)) .

However, if E € {[a +j1b_T“,a), [B,a+ (ja2) bT } and f = xp then, since fogo,C = X(%(f))il

Pk (X[aﬁ)) = Pk (X[a—i-jlb_T“,a)) — Pk (X[B,a-ﬁ-(]ﬁ))

(E)

-1
and the collection {(gogf )> (B):1<5< k:} is disjoint, we have

1
< =
~ k

ka © SOk

o0

and

1 b 1 b—a 1
b < -
b—a/aXE “b—a k K

we have ||p; (E)||,, < %. Hence

|

Pk (Xjag)) <

Suppose f is a step function, then f = > a;x[q,
j=1

n b n b
f= Zajfj/ [ (@) dos = Z%‘/ Xlaja41)@oo-
Jj=l1 a j=1 a

;1) for some n € N. Denote f; = X[a;,a;41);

Then

Thus

1ok (F)l o < Zlagl ok (fi)ll o

< (Z |aj|) T <ulfle (7))
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We call the following an approximate Ky Fan Lemma for L™ (0,) .

Theorem 20. Suppose m is a positive integer. Then whenever 0 < f. h < 1in L™ (0,) satisfies
KF, (h) < KF, (f) forall rational numbers 0 <t <1,

there are, 1, . .. Ym2m € MP (Joo, 0co) , SUch that

mm2

1 2
S < Sr O ’L+_
h_mmziz:;f g m

Hence 3 (h) < B (f) for every symmetric gauge norm [3 on L () .

Proof. If f € L* (J,0x), then the map t — K F; (f) is continuous on (0, 1]. Hence we have
KF,(h) < KF,(f)forall0 <t < 1. We know that K'F} (f) = KF, (sy) and 5 (f) = 3 (sy) for
every [ € L™ (). We may assume that f, h are nonincreasing, and we denote u, w be the step
functions as in Lemma 18. Then u, w satisfying f < u < f + %and max (h — %, 0) <w < h.

Recall that

u

(1 - %) Xfpipisn) () fori=0,....,m—1.

L+ 1
w = (1—Z+ )X[qi,qm)(l') fori =0,...,m— L.
m

and it is easy to see that

t t t t t t
/ fdbo + — > / udds > / Wdsg > / hddse — —,
0 m 0 0 0 m

15



forall 0 <t <1.
By Lemma 19, for each m € N, there exists a measure preserving map ¢,, : [0,1] — [0, 1] such

that

4

o0

1 ¢ : !
—E uogpffl)—/ Ud0 oo
m#4 0

J=1

where 7 = card (Ran (u))

Let [(t) = %fot uddn, then [ : [0,1] — [0,00) is a continuous function. There are 2 cases to

consider:

Case 1: If (1) = [, udds > by = max{w(t):0 <t <1}, then by Lemma 19, for Vk =

m? € N, there exists 5, € MP[0, 1] such that

m2
uogo,(:)—l—u'—l—uow,g )

m2

1
_/ wds. §477HuHoo <
0

)
m2

4
m

where 77 = card (u) < m.Denote gp,(f) by v; Then we have

1 & 6
—_— Uy > w— —.
m2; 0= m

>h— % follows from Lemma 18. That is

L
m

m2
Therefore #Zlf ° @) T
‘]:

1 & 3
ﬁZfC"P(j) > h—a
j=1

We can view it as

m27n

1 3
QOZfW(j) > h— m
=1

where @ ;2 = @@ for 1 <i <m?and 0 <t < m* 2 — 1.

16



Case 2: (1) = fol udds < by.

Then there must exist p; € (0,1), so that

Then for every t > pll,

t t P} t P} t
[(t) :/ Uddoo 2/ wddy, = / Uddoo +/ Uddoo 2/ wdd s +/ WAoo
0 0 0 P} 0 P}

1 1

Thus we have b, p| + f;,l uMVddy > bip| + fpt,l wdd, therefore fqtl uMddy, > ft Wl

q1
Therefore, for every 0 < ¢ < 1, we have

u—igu(l)gu
m

KF, (u) > KF, (w)

and for every ¢ < ¢, {

u®l], = b1 = |2l

By Lemma 19 again, for every k = m? € Nthere exist (1), ..., 0w : [0,1] — [0,1] such
that
2 1
m 4 4
Hmlgu ° i) —/O Ud5ooH0o <l —5 < —.
n(t) t=q
Let gpgg(t) _ () ' ,r=1,...,m> Then @Ei; € MP[0,1] forall 1 < r < m?
t t>q
and
—%uo () M <3
mzist 0P o m

That is u) ~ 25

17



If qil fqll uMdds > by, go to case 1.

if qll fqll uMdés < by, do the similar process as case 2 above, we have «? and

2
<=
m

g e o
T~

oo

That is

2

m*“i=1
L ome (fm? 1 (1) (2)
it (Elﬁ (wowll) ) ok
e 1) (2
m gljgl(u © gpll © SOZQ )

1 m
u® o — Ty o o
2

and ran ((u)(2)> C by, by, as,...,an}.
Finally, after r steps(at most m), we will have
1 m W@ )

m2’"z£ szzl(u © S011 © SOZQ 0 gpir )7

and thus u(™ > w.

. 2 .. . . .
since m* |m™" | similar as in case 1, we can view this as

m2

1 2
mQZUOQO(j) Z w— —.
m = m

. . . 2
In conclusion, for every m, there is an integer N = m'"", and there are 1, . .

such that

By Lemma 18, we know that f > u — % and h < w + %
N
Thus,%Zsfo%jLQWm—l—% Zsh.

i=1

Therefore, 5 (f) >  (h) as m — oo.

18

YN E MP (Joo,éoo)



Corollary 21. If § is a symmetric gauge norm on L™ (Jw, 0), then az is a norm on M.

Proof. We need only prove the triangle inequality. If A, B € M, we define h (t) = s4.p (t) and
f(t) =sa(t)+ sp(t). Then KF; (h) = KF, (A+ B) and KF, (f) = KF; (A) + KF;(B), so

Lemma 20 applies, and we get

oy (A+B) = B(h) < B(f) = B (54 (t) + 5 (1) < B (54 (1)) + B (s (1)) = s (A) + a5 (B).

]

Since it is easily seen that « = g, and 8 = Baﬁ, we obtain the characterization [10] of the

unitarily invariant norms on a [ /; factor von Neumann algebra.

Theorem 22. Let M be a type 11, factor von Neumann algebra, then there is a one-to-one corre-

spondence between unitarily invariant norms on M and symmetric gauge norms on L (J, doo) -
2.2 Approximate Unitary Equivalence

The following is a consequence of a result of Hadwin and Ding [5]. Suppose R is a von Neumann
algebraand 7' € R. Z (R) = R NR' is the center. In [4] the R-rank of T was defined to be the
Murray-von Neumann equivalence class of the projection P onto the closure of the range of 7.
Note that

Pr = lim (TT"Y" (SOT),

n—oo
so Pr e M.
In [5] they defined R-rank(S) < R-rank(7") to mean that Ps is Murray-von Neumann equiva-

lent to a subprojection of Pr.

Theorem 23. Suppose R is a finite von Neumann algebra acting on a separable Hilbert space H.
Let ® : R — Z (R) be the unique center-valued trace on R. Suppose A is a unital commutative

C*algebra and 7, p : A — R are unital x-homomorphisms. The following are equivalent:
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1. There is a net {U,} of unitary operators in R such that, for every a € A,

|Usm (@) Ux — p(a)|| — 0.

2. bor=dop.

Proof. (2) = (1). Suppose (2) is true. Suppose zy,...,z, € Aande > 0. Let B =
C*(x1,...,x,). Then B is separable and commutative. Since 7w.p : B — R are unital *-
homomorphisms, there are weak*-weak™* continuous unital *-homomorphisms 7 and p from the
second dual B## of B into R such that the restrictions of 7 and p, respectively, to B are 7 and
p. Since ¢ is weak*-weak* continuous on R, we see that ® o 7 = & o p. Suppose x € B.

Then the range projection Py, equals the weak*-limit 7 <|J:\1/ ") and P, is the weak*-limit of

p (\x!l/n> Thus

P (Pr(y)) = lim @ <7T <|a:|1/n>> = nlljg)@ (p <|:1:|1/n>> =P (Pyw)) -

n—oo

This means, by Corollary 2.8 in Takesaki, vol 1, that Py, and P,) are Murray-von Neumann

equivalent. Hence, for every x € B,
R-rank (7 (z)) = R-rank (p (z)) .

If follows from [5] that the restrictions of 7 and p to B are approximately equivalent in R. Hence

there is a unitary operator U € M such that
JU*m (x) U — p (xp)|| <€

for 1 < k < n. If we let D be the set of all pairs d = (F,¢), with F ={z1,...,2,} C A finite

and € > 0, we see that D is a directed set with respect to < = (C, >) and if we denote the U above
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by Uy, we obtain a net {Uy,} of unitary operators in R such that, for every x € A

|Ugm (x) Ug — p ()] — 0.

(1) = (2). Suppose a = a* € Aandlet 7 and p from A## to R be as in the proof of (2) = (1).
The family {x (7 (a)) : t € R} is an orthogonal family of projections on the separable Hilbert
space H, so, except for a countable set £,y € R these projections must be 0. Simlarly, there
is a countable subset F,,) C R such that, for t € R\E,), we have x (p(a)) = 0. Suppose

—0<s<t<ooands,t ¢ Era) U Ejyq). Define the function & : R — R by

0 ifxr<s
hiz)=1q 2= ifs <z <t
1 ift<zx

Then h is continuous and Pﬂ(h(a)) = Pg(ﬂ(a)) = X]s,t) (7T (a)) and Pp(h(a)) = Pg(p(a)) = X]s,t) (p (a))
Since 7 and p are approximately equivalent in R, it follows from [5] that x[s ) (7 (a)) and x5+ (p (a))

are Murray-von Neumann equivalent. Thus, by Corollary 2.8 in [15],

D (X (7 (a)) = @ (x1s) (0 (a))) -

Since the allowable s and ¢ are dense in R and ® is weak*-weak™ continuous, we see that

® (Xps) (7 (a))) = @ (xps) (P (@)

holds for all —oo < s < ¢t < co. Since & is linear, we see that

whenever a = a* € A, and thus, for all a € A. Thus (2) is proved. O
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Remark 1. The characterization of approximate equivalence in terms of R-rank in [5] Ding-
Hadwin holds for separable AH C*-algebras. Every nonseparable AH C*-algebra is a direct limit
of separable AH C*-algebra, and the proof of Theorem 23 can easily be modified to handle the AH

case.

2.3 The Central Decomposition

We refer the reader to [11] for the theory of direct integrals and the central decomposition of a
von Neumann algebra acting on a separable Hilbert space. Since we are only interested in the von
Neumann algebra R and not how it acts on a Hilbert space, we can ignore multiplicities when using
the central decomposition [11].Suppose R is a finite von Neumann algebra acting on a separable

Hilbert space. Then we can write

R=[Ri®R:® ] ®Ree

where Ry is type [, for 1 < k£ < oo and R, is a type I, von Neumann algebra.

2.3.1 Measurable families

Suppose M is a type I/; von Neumann algebra with a faithful tracial state acting on a separable
Hilbert space H=I% . We will associate with M a probability space (2, 1) and a unitary operator
U: H — L*(u, H) that transforms M into a certain von Neumann algebra of operators on
L? (11, H) that will be described next.

For each w € , there is a type I1; von Neumann algebra M, in B (H) that is determined by
two sequences of SOT measurable functions f,, and g,, from €2 into the unit ball of B (H) so that
M, is generated by the set {f,, (w) : n € N}, M., is generated by the set {g, (w) : n € N}, and
each of those sets is SOT dense in the unit ball of the von Neumann algebra it generates. Suppose
¢ : Q0 — B (H) is a SOT-measurable function, and define || = ||-|| o ¢, that is || (w) = || (w)]]
forw € Q. If |p| € L™ (p), then let ||¢| . = ||¢|l,.. We will assume that (€2, i), U, and the

fns gn, M, have been chosen so that
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U*MU = {¢:Q — B(H)| ¢ is SOT-measurable, ¢ (w) € M, a.e.(u), and |p| € L= ()} .
As usual, p; = @y will mean p; = @9 ae. (u), and each ¢ in U* MU is the operator on
L? (u, H) defined for f € L? (u, H) by

(0f) (W) = ¢ (W) f(w).

2.3.2 Measurable cross-sections

Definition 24. Suppose (X, d) is a metric space and i : Bor(X) — [0, 00) is a finite measure.
A subset B of X is called u-measurable if there are A, F' € Bor(X) such that B\A C F and
pu(F) = 0. The o-algebra of all ji-measurable sets is denoted by M,,. A subset D of X is
absolutely measurable if D is u-measurable for every finite measure p on Bor(X). The o-algebra

of all absolutely measurable subsets of X is denoted by AM (X). Clearly we have
AM (X) = ﬂ {M,, : pis a finite Borel measure on X} .

It is obvious that each M, contains Bor(X), so Bor(X) C AM (X). However, it is often the
case that Bor(X) # AM (X). If Y is another metric space, we say that a function f : X — Y
is absolutely measurable if f is AM (X)-Bor(Y') measurable, i.e., for every Borel set E C Y,
f~YE) € AM (X). Recall that a finite measure space (A, Y, \) is complete if, E € Y whenever
E CF,FeXand\(F) =0, ie., all subsets of sets of measure O are in ¥.. Note that statement
(4) in Lemma 25 shows how, in the presence of a complete measure space, absolute measurability

turns into measurability.

Lemma 25. Suppose X , Y and Z are metric spacesand f : X — Y, and g : Y — Z. Then
1. f is absolutely measurable if and only if f is AM(X)-AM (Y') measurable
2. If f and g are absolutely measurable, then g o f : X — Z is absolutely measurable.

3. Forevery Borel set E CY, f~1(E) is absolutely measurable.
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4. If (A, 2, \) is a complete finite measure space and ¢ : A — X is Borel measurable, then

(a) ¢ is X-AM (X) measurable, and,

(b) If f is absolutely measurable, then f o v : X — Y is measurable.

Definition 26. If f : X — Y and g : f(X) — X satisfy, for every y € f(X),

f9(y) =y,

then g is called a cross-section for f.
The following Theorem is from Theorem 3.4.3 in [1] and is the key to dealing with direct
integrals.

Theorem 27. Suppose X is a Borel subset of a complete separable metric space, and Y is a

separable metric space.lf f : X — Y is a continuous function, then

1. f(X) is an absolutely measurable subset of Y, and

2. f has an absolutely measurable cross-section g : f(X) — X.

Here is a simple result proved using measurable cross-section.

Lemma 28. Suppose n is a positive integer and M, (C)Jr is the set of n X n matrices A such that

A > 0. Let U, be the set of unitary n x n matrices and let D,, be the set of all diagonal n x n
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matrices in M, (C)Jr of the form diag (s;, . 51> with s1 > s2 > --- > 81 > 0. Then there is an

1 2
n n

absolutely measurable function u : ML, (C)™ — U, such that, for every A € M, (C)¥,
u(A)" Au(A) € D,,
Le.,

sa ()

u (A)* Au (A) = ()

313
~

sa (

Hence, for every T' € M, (C),

=
N—

st (5

M
SN—

u (T 1T u (7)) = o (s

st ()

Proof. Let X = {(A,Ux) : A€M, (C)",Ux € Uy, U3 AU, = diag (sa (1) ,...,54(2))}, which
is a subset of Ml,, (C)* x U,. For every (Ay,Uys,) € X, and (Ay,Us,) — (A,U,), we have

A)\ —>A,UA/\ — Uy, Thus
”U:‘AUA — UAAA)\UAAH — 0,

We also know that 13" s4 (£) = KF; (A) forall 1 <i <nandss (L) = KF (A) <|[A].We
=1

j=
can get s4, (%) M SA ( ) forall 1 < ¢ < n. Thus

z
n

. 1 n . . 1 n
Ui, AxUa, = diag (SAA (ﬁ) sy 8A, <E>) M> diag (SA (E) .., 84 (ﬁ))

Therefore U3 AU = diag (54 (£),...,s4 (2)),and X is aclosed subset of a ML, (C)* x U,

which is a complete separable metric space.
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Define 7, : X — M, (C)" and 7y : X — U, by
7Tl<A, U) = A, 7T2(A7U) == U

It is easy to see that (X ) = M,, (C)*.

Since we know for every A € M, (C)™, there exists a unitary U, such that

U AU, = diag (SA <%) ..., 84 (g))

Thus by Theorem 27, there exists an absolutely measurable function g : M, (<C)Jr — X
such that m; o ¢ = id on M, (C)", for every A € M, (C)", g(A) = (A,U,). Then we define
u=my0g:M,(C)" — U,, it is absolutely measurable.

Therefore, for every A € M, (C)™,

w(A) = Uq and u (A)* Au (A) = diag (sA (%) s (ﬁ)) €D,

Hence, for every 7' € M, (C),

w( TN T u(T]) =

2.3.3 Direct Integrals
Suppose €2 C R is compact, y is a probability Borel measure, H is a separable Hilbert space.

Define [ Hdp = L? (11, H) to be the set of all measurable functions f : © — H such that

112 = [ 17 @)1 du ) < o

26



We define an inner product {, ) on L? (u, H) by

(f b = / (f @) 1 (@) dja (w)

In this way L? (u, H) is a Hilbert space.

We define L> (u, B (H)) to be the set of all bounded functions ¢ : 2 — B (H) that are
measurable with respect to the weak operator topology (WOT) on B (H). Although the weak
operator topology, strong operator topology (SOT) and x-strong operator topology (x-SOT) on
B (H) are different, the Borel sets with respect to these topologies are all the same. Suppose the

map w — T, isin L (u, B (H)). We define an operator 7' = fée T.du (w) by

(Tf) (w) =T (f (W) -

If o € L>®(n, B(H)) and T, = ¢ (w) for w € 2, we also use the notation A, to denote
IS Tudp (w). In this way we can view L (u, B(H)) C B(L?(u, H)), and we can write
L (4, B(H)) = [ B(H) du ().

We have that L>° (1) can be viewed as the subalgebra D of L> (u, B (H)) of all functions ¢

such that ¢ (w) € C - 1 a.e. (u), that is, by identifying h € L* (x) with the function w — h (w) 1.

D = / - 1dp (w

We have D' = L* (u, B (H)) and L* (u, B(H))" = D, therefore D = Z (L (u, B (H))).

We denote D by

Suppose, for each w € Q, R, C B(H) is a von Neumann algebra. We say that the family
{Ru}eq is @ measurable family if there is a countable set {1, ps,...} C L (u, B (H)) such

that

ball (R.)) = {1 (@), 02 (@) - .} 57 ae. (n).

It is known that if {R,,} ., is a measurable family, then so is {R/,} Moreover, if {R[,}, ., is

weN”

a measurable family, then there is a sequence {1, s, ...} C L* (i, B (H)) such that
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ball (R.) = {11 (w), s (w),...} 7T ae. (n).

If {R.},cq is a measurable family, then we define the direct integral féﬁ R.dp (w) to be the set

ofall T = [T T,du(w) € L (u, B (H)) such that
T, € Ryae. (u).

It is known [11] that a von Neumann algebra R C B (L? (i, H)) can be written as

R = /QEB Rudp (w)

for a measurable family {R, } ., if and only if

D:/@C-ld,u(w)CRC/@B(H)d/L(w):D',

equivalently,

DcCZ(R).

In particular, since Z (R) = Z (R’) = R NR' for every von Neumann algebra R, we see that R
can be decomposed as a direct integral if and only if R’ can be decomposed as a direct integral.
Suppose 1 < n < co = N,. We define ¢ be the space of square summable sequences with the

inner product (z,y) = > x;y;, where z,y € H and H is a Hilbert space with dimension n.
i=1

Lemma 29. Suppose A is an abelian von Neumann algebra on a separable Hilbert space H.
Then there are compact subsets ), C R for 1 < n < oo and a Borel measure i, on (),
such that pi, (2,) € {0,1} and A is unitarily equivalent to Z?ﬁngoo L (pin, C - 1) acting on

28



Suppose R is a von Neumann algebra acting on a separable Hilbert space /1. Then the center

Z (R) of R is an abelian von Neumann algebra on H. From Lemma 29 we can write

and

> L® (4, C-1).

1<n<0o

Since R commutes with Z (R), we can write

where R, C B (L?* (i, £2)). It is clear, for 1 < n < oo, that
Z(Rn) = L (pn,C- 1),

which implies

R, C Z(Ry) = L® (o, C- 1) = L™ (n, B (L)) .

Hence, for each n, 1 < n < oo, there is a measurable family {R,, ()}, such that

Ry = /jnn (@) dp (@)

‘We therefore have

Z/R ) dpin, (w) -

1<n<oco

This is called the central decomposition of R.

The following Lemma is a well-known result.[11]

Lemma 30. In the central decomposition of R, almost every R,, (w) is a factor von Neumann

algebra.
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Lemma 31. Suppose A, is a masa of a R,, for 1 < n < oo, then there is a measurable family
{An (W)}ycq, such that
o
A, = A, (W) dpn, (W),

Qp

where A, (w) is a masa in R, (w) .

Proof. Suppose
W= (B(l?)) x Ax BxCx ExNxN,

where A = B = C = iﬁlball(B (1)) and E = {x €[ :||z||=1}. Then W is a complete

separable metric space with product topology.

Define X, ;, to be the set of elements (7, {A;}.°, ,{Bi};=, , {Ci}ioy . e, m, k) in W satisfying
1
TA =AT, TB;, =BT, |(TC,, — C,,T)e| > o for every i € N.

Then X,,, . is a closed subset of V. We define X = ZLjilek, then X is a Borel subset of W.
Let m34 : X A x B x C be the projection map. Then 7y 34 (X) consists of elements

({Ai}:2, ABi}iey , {Ci};2,) so that there exists 7' € ball (B (I2)) such that
T e {Al,AQ,...},Q{Bl,BQ,...}/ andT¢ {Cl,CQ,...},.

Suppose there are sequences { f1, f2, ...}, {¢1, %9, ...} and {g1, go, . . .} contained in L> (u,,, B (12))

such that

ballA, (w) = {fi (@), fo(w),...} ",
ballR,, (w)' = {th) (W), () ...} 57
ballA, (@) = {g1 (@), g2 @),...} .
By Theorem 27, we know there exists an absolutely measurable function Y : mo 34 (X) — X

such that 7 5 407 is the identity function on 7y 34 (X) .
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Define F': ), - A x B x C by

F(w) ={fi(w)}Z; x {¢h (@) }Z; x {g: () }2, -
Let

G = F_l (7T27374 (X)) =
{w : there exists T € B (12) suchthat T (w) € A, (w) N R, (w) and T (w) ¢ A, (w)} .

We know from Lemma 25 and the completeness of (€2, 11,,) that G is measurable. We need to
prove pi,, (G) = 0. Suppose not, and let 7; : X —B (I2) be the projection map (into the first
coordinate). Then, by Lemma 25, m; o T o F|g is a measurable function from G to B (I2). We
define 7" by

T () = (moYToF|g) (w) ifweG |
0 ifwegG
Thus

Tz/@w)dun(w)@/@ 0dn (),

G Q\G

thenT € A/ NR, and T ¢ A,,, which contradicts to the assumption that .A,, is a masa. Therefore

tn (G) =0 and
@
A, = A, (W> ditr, (w) )
Qn
A, (w) is a masa a.e.(,, ). This completes the proof. O

2.3.4 Multiplicities for Type I, factors

A type [ factor von Neumann algebra is isomorphic to B (H ) for some Hilbert space H. How-
ever, if m is a cardinal, we can let H(™ denote a direct sum of m copies of H and, for each
T € B(H) write T™ be a direct sum of m copies of T acting on H™), and let B (H)™ =
{T0™ . T € B(H)}. Clearly, B (H)™ is isomorphic to B (H). The number m is called the mul-

tiplicity of the factor B (H)'™ and it is the minimal rank of a nonzero projection in B (H)™. If

31



we consider a type / von Neumann algebra acting on a separable Hilbert space as a direct integral
of factors, we can change the factors so that they all have multiplicity 1. This gives another von
Neumann algebra that is isomorphic to the original one. Since we are interested in finite von Neu-
mann algebras, the type I, algebras, with 1 < n < oo, can be written as direct integrals of copies
of M, (C), i.e., fé’i M, (C) dp,, (w) acting on L? (i, ¢?) for some probability space (2, i)
where 4i,, is a Borel measure on a compact subset €2,, of R. In this case, fé’i M, (C) dpy, (w) is
naturally isomorphic to ML, (L* (u1,,)) acting on L? (,un)("). When we write the type I,, part of a
von Neumann algebra this way, we have an isomorphic copy, but maybe not a unitarily equiva-
lent copy of the algebra, since we changed all of the multiplicities to be 1. Note that the center
Z (fgi M., (C) dpu, (w)> = fé’i C - 1y, (w) acting on L? (u,,, €2).

For example, if a von Neumann algebra is [ gi M (C)dm (w) & [ ]?2 M (C)® dn, (), then
it is isomorphic to fge M, (C) du (w) where €2 is the disjoint union of F; and F> and p (A) =
m(ANE) +n (AN Ey).

Thus in the central decomposition, we can assume, for each positive integer n (i.e., 1 < n <
00), that

® ®

Rn = R (w) dpi (w) = M, (C) dpin (w) ,

Qn Q"

and
®
Z(R,) = / C - 1dpy,.

For 1 < n < oo we have that the map p,, : R,, — C defined by

o (T) = / T (1) i ()

is a normal faithful tracial state on ‘R,,.

2.3.5 [I, von Neumann algebras

Once we have changed the multiplicities of the type I,, parts of R, we have in the decomposition

®
Reo = /Qoo Reo (W) dpio (W) .
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‘We have
@
Z(Re)= [ €l (o).
Qoo

we have that each R, (w) must be an infinite dimensional finite factor, which means it must be a
type 11, factor, and we can assume it acts on /2. In this case making the multiplicity infinite can
make things more convenient.

We let RS = {T(Oo) =TaeT®---:Tec ROO}. Clearly, R s isomorphic to R, and
we have

(S5}
R = [ RE) () dpe ()

00 s
acting on L? (uoo, (62)(°°)>. The nice thing about R (w) is that every normal state ¢ on
R (w) can be written as

@ (T(OO)) — <T(°°)e,e>

for some unit vector e € (£2)°. Since (¢2)™ is isomorphic to £2 = (2, we can, by replacing

R with RS, assume that every normal state ¢ on R, (w) can be written as
v (1) = (Te,e)

for some unit vector e. In particular, since R, (w) is a I1; factor, there is a unique normal tracial

state T, 0N R (w). Hence there is a unit vector e (w) € ¢2 such that, for every T' € R, (w),
Toow (T) = (Te(w) e (w)) -

Using the measurable cross-section theorems we can choose e (w) so that the map e : Q. — (%

is absolutely measurable.

Lemma 32. Suppose R, is type I1; von Neumann algebra with R, = féio Reo (W) dpioo (w).
Then there exists a map € € L? (oo, (2,) and ||e||, = 1 such that for every T = [T, dpo (w) €

Roo, (Toowe (W), € (w)) = Toow (1h,), where T, is the unique normal tracial state on R (w) .
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Proof. Suppose
W = ball (B (lzo)) X il;Ilball (B (lzo)) x E,

where F = {x €2 :||z||=1}. Then W is a complete separable metric space with product

topology.
Let X be the set of elements (7', {A;};-, , ) in W satisfying

TA, = AT, (AiAje e) = (AjAe, e) foreveryi,j € N.
It is easy to verify that X is closed.

Letmy : X %lillball (B(1%)), m3 : X —F be the projection maps. Then 7, (X) is the set of

elements {4;};°, so that there exists 7" € ball (B (I12,)) such that
T e {Al, AQ, R }, N {Bla BQ, e }/ and <AZA]€, €> = <A]Ale7 €> for all Z,j € N.
There exists sequences {11, 1, ...} contained in L* (jio, B (I%))) such that

ballR (W)/ = {1 (W), 2 (w),... }_SOT

By Theorem 27, we know there exists an absolutely measurable function T : my (X) — X
such that 75 o T is the identity function on 7 (X) .

Define F : Qo — ,ﬁlbau (B (%)) by

F(w) = {vi (W)}Z,

which is measurable, thus, by Lemma 25, 73 o T o F' is a measurable function from €2, to lgo. We
define e by
e(w)=(m30ToF)(w).
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Thus e is a measurable function with e = fsio e (w) dus (w), thatis e € L? (po0, 2,) and

lell2 = / e (@) dptoe (w) = / Lt () = Jiog () = 1.

The map

Too : Reo — C

defined by

oo (T) = (Te, ) = / (Toe (), € (w)) dpine (&) = / e (T) djioe ()

Qoo def

is a faithful normal trace on R.. Since 7, is a faithful normal trace on R, (w) and the trace on

a type I [, factor is unique, it follows that 7 ,, is the usual trace.

2.3.6 The Center-valued Trace
Suppose R is an arbitrary finite von Neumann algebra, possibly not acting on a separable

Hilbert space. There is (see [15]) a unique map ¢ : R — Z (R) satisfying

1. @5 is linear and completely positive,

2. Dz (1) =1,

3. Pr (AB) = P (BA) forall A, B € R,
4. ®x is weak*-weak* continuous, and

5. &g (ATB) = Adg (T) Bforall T € Randall A, B € Z (R).

The map @, is called the center-valued trace on 'R.
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In the case when R acts on a separable Hilbert space, and we have

o
R = Zlgngoo R,

we have
®
2(R)= Zl<n<oo (Rn).
and we have
)

Pr = Zlgngoo P,

We can write each @5 explicitly in terms of the central decomposition, i.e.,

(&)
dr, (T) = / o (T) - g ()

when 1 < n < oo, and
@

Br.. (T) = /Q 7 (1) - 1dpioe ().

n

It is clear that these maps satisfy the defining properties (1)-(5) and the uniqueness tells us that

these formulas are correct.

2.3.7 Two Simple Relations

Suppose 1 < n < oo. There is a normal x-isomorphism 7, : L* (u,,) — Z (R,,) defined by

(&)
o () = / £ (@) - gt (w).

Also the map f — [ q, fdu, is a state on L* (p,,). The simple relation between this state and the

x-1somorphism 7,, and p,, is given by

(P o) (f) = / fdun

for every f € L™ ().
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Another simple relationship between p,, and %, is

pn:pno¢Rn'

2.3.8 Putting Things Together
We let Q) be the disjoint union of {2, : 1 <n < oo}, which can be represented as a Borel

subset of R. We define a probability Borel measure ;. on €2 by

1 = 1
M(E):§Moo(Eono)+Zﬁun(EﬂQn)~

n=1

Then the von Neumann algebra L>° (1) can be written as

L= (1) = L% () D L (1)

We define an isomorphism

v L* () = Z2(R),

by
T ®@fiDfa D) =Yoo (foo) B 1 (f1) D2 (f2) - .

We can define a faithful normal tracial state p : R — C by

We have

L. p=podg,
2. (pov)(f) = J, fduforevery f € L™ (1), and, as we stated above,
3. 0r (T) = 31 pcoo Pr, (T0)

= [ o 7 (T (@) - gt ()] @ [y 7 (Too () - Lt ().
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CHAPTER 3

MASAS IN FINITE VON NEUMANN ALGEBRAS

A masa in a C*-algebra is a maximal abelian selfadjoint subalgebra. In B (H) where H is
a separable infinite-dimensional Hilbert space there are many different masas. For example, the
set of all diagonal operators with respect to some fixed orthonormal basis is a discrete masa. On
the other hand L [0, 1] = L* (d.,) acting as multiplications on L? [0, 1] with Lebesgue measure
is also a masa that is not isomorphic to the diagonal masa, since it has no minimal (nonzero)
projections. However, in a finite von Neumann algebra R with a faithful normal tracial state 7

acting on a separable Hilbert space we will prove that all masas are isomorphic.

Theorem 33. Suppose A is a masa in a finite von Neumann algebra R. Then there is an tracial

embedding w4 : L (\) — A such that the following diagram commutes

L*\) B A
4n 1 P
L*(n) = Z(R)

Moreover, if B is another masa in R, then B is isomorphic to A. In fact, 74 and 7z are approxi-
mately equivalent in R.

We first need to prove this theorem when R is a finite factor. When R is a type [, factor, i.e.,

R = M, (C), the result is obvious.

Lemma 34. Suppose A C M, (C) is a masa. Then there exists a unitary U € U (M, (C))
such that UAU = D, the n x n complex diagonal matrices. Hence there is a *-isomorphism

7w L (8,) — A such that, for every f € L (,), which is isometrically isomorphic to C".

T (m(f) = [ [fdon.

Jn
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When R is a type [1; factor the result is well-known [11], but we sketch a proof for complete-

ness.

Lemma 35. Suppose M is a type 11, factor von Neumann algebra acting on a separable Hilbert
space with a (unique) faithful normal tracial state T, and suppose A is a masa in M. Then there

is an isomorphism 74 : L™ (0o0) — A such that, for every f € L™ (6),

T<wA<f>>=:jﬁ £ (1) b (2) -

Proof. Using von Neumann’s theorem [11] there is an operator A = A* in Asuchthat )0 < A <1
and A = W* (A) (the von Neumann algebra generated by A). Then A is generated by the chain
of spectral projections Cy = { X[o,s) (A) : 0< s < 1}. This chain is contained in a maximal chain
C of projections in R Since C C Cj = A" = A, we have A = W* (C). Since a I1; factor has no
minimal projections and 7 : C — [0, 1] is injective, we can write C = {P; : 0 <t < 1} such that,
forevery t € [0, 1],

T(P) =t.

Since C is linearly independent and the linear span sp (C) of C is a unital *-algebra,we know the
map T

X[o,t) = P

give a *-isomorphism 7 between sp ({X[O,t) }) and sp (C) such that, for every f € sp ({X[O,t) })

1
rr() = [ fdon.
0
The map 7 is also a || || ,-isometry between dense subsets of L? () and L? (A, 7) . Thus 7 extends

uniquely to a unitary operator from L? (0,,) to L? (A, 7). Since lim, o [|A]l,n = ||2]|,, for all

h € L™ (0 ), this maps sends L™ () onto A. This is the desired map 7 4. O
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Corollary 36. Suppose A is an abelian von Neumann algebra on a separable Hilbert space with

a faithful (tracial) state T. The following are equivalent:

1. There is an isomorphism 7 : L*° (d,,) — .A such that, for every f € L™ (J),
1
()= [ FOd ),
0

2. Thereis aT € A such that

(2 W*(T)=A
(b) T =T*

© 7(T") = =g forneN

Moreover, if (2) holds, then 0 < 7" < 1 and the map 7 (f) = f (T') is the required map in
(1)

Proof. (1) = (2). Suppose 7 exists as in (1). Define f (t) = ¢t in L™ () and let T = 7 (f).
Then 0 < T <1,

A= (L% () =7 (W (f)) = W" (z () = W (T),

and, foreachn € N,

I =) = [ =

(2) = (1). Define the state p : L™ (do,) — C by

n+1

o (f) = / F (1) dos (1)

Letting f € L™ (0) be as above, we have 7 (T") = p(f") = — for each n € N. It follows

from Lemma 1 in [16] that there is a normal (i.e., weak*-weak* continuous) *-isomorphism 7 :
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L*® (6s) — A such that 7 (f) = T and such that 7 o 7 = p. It is clear that, for any polynomial
p(t), ™ (p) = p(T). Suppose f € L™ (). By changing f on a set of measure 0, we can assume
that f is Borel measurable. Then there is a sequence {p, } of polynomials such that p,, — f weak*.
Thus

f(T) = (weak*) lim p, (T') = (weak*) lim 7 (p,) = 7 (f).

n—oo n— oo

O

From this Lemma, we can see that 7 (f) = f (7)) and 7 (T™) = 7 (w4 (2")) = fol 2"ddo =

1 f— .« ..
n—+1f0rn—1,2, .

Lemma 37. Suppose A = A* € B (H). It follows that W* (A) = {p1 (A) ,p2 (4),--- Y for

a sequence of polynomials py,po, - - - .

Proof. We know that span {1, A, A% ---} = {p(A) : p € C|[z]}, then
W (A)=W*(p(A),peClz]).

Since {p(A),p € C[z]} € {p(4),p € Q" C {p(A),pe CLY} ", thus W*(4) =

{p1 (A),ps(A),--- 1O for a sequence of polynomials. O

Lemma 38. Suppose A, is a masa of Ro.. Then there exists an operator T = fsio Toditoo (W)

such that W* (T,,) = A (W), and 7,06 (T}) = (The (W) , € (w)) = 5 forn > 1.

Proof. Let
Y =B (%) x ball (B (I5,)) x Iball (B (i) x Iball (B (i5,)) x E.

where E = {x €[ :||z| = 1}. Itis clear that ) is a complete separable metric space with

product topology. Let X’ be the set of tuples (T', {A;};~, ,{Bi}~, ., {Ci}iz; , €) in Y satisfying

1
TAZ = AlT, TBl = BZT, <Tn6, 6) = forn Z 1.
n+1
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From Lemma 37, we know there exists a sequence of polynomials such that W* (T") such that

W*(T)=W*(p1 (T),p2(T),---). Define W, ., be the subset of X satisfying
1
T=T" d(A;,p,(T)) > z forn > 1.

Let Wi, = (Y Wikn and W =J [ Wi, then W is a subset of X’ satisfying

n=1 i=1k=1

AZ¢W*(]?1<T),]?2<T),>, fOI'ZZl

Then X\W = (| (N X\W, is a subset of X satisfying

i=1 =1

W* (A, Ag,--+) SW (pu (T),p2(T) ),

which is a G5 set. By Lemma 2.5 in [6], there exists a metric which makes X'\ a complete
separable space. Let 75 3 4 be the projection map into second, third, fourth coordinates, then there
exists an absolute measurable function Y : 7934 (X) — A& such that m o T is an identity on
o34 (X).

Suppose there are sequences { f1, fo, -+ }, {t1, 02, - }, {¥1, 2, - - } contained in
L™ (foo, B (I%)) such that

ball Ay (w) = {f1 (W), fo(w),...} 5T,

ballR (W)/ = {1 (W), ¢2(w),... FSOT,

ballR s (w) = {1 (W), 2 (w),...} 5"
Define F : Q, — :ﬁlball (B(1%)) by

Fw) ={fi (@)}Zy x {v (W) 12, x {ei (W)},
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which is measurable, thus, by Lemma 25, 70 T o F' : w —— T, is the desired measurable function
from Q, to B (I%) such that ball A, (w) = W* (T,,), where 7 is the projection from X'\ into

its first coordinate. [

Lemma 39. Suppose A,, is a masa of R,, for every 1 < n < oo. Then there is an isomorphism

At L (Qy X T i X 0) = Ay = [ A (w) dpr ().

Proof. First suppose 1 < n < oo. We know that R,, is isomorphic to féBn M, (C) dpy, (w) , so if
A, isamasain R,, then A, = fé’i A, (w) dp,, (w) where each A, (w) is a masa in M, (C). There
is a unitary operator U,, € M, (C) such that A,, (w) = U2D,, (C) U,,.. An easy measurable cross-
section proof allows us to choose the U,,’s measurably. However, D,, is isomorphic to L™ (.J,,, ) .

Define 74, : L= (R % ) =[5 L= (8,) dps, (w) by

Now suppose n = co. We choose {7, } as in Lemma 38, and we define

i (D= [ () dee (@)

Qoo
where f, (t) = f (w, t). O

Suppose now that R is a finite von Neumann algebra acting on a separable Hilbert space H,
R=Ri&R:& -] PReo -

For 1 < n < oo, R, is a type [, von Neumann algebra acting on H,, R, is a type 1[; von

Neumann algebra acting on H .,

H=H &Hy® - |® Heo.
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A is a masa in R. Then, we can write

A=A 0 A ]| A,

IA

where, for 1 < n 00, A, is a masa in R,. Clearly, since A, is a masa in R,,, we know

that D, = Z(R,) C A, C R, C L*>® (u,, B(H,)). It follows from Lemma 31 that there is a

measurable family {4, (w) : w € ,,} of von Neumann algebras such that

A, /A ) djin () .

If 1 <n < oo, then almost every A, (w) must be a masa in M, (C). If n = oo, then almost every
A, (w) must be a masa in the /], factor R, (w). Since throwing away a set of measure 0 from
2, doesn’t change anything, we can assume that, when 1 < n < oo every A, (w) is a masa in
M, (C), and when n = oo, every Ay (w) is a masa in R, (w).

If 1 <n < oo, then each A, (w) is isomorphic to L> (§,,) (see Lemma 34 and 35).
And fé’i A, (w) dpy, (w) is isomorphic to fé’i L (8,) du,, (w), which is isomorphic to
L (Q,, X Jp, pn, X 0,,). The isomorphism sends a function f (w,t) € L™ (2, X Jy, ftn X ) tO
JE i (8) dpn (), where £ (£) = f (1),

For each n, 1 < n < oo, we define A, = Q,, x J,, and we define \, = u,, x 6,. We let A
denote the disjoint union of the A,,’s for 1 < n < oo, and we can choose A to be a Borel subset of

R, and we define a probability Borel measure A on A by
1
MF) = Shoo (F N As Z 2 (FOA,) .

We then have

LA =L M\)® II L™(X,) .

1<n<oo

For each n, 1 < n < oo, there is a mapping

Mt L% (An) = L™ (pn X 0n) = L (1) ,
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defined by
o

M (f) (W) = [ f(w,t)do,(t).

Jn
We define n : L™ (\) — L* (u) by

N =nfc@idfa® ) =N (foo)Dm (i) D2 (fo) ®--- .

Lemma 40. For 1 < n < oo, if A, is a masa in R,,, then there exists a tracial embedding

A, » L (A\n) = L™ (pun, X 0,) — Ay, such that the following diagram commutes

L®(\) =& A,
4 12,
L> (:un) n oz (Rn)

(I)nOﬂ-.An = Tn © Tn.

where

W) = jf(w)fcmn(m,
() @t) = [ Ft)ds,(t) and

JIn

o ([ T@dnn @) = [ n (T (@) T ).
(/, ) - .

Moreover; if B, is a masa in R, and there is a tracial embedding g, : L™ (\,) — B, such that
D, o R, = Yn © Ny, then,

if 1 <n < oo, then there exists a unitary U € U (R,,) such that

Ura, (L= (M) U =13, (L (M),

if n = o0, then T4, is approximately equivalent to T, in R,

45



Proof. For 1 < n < oo, we have

and

® " ® 1
/ T | U U, | dity, (w / Zf(w —)Idun( ).
)
Thus the diagram commutes. For n = oo, by Lemma 38, we know there exists an operator 7' =
féio T.dis (w) such that T, generates A, (w) in weak operator topology with 0 < 7;, < 1 and
Tuso (T) = 735 forn > 1. The map 7., : L™ (6s) — W* (T) = Ay is defined by ma,, (f) =
J& Fu (L) dpte (@) . Thus e © 10 (f [fJ (w,1)dd, (t)] T and @ 0 ma_ (f) (@)

Twoo (fu (Tw)) I = [ [, f I (w,t)dd, (t )} 1. Therefore the diagram commutes.

[

Combining all of these results we obtain Theorem 33.

And we also have the following corollary.

Corollary 41. If A and B are masas in R, then the tracial embeddings T 4, 75 are approximately

unitarily equivalent in 'R.

Proof. If A and B are masas in R, then there are tracial embeddings 74 and 7z as in Theorem
33 . Thus ® o m4 = ¥ o mg. By Theorem 23, we have 74 and 7z are approximate unitarily

equivalent. [
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CHAPTER 4

MEASURE PRESERVING TRANSFORMATIONS

4.1 Basic Facts

A Borel measurable map o : [0, 1] — [0, 1] is measure-preserving if and only if, for every Borel

set £ C [0, 1],

We say that o : [0,1] — [0,1] is an invertible measure-preserving map if there are measure-

preserving measurable maps oy, 05 : [0, 1] — [0, 1] such that
(cooy)(x) =zand (09 00) () =z, almost everywhere (0,) -

In this case, let £ = {y € J: 0001 (y) #yoroyoo(y) #y} and let S be the semigroup
generated by o, 01, 02, id|p,1). Then S is countable, thus denoted by S = {7, : n € N}. Suppose
F= (nLGJN’a\n (E)) U <nL€JN8n1 (E)) , it follows that d, (F') = 0. and o (F) = 0y (F) = 02 (F) =
F. Therefore, on Jo \F, 0,071,095 : Jo\F — Jx\F is bijective, also 0 o 07 = 05 0 0. Define & on
Jso by

o(y) yEJu/F

Y yeFl

o(y) =

Then &, o' are bijective, measurable, and & = o a.e.(d,,) . We can change o and oy, 0 on sets of
measure 0 so that o : J,, — J is bijective and 01 = 09 = 0! a.e.(d,,). In the following sections,
whenever we talk about an invertible measure-preserving transformation o on J,, we will mean a

bijective map o : J,, — J. such that o and 0! are measurable and measure-preserving.
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Let MP[0,1] = {o|o : [0,1] — [0,1] is an invertible measurable preserving transformation} , then
(MP [0, 1], o) is a group.

Let V be all unitaries U in U (B (L?*([0,1]))) with U (1) = 1, and for all f,g € L*>0,1],
Ufg)=U(NU(g).

Lemma 42. V is x-SOT closed.

Proof. Suppose {U,} C V, and U, 9, U; 9" U* Ttis easy to see U*U = UU* = 1 and

U (1) = 1. And we know thatU,, °%" U if and only if 5p { f € L*[0,1] : |Upf — Uf[|2 = 0} =
L*]0,1]. Thus there exists a subsequence {U,,} such that for all f,g € L>[0,1], Ufg =

lim Uy, (fg) = lim (Un, f) (Un.g) = UfUg, thus U € V. 0
k—o0 k—o0

Corollary 43. V is a complete separable, metric space in the x-SOT.

Proof. Since V is a x-SOT closed subalgebra of ¢/ (B (L?[0,1])) and U (B (L?[0,1])) is a com-

plete separable metric space. It follows that V is a complete separable metric space. [
Lemma 44. There exists a group isomorphism o — U, from MP [0, 1] onto V.

Proof. If 0 € MP|[0,1], define U, : L*[0,1] — L?[0,1] by U,f = f o o~'. Since, for every
fer?o,1],

WU, fII% = /Y (foo™)? dss = /Y P oo tds, = /Y P dow = IFI,

U, is an isometry. Since U,-1 = U, !, U, is unitary. Also U, (fg) = (fg)oo = (foo)(gooc) =
(Usf) (Usg) when f,g € L*[0,1]. Thus U, € V.
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To prove that the map o — U, is onto, we suppose U € V. Define x € L?[0,1] by = (t) = t,

and define v = U (x). We will show that v € MP [0, 1]. Then U (2™) = 4™ for all n > 1. Thus

|

2n—1

Y

2n—1

i| 1/277,71

= lim [HUx

Ml = lim |yl = lim H

-

Also if v = u + iv, then

2n—1

= Izl = L.

A / Vb = / 1y = 3112 dose = ], + 1712 — 2Re (7, 7)

= 22— 2(% 1) = 2|z -2 / 25 = 0

Thus v = 7. Since

1 1 1
/ Y'ddo, = / T"d0se =
0 0 n+1

for each n > 1. It follows from Corollary 36, using 7 (f) = fol fdds, that 0 < v < 1. And
the map 7 (f) = f o is a weak*-continuous automorphism on L ([0, 1]) such that, for every
fer>o1],
1 1
| b =r i) = [ fords..
0 0

Thus
1

0o (VH(E)) = / XE © Ydos = 0o (E) .

0

Hence + is a measure-preserving transformation on [0, 1]. Furthermore, U, f = f o+ is an isometry
on L? ([0, 1]) and equals U on the dense subset of polynomials. Thus U = U.,. Since U,, is unitary,
v € MP [0, 1].

Since V is closed in the *-strong operator topology (*-SOT), and the closed unit ball of B (L? [0, 1])
is a x-SOT complete metric space, we know that MIP [0, 1] is a complete separable metric space

with the topology v, — 7 if and only if U,, — U, in the *-SOT. On MP [0, 1] this topology is
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called the weak topology. 7] The metric for the unit ball of B (L? [0, 1]) is rather complicated. For

MIP [0, 1] we have a simpler metric. O
Lemma 45. MP (Y, v) is a complete separable metric space with the metric d on MP |0, 1] defined
by
d(vi,72) =l =l + | - VEIHQ

Proof. Suppose d (7, ) — 0, then ||y, — 7|, = 0 and ||y, * — 7|, — 0. Thus |7 — 4*||, —
0 and H(mjl)k - (7_1)kH2 — 0 for every k > 0. Thus ||U,,2* — U,2*||, — 0 which implies
Uy, = Uin SOT and U] = U -1+ — U,- = UJ in SOT. The converse is obvious. To prove
completeness, a similar argument to the one above shows that if {7, } is d-Cauchy, then {U.,, } is

%-SOT Cauchy, so there is a 7 € MIP[0, 1] such that U,, — U, in the *-SOT. Hence 7,, — 7 in
d. O

We now turn to our measure space (A, A). We want to describe a subgroup G,, (R) of MIP (A, A).

Definition 46. Suppose o € MP (A, \,). Then o € G,, (R) if and only if, for every measurable
EcQ,,
o(E x J,) CEXJ, a.e.,

ie.,

A (0 (E % J,)\(E x J,)) =0.

Since it is known that
o ((Q\E) x J,) C (Q\E) x Jp, ae.,

it follows that

o(ExJ,) =FEXJ,ae..

This implies that 0! € G,, (R). Clearly, G,, (R) is a subgroup of MP (A,,, \,,).
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Definition 47. We define G (R) to be all o € MIP (A, \) such that, for 1 < n < 0o, 0 (A,) = A,

and o|a, € G, (R). We see that we can view

G(R)= II G,(R),

1<n<oo

as a product space.

We can express the following Lemma as:

G(R) = i /Q@MP(Jn,én)dun(w)SMIP’(A,/\).

1<n<oo

Lemma 48. Suppose 0 € G, 1 < n < oo. Then there is a measurable family {o,, : w € Q,} in

MP (J,,, 8,) such that, for every f € L (A,,,)

(foo)(wt)=f(w ou(t)).

We write this as

o :/ oudy, (W) .
Qn
Proof. We can view L? (A, \,) = L? (2, X Jy, i X 3, as

/ L2 (o, 6,) dpin ()

by identifying f € L*(Q, X J,, ftn, X 0,,) with

2]
fwd,un (CU) )

Qp

where f, (t) = f (w,t) . Fubini’s theorem shows that this is an isomorphism, i.e.,

112 = / At 5 = / s, 0 - / Nl dp ().

51



We know that U (f) = f o o is a unitary operator on L? (A, \,) = L? (2, X Ju, ftn X 5,,) .

Suppose F C €2, is measurable. Then

3] ®
Pz [ xe@ i) e [ B (0 00) dua (o).

def

and the definition of o~ € G,, (R) implies that PsU = U Pg. Since the linear span of {xz : F C ©,,, F measural

is dense in L™ (€2,,, ) , we see that U is in the commutant of
®
{[ edn @) pe =@}
Thus there is a measurable family {U,, : w € ,,} of unitary operators in B (L* (J,, d,,)) such that
®
U= / Uydp (w) .

If h e L?(J,,6,), we define h € L2 (Q,, X Jy, i, X 0,,) by

1.e.,
X =
h = / hdp, (w) .
Qn

If h,k € L*(J,,0,), then U (iLiﬂ) =U (ﬁ) U (l%) , so, for almost every w € Q,,,
U, (hk) = U, (h) Uy () -
Since L? (.J,,, d,,) is separable, there is a countable set & whose closure in ||-||, is

{h € L (Jn,0n) - |1l <1}
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(which is ||-||,-closed). We now have for almost every w € €,, and h, k € &,
U, (hk) =U, (h) U, (k).

We can change U, on a set of measure 0 and assume that the above relation holds for all w € 2,,.
Suppose h, g € L*> (J,,0,) and ||h]|__ . ||lgll,, < 1 and suppose w € €2,,. We can choose sequences
{h} and {g} in € such that ||h; — k||, — 0 and ||gx — g|l, — 0. By replacing these sequences
with appropriate subsequences, we can assume that hy (t) — h(t), (Uyhg) (t) — (Uuh) (t),

gr (t) = g (), (Usgr) (t) = (Uug) (t) ae. (6,). It follows that ||h,g, — hgl||, — 0. Thus
UL, (hg) (8) = Tim U, (heg) (1) = Tim (o) (8) (Uagi) () = (ULA) (1) (Usg) (8-

It follows from Lemma 44 that, for each w € €2,,, there is a (unique) o, € MP (J,, d,,) such that,
for every h € L? (J,,,,),
Uh=hoo,.

Our measurable cross-section theorems can be used to show that there is a measurable choice of

the o,,’s, but the uniqueness implies that {o,, : w € Q,,} is measurable. ]

4.2 Nonincreasing Rearrangement Functions, s-functions, and Ky Fan func-

tions.

Theorem 49. Suppose f : A — [0,00) is measurable. Then there is a 0 € G (R) such that, for

1 <n < oo, the mapping t — (f o o) (w, t) is nonincreasing on J,, a.e. (p,).

Proof. Choose R > || f||... Suppose 1 <n < co. Let
X ={(h,0) € L*(,) x MP(J,) : 0 <h < R, h oo is nonincreasing on .J,, } ,

where {f : 0 < f < R} is given the |-, 5 -topology, MIP (.J,) is given the weak topology, and
L*>(6,) x MP(J,) is given the product topology. (Note that if n < oo, MP (J,) corresponds
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to the set of n x n permutation matrices and has the discrete topology.) Since ||-||, convergence
implies subsequential convergence almost everywhere, it follows that X’ is a complete separable

metric space. Since every measurable /i has a nonincreasing rearrangement, the map
m:X =>{h:0<h<R}

is onto, so, by Lemma 27, there is an absolutely measurable cross-section ,, : Y — X for 7. Let
Ny =m0, : Y — MP(J,).
We now define s, : 2, — MP (J,) by

Sn (W) = M (fu) € MP (J,,) .

It is clear from the construction that that f,,0s,, (w) is a nonincreasing function of ¢, i.e., f (w, s, (w) (¢))
is a nonincreasing function of ¢ for each w € €2,,.

We define
on (W, t) = (w, s, (W) (1)) .

Then o = {0}, <,,<oc € G(R) has the desired properties. O

Note that the function o is not necessarily unique, but the function f o o is unique. It is called
the nonincreasing rearrangement function for f, and we denote it by s;. If f and h are nonnegative
measurable functions on A, we say that f and h are G (R)-equivalent if and only if sy = s;, a.e.
(A). This holds if and only if there is a 0y € G (R) such that h = f o 0.

Foreachw € Q,, and t € J,,, 57 (w, t) is call the t" s-number of f at w.

Definition 50. Suppose T' € R. We can write T' =, fé’i T (w)dpy, (w). We define st €
L> (A, \) by
sp(w,t) = sp(w) (t)

whenl <n <oo,w € Q,andt € J,.
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Definition 51. Suppose f € L™ (A, \) and 0 < f. Foreach 1 < n < oo, and each w € Q,, we
define f,, € L* (J,,0,) by
fo(t) = f(w,t).

We view

=y /jfwdunw-

1<n<oco

We then define sy € L™ (A, \) by
sp(w,t) = s, (1)
Lemma 52. Suppose 0 < f € L> (A, \). Then there is a o € G such that, f o 0 = sy.

Proof. For 1 < n < oo, the map w — f,, from Q,, to L> (.J,,, d,,) is measurable. For each w € 2,
there is a 0, € MP (J,,d,,) such that f, o o, = sy,. Using measurable cross-sections, we can

choose the ¢,,’s so that {,, : w € Q} is measurable. Thuso =3, [~ 5, € G and

(foo)(wt) = flw ou(t) = (fooow) (t) =sp (t) =57 (w,1).

]

Lemma 53. Suppose T' € R, Aisamasain R, |T| € A w4 : L® (A, \) — Ais a tracial

embedding as in Theorem 33, and f € L™ (A, \) satisfies w4 (f) = |T'|. Then sy = sy.

Proof. We can write

where, for1 <n < ooandw € §,,, A, is a masa in R,. We can also write

A= Z /:omdﬂn (W),

1<n<oo

where, for each w € Q,,, m,, : L™ (J,,,0,,) — A, is a tracial embedding. If 74 (f) = |T|, then, for

almost every w,

o (fo) = [T] (W) = [To].
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Thus, for almost every w € (2,
S fo = ST, -

Thus s¢ = s7. [

Lemma 54. Suppose Ay, Ay are masas in R, 0 < A, € Ay, m, : L>® (A, \) — Ay are the
isomorphisms in Theorem 33 and fi, fo € L™ (A, \) satisfy 7 (fr) = Ay for k = 1,2. The

following are equivalent:
1. S = Sfy
2. Thereisa~y € G(R) such that fo = f1 07

3. There is a sequence {U, } of unitary operators in R such that

4. For every unitarily invariant norm o on R
« (Al) = (AQ)

5. For every rational numbert € (0,1] KF, (A;) = KF, (As).

Proof. (1) = (2). There are 71,72 € G(R) such sy, = f oy, for k = 1,2. By (1) we have
fa=fio (”Yl 072_1)-
(2) = (3). Define 73 : L™ (A, \) — As by

T (f) =m (fo).

Thus 73 (f1) = Ay. By Theorem 23, m; ~, m3. Thus there is a net (sequence) {U;} of unitary

operators in R such that

lim Ui A U — Aq| = lim |Uimy (f1) U — 73 (f1) = 0.
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Hence, for every n € N, there is a unitary U, such that

U, AU — Ag|| < 1/n.

(3) = (4), (4) = (5) are trivial.

(5) = (1). We know that K'F} (A;) = KF, (sy,) and KF; (sy,). Let

B ={w e Q:KF (sp) (W) # KFi(sp,) (W)}

and let £ = UE,, then A\ (E) = 0. Therefore [, fi (z)dz = [} fo (v)dx for every 0 < ¢ < 1.

Thus f; (z) = f2 (z) except on a countable set. Therefore f; = fs a.e.(d) O

Corollary 55. Suppose Ay, As are masas in R, 0 < A € Ay, mp : L>® (A, ) — Ay are the
isomorphisms in Theorem 33 and fi, fo € L (A, \) satisfy m (fi) = A for k = 1,2. Then

Sfr = Sfa-
If T € R, we define

KE,(T) = KF,(s(fr))

We need to define t'* Ky Fan function K F (T') solely in terms of 7" and R. (See Lemma 17)
Note that when n = oo, K'F; is defined on L* (J,,d,) forall0 < ¢t < 1.For 1 < n < oo,

K F, is only defined when ¢ € {£, ..., 2}. The next definition extends this concept.

Definition 56. Suppose 1 < n < oo and 0 <t < 1. We choose an integer k, 1 < k < n such that

We define KF, on L* (J,,d,) by
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For fe L*(A)and1 <n <ooandw € Q, andt € J,, we define
KF (f) (w,t) = KFy (sg,)
and we define, for'T' € R,

KF,(T)= KF;(s7).

We easily have that for S, 7 € R

KF,(S+T)< KF,(S)+ KF,(T)

always holds.

43 G (R)-symmetric normalized gauge norms on L> (A, \)

Suppose (Y, v) is a probability space, and G is a subgroup of MP (Y, v). A norm 5 on L> (Y, v)

is called a G-symmetric normalized gauge norm if and only if

1. (1) =1
2. B(f) =B (|f]) forevery f € L= (Y,v),

3. B(foo)=p(f)forevery f € L™ (Y,v) and every o € G.

The examples that interest us here are for Y = A, v = A\, and G = G (R), i.e., the G (R)-
symmetric normalized gauge norms on L™ (A, \).
Suppose [ is a G (R)-symmetric normalized gauge norms on L (A, ). For every f €

L (A, \), we see that
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4.4 Approximate Ky Fan Lemma
If T' € 'R, we define
KF,(T) = KF (s (fr))

We can show that K F; satisfies the triangle inequality on R by describing K F; (T') directly in
terms of 7". The Ky Fan Lemma is more complicated. We will apply the Ky Fan Lemmas we have
throughout the direct integral. However, this is impossible to do directly as the next examples

show.

Example 2. In C", if f = (1,0,...,0)and g = (£,2,..., %), we have KFx (f) > KFx (g) for

n’

1 < k < n, But the number N of permutations vy, . .., Yy for

N
d fovi>yg
j=1

must be at least n since each f o vy; is nonzero in exactly one coordinate.

Example 3. Suppose R = Ry = M, (C) & M, (C) and

S 1
A= ).
1<k<o0 0
and
i 1,1
5 T oF
B= ),

1<k<oo % — 2%

Then there are no o1, ...,on € G(R) and ty,...,tx € [0, 1] such that

This forces us to prove an approximate version of the Ky Fan Lemma that works universally.
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Theorem 57. Suppose m is a positive integer. Then, for 1 < n < oo and forall0 < f,g < 1in
L> (Jy, 6,) with
KFt (f) Z KFt (g) forallt S Jn

there are {~y; : 1 < j < m*"} C MP (J,, 1) such that

2m

2 1 <

E + m2m ZSfO’yj > Sg-
7j=1

Proof. For 1 < n < o0, it follows from Lemma 9. For n = oo, it is proved in Theorem 20. O

Corollary 58. For 1 < n < oo, if KF,(f) > KF,(g) forallt € J,, then 5(f) > 5 (g) for all

symmetric gauge norm [3.

To prove the approximate Ky Fan Lemma, we need the following Lemmas.

Lemma 59. Suppose m,n are positive integers. f = (f1,-+,fn),h = (h1, -+, hy), where
fiy-o, fnand hy, ... hy, are integers with 1 < fi.1 < f; < m,1 < h;yy < h; < m.and
Zle fi> Zle h;, for 1 < k < n.Then there exists a positive integer N < me, Vi, YN € Sy
such that

| X
—ZfO%‘Zh
N =

Proof. Suppose S = Ji ,1 <k <n ;,and define an order on S by
hy,
f 7 f j
> ’ lffZ >fj or, fZ:f] and h; Zh]
hi gj

Then S is a linearly ordered set.

We say S is trivial if for every i €S, fr > hg. If S is trivial, we are done, so we may as-
P,
(
. . Jr
sume S is nontrivial. Denote Sy = S\ e €{1,---,m} 7. Define p (Sy) = max (fx),
Tr
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q (So) = max { fi, with by > fi}, where p (So) . ¢ (So) € {f1,--+, fu}, we may assume p (Sp) =
fp:q(So) = f,- Then denote [ (Sp) = p (So) — ¢ (Sp). It is not hard to see that f, > h, > h, > f,,

so fp — fq > 2.

Let v, 4 be the permutation that permute f, with f, and leave all other f;’s fixed,

define f) = <f1(1)7 T 7f7s1)> - l(éo) [(hy = fo) |+ (fp = p) f ©Vpq], Where f® € N". Then

1) (1)
f
denote SM= F JI1<k<ny, Sél) = S\ g , we form linear convex
hi, v
combination of f;’s this way and update f with f) ... f() until [ <Sér)) < 1(Sp). We can

also see that [ (Sp) < m, and < m, so we need at most m™ permutations to reduce [ (Sy) for 1.
Repeating this process, we need at most (mm2> permutations to reduce Sy to a trivial set. Note
that we can make the number of permutations is exactly (mm2) I, some permutations are duplicate.

Therefore, there exists a positive integer N = <mm2> Ly, -+ 9w € S, such that

| X
—Zfowzh.
NS

]

Lemma 60. Suppose m,n are positive integers, then there exists a positive integer N < mm
such that for all f = (f1, fay--., fu) and h = (hy,... h,) with 1 > f; > -+ > f, >0,

j j
1>h>->h,>0,and > f; > > h;forall 1 < j < n,there existy,...,yn € S, such that

i=1 i=i
N
1 2
—E i+ — > h.
Nizlfo7 +m_

Proof. Forall1 <i < n,if =1 < f; < * for some k € N, then define f; = £ and if &1 < p, <

% for some k£ € N, then define Bi = % Letf: <fl, e ,ﬁ) and h = <E1, e ,hn>. It is easy

to check that f; < ﬁ < fi+ % and max (hi — %, O) < E < h; forall 1 < ¢ < n. From Lemma

59, we know there exists a positive integer N and 7, - -+ ,yy € S, such that % Zfil (mf) oy; >
~ N

(mh). Therefore, %Zlf 0y + 2 > h. O
j:
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The following is the Approximate Ky Fan Lemma.

Theorem 61. If f.g € L™® (A,\),meN,m>2and0< f,g<1land KF,(f) > KF;(9g) a.e.

(w) for each rational number t € (0, 1], then there are o4, . . ., T (m2 )1 € G (R) such that

"LQ
1 Z(m )!f00k+i29~
k=1 m

()]

Thus, for every G (R)-symmetric normalized gauge norm 3 on L (A, \)

B(f)=p8(g).

Proof. Suppose f,g € L (A, \). Since there are 01,00 € G(R) such that s; = f o oy and

Sq = g o 0y, we can assume f = sy and g = s,. We know f,g can be viewed as f =
o o

?gngoo fn = Z?ﬁngoo Qn fn,wd:un ((,U) and g = ?ﬁngoo Qn gn,wdﬂn (w) Suppose m € N

and m > 2. For1 < n < oo, let &, be the set of tuples (F, G,o1,09,- - ,O‘mm2) satisfying

ﬁ ZZ”:I Foak—l—% > G, where 0 < f, g < 1. Then X is a closed subset of ball(L> (J,,, 6,)) X

m2

ball (L% (J,,,0,)) X 7?1;[1 MP (A, X), which is a complete separable metric space with the ||-||, on
ball(L* (J,, d,)). Then by Theorem 27 the projection onto ball(L> (.J,,, d,,)) xball(L> (J,,d,))
has an abolutely measurable range ), and an absolutely measurable cross-section ¢ and we let
1, be the composition of projection onto the coordinate of o4 with ¢ for 1 < k < (mm2> L If

1 < n < oo, it follows from Lemma 60 and Theorem 20 that

(wa7 Sgw) € yn

for almost all w € €2,,. We define, for 1 < k < <mm2)!, or (w) € MP (J,, 6,) by

o5 (W) = U (57, 50.)
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This gives oy, . . L0 (m2)) € G (R) such that

1 mm? )1 1
(me)! 25:1 ) sfooy+ - > S4.

If follows that, for any G (R)-symmetric normalized gauge norm /5 on L™ (A, \) that

Blg) = 5(89)§ﬁzgzj>!5(Sfogk)+ﬂ(l)

m

1
—

= S s e = s+

Since m > 2 was arbitrary, it follows that 5 (g) < 5 (f).
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CHAPTER 5

MAIN THEOREM

Theorem 62. Suppose R is a finite von Neumann algebra acting on a separable Hilbert space
H. Let the probability space (A, >, \) and the group G < MP (A, X, \) be as above. Then there
is a natural 1-1 correspondence between the normalized unitarily invariant norms on R and the

normalized G-symmetric gauge norms on L™ (A, \).

Proof. Suppose « is a normalized unitarily invariant norm on R, choose any masa A in R, and

choose a tracial embedding 74 : L™ (A, \) — A as in Theorem 33. Define 3, : L™ (\) — R by

Pa (f) = a(ma(f)),

If BB is another masa in R and 75 : L™ (A, \) — B is as in Theorem 33, we see from Theorem 33

that, if ® : R — Z (R) is the center-valued trace on R, then

Pomry=Pomg.

Thus, by Theorem 33, 74 and 75 are approximately equivalent in R. Hence, there is a net {U;} in

U (R) such that, for every f € L™ (A, \),

|\Uima (f)Us = m (f)|| — 0.

It follows from Lemma 3 that, for every f € L™ (A, \),

a(ma(f)) = a(ms(f)).
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Thus the definition of [, is independent of choice of the masa A and tracial embedding 7 4. It is
easy to check that 3, is norm. To prove (3, is G-symmetric, suppose o € G. Then, by Lemma 48,
there is a measurable family {0, : w € Q} with each w € (2, such that o, € MP (.J,,, 11,,) .Thus,

by Theorem 33,
P, (ma(foo))=von(foo),

but

n(foo)(w) 2/ (foo)(t,w)do, (t) = | fu(ow(t))don(t) = [ fo(t)don(t)=n(f)w) .

n JIn JIn

Thus, for every f € L™ (A, \),

Pora(f)=T(n(f)=T({(feo))=Pora(foo).

Thus, p (f) = 74 (f o o) is a tracial embedding as in Theorem 33, which implies p is approxi-

mately equivalent to 7 4. Hence, by Lemma 3, for every f € L™ (A, \), we have

o (f) = a(ma(f)) = a(ma(foo)) = fa(foo) .

Thus f3,, is a normalized G-invariant gauge norm on L> (A, A).
Conversely, suppose 3 is a normalized G-symmetric gauge norm on L™ (A, A). If T € R, then
W* (|T'|) is abelian and is contained in a masa .4 of R. By Theorem 33 there is a tracial embedding

w4 o L (A, \) = Asuch that, for every f € L™ (Q, ),
rmalh) = [ s
Choose 0 < f € L*>® (A, \) with m4 (f) = |T| . Then we define

ag (T) = B(f) =B (73" (1))



Suppose B is another masa in R with |T'| € B. Then there is a tracial embedding 75 : L™ (A, \) —

Bandan 0 < h € L™ (A, \) with 75 (h) = |T|. It follows from Lemma 53 that

Sf = 8T = Sh.

Hence, by Lemma 54, there is a ¢ € G such that

h=foo.

Thus

a(h)=a(f)=alsr).
Thus the definition of ag (7') = 3 (sr) is independent of the masa A or the tracial embedding 7 4.
At this point it is easy to see that 8,, = [ holds for a G-symmetric normalized gauge norm on
L= (A N).

If U and V' are unitaries in R, then, by Lemma 53,

SuTtv = ST -

Thus ag (UTV') = ag (T') by Lemma 54. Thus o is unitarily invariant.
Clearly, ag (1) = 1 and ag (27) = |z| ap (T'). To show a4 is a norm, we just need to check
the triangle inequality. Suppose A, B € R. Let h = s4 + sp. Since, for almost every w € () the

functions s4 (w, t) and sp (w, t) are nonincreasing in ¢, we see that

Sh:h:SA+SB.

Thus, we have, if w € Q,,n € N,andt = k/nwith1 <k <n,orifw € Qand0 <t < 1is

rational, then, for almost every w,

KFy(sn) (w) = KFi(sa+sp) (W) = KF, (sa) (W) + KF (s5) ()
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= KF,(A) (w) + KF,(B) (w) > KF, (A+ B) (w) = KF, (sas5) (w).

It follows from the approximate Ky Fan Lemma (Theorem 61) that

B(h) > B(sars),

which means

ag(A+ B) < B (h)=8(sa+sp) <B(sa) +B(sp) =as(A)+as(B).

This complete the proof.
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