147 research outputs found

    A technique for speeding up the solution of the Lagrangean dual

    Get PDF
    "April 10, 1991."Includes bibliographical references (p. 26-29).Research supported by the National Science Foundation. DDM-9010332 DDM-9014751 DDM-8921835 Research supported by the Air Force Office of Scientific Research. AFOSR-88-0088 Research supported by grants from UPS, Prime Computer Corp. and Draper Laboratories.Dimitris Bertsimas, James B. Orlin

    Valid Inequalities and Facets of the Capacitated Plant Location Problem

    Get PDF
    Recently, several successful applications of strong cutting plane methods to combinatorial optimization problems have renewed interest in cutting plane methods, and polyhedral characterizations, of integer programming problems.In this paper, we investigate the polyhedral structure of the capacitated plant location problem. Our purpose is to identify facets and valid inequalities for a wide range of capacitated fixed charge problems that contain this prototype problem as a substructure.The first part of the paper introduces a family of facets for a version of the capacitated plant location problem with constant capacity K for all plants. These facet inequalities depend on K and thus differ fundamentally from the valid inequalities for the uncapacitated version of the problem. We also introduce a second formulation for a model with indivisible customer demand and show that it is equivalent to a vertex packing problem on a derived graph. We identify facets and valid inequalities for this version of the problem by applying known results for the vertex packing polytope

    A technique for speeding up the solution of the Lagrangean dual

    Get PDF
    "April 10, 1991."Includes bibliographical references (p. 26-29).Research supported by the National Science Foundation. DDM-9010332 DDM-9014751 DDM-8921835 Research supported by the Air Force Office of Scientific Research. AFOSR-88-0088 Research supported by grants from UPS, Prime Computer Corp. and Draper Laboratories.Dimitris Bertsimas, James B. Orlin

    Polyhedral techniques in combinatorial optimization II: applications and computations

    Get PDF
    The polyhedral approach is one of the most powerful techniques available for solving hard combinatorial optimization problems. The main idea behind the technique is to consider the linear relaxation of the integer combinatorial optimization problem, and try to iteratively strengthen the linear formulation by adding violated strong valid inequalities, i.e., inequalities that are violated by the current fractional solution but satisfied by all feasible solutions, and that define high-dimensional faces, preferably facets, of the convex hull of feasible solutions. If we have the complete description of the convex hull of feasible solutions at hand all extreme points of this formulation are integral, which means that we can solve the problem as a linear programming problem. Linear programming problems are known to be computationally easy. In Part 1 of this article we discuss theoretical aspects of polyhedral techniques. Here we will mainly concentrate on the computational aspects. In particular we discuss how polyhedral results are used in cutting plane algorithms. We also consider a few theoretical issues not treated in Part 1, such as techniques for proving that a certain inequality is facet defining, and that a certain linear formulation gives a complete description of the convex hull of feasible solutions. We conclude the article by briefly mentioning some alternative techniques for solving combinatorial optimization problems

    Facets and Algorithms for Capacitated Lot Sizing

    Get PDF
    The dynamic economic lot sizing model, which lies at the core of numerous production planning applications, is one of the most highly studied models in all of operations research. And yet, capacitated multi-item versions of this problem remain computationally elusive. We study the polyhedral structure of an integer programming formulation of a single-item capacitated version of this problem, and use these results to develop solution methods for multi-item applications. In particular, we introduce a set of valid inequalities for the problem and show that they define facets of the underlying integer programming polyhedron. Computational results on several single and multiple product examples show that these inequalities can be used quite effectively to develop an efficient cutting plane/branch and bound procedure. Moreover, our results show that in many instances adding certain of these inequalities a priori to the problem formulation, and avoiding the generation of cutting planes, can be equally effective

    Reformulation and decomposition of integer programs

    Get PDF
    In this survey we examine ways to reformulate integer and mixed integer programs. Typically, but not exclusively, one reformulates so as to obtain stronger linear programming relaxations, and hence better bounds for use in a branch-and-bound based algorithm. First we cover in detail reformulations based on decomposition, such as Lagrangean relaxation, Dantzig-Wolfe column generation and the resulting branch-and-price algorithms. This is followed by an examination of Benders’ type algorithms based on projection. Finally we discuss in detail extended formulations involving additional variables that are based on problem structure. These can often be used to provide strengthened a priori formulations. Reformulations obtained by adding cutting planes in the original variables are not treated here.Integer program, Lagrangean relaxation, column generation, branch-and-price, extended formulation, Benders' algorithm
    corecore