130,202 research outputs found

    Computing Minimum Rainbow and Strong Rainbow Colorings of Block Graphs

    Get PDF
    A path in an edge-colored graph GG is rainbow if no two edges of it are colored the same. The graph GG is rainbow-connected if there is a rainbow path between every pair of vertices. If there is a rainbow shortest path between every pair of vertices, the graph GG is strongly rainbow-connected. The minimum number of colors needed to make GG rainbow-connected is known as the rainbow connection number of GG, and is denoted by rc(G)\text{rc}(G). Similarly, the minimum number of colors needed to make GG strongly rainbow-connected is known as the strong rainbow connection number of GG, and is denoted by src(G)\text{src}(G). We prove that for every k≥3k \geq 3, deciding whether src(G)≤k\text{src}(G) \leq k is NP-complete for split graphs, which form a subclass of chordal graphs. Furthermore, there exists no polynomial-time algorithm for approximating the strong rainbow connection number of an nn-vertex split graph with a factor of n1/2−ϵn^{1/2-\epsilon} for any ϵ>0\epsilon > 0 unless P = NP. We then turn our attention to block graphs, which also form a subclass of chordal graphs. We determine the strong rainbow connection number of block graphs, and show it can be computed in linear time. Finally, we provide a polynomial-time characterization of bridgeless block graphs with rainbow connection number at most 4.Comment: 13 pages, 3 figure

    A Characterization of Uniquely Representable Graphs

    Get PDF
    The betweenness structure of a finite metric space M=(X,d)M = (X, d) is a pair B(M)=(X,βM)\mathcal{B}(M) = (X,\beta_M) where βM\beta_M is the so-called betweenness relation of MM that consists of point triplets (x,y,z)(x, y, z) such that d(x,z)=d(x,y)+d(y,z)d(x, z) = d(x, y) + d(y, z). The underlying graph of a betweenness structure B=(X,β)\mathcal{B} = (X,\beta) is the simple graph G(B)=(X,E)G(\mathcal{B}) = (X, E) where the edges are pairs of distinct points with no third point between them. A connected graph GG is uniquely representable if there exists a unique metric betweenness structure with underlying graph GG. It was implied by previous works that trees are uniquely representable. In this paper, we give a characterization of uniquely representable graphs by showing that they are exactly the block graphs. Further, we prove that two related classes of graphs coincide with the class of block graphs and the class of distance-hereditary graphs, respectively. We show that our results hold not only for metric but also for almost-metric betweenness structures.Comment: 16 pages (without references); 3 figures; major changes: simplified proofs, improved notations and namings, short overview of metric graph theor

    Exploring structural properties of kk-trees and block graphs

    Full text link
    We present a new characterization of kk-trees based on their reduced clique graphs and (k+1)(k+1)-line graphs, which are block graphs. We explore structural properties of these two classes, showing that the number of clique-trees of a kk-tree GG equals the number of spanning trees of the (k+1)(k+1)-line graph of GG. This relationship allows to present a new approach for determining the number of spanning trees of any connected block graph. We show that these results can be accomplished in linear time complexity.Comment: 6 pages, 1 figur

    Unique Perfect Phylogeny Characterizations via Uniquely Representable Chordal Graphs

    Full text link
    The perfect phylogeny problem is a classic problem in computational biology, where we seek an unrooted phylogeny that is compatible with a set of qualitative characters. Such a tree exists precisely when an intersection graph associated with the character set, called the partition intersection graph, can be triangulated using a restricted set of fill edges. Semple and Steel used the partition intersection graph to characterize when a character set has a unique perfect phylogeny. Bordewich, Huber, and Semple showed how to use the partition intersection graph to find a maximum compatible set of characters. In this paper, we build on these results, characterizing when a unique perfect phylogeny exists for a subset of partial characters. Our characterization is stated in terms of minimal triangulations of the partition intersection graph that are uniquely representable, also known as ur-chordal graphs. Our characterization is motivated by the structure of ur-chordal graphs, and the fact that the block structure of minimal triangulations is mirrored in the graph that has been triangulated
    • …
    corecore