1,068 research outputs found

    Sampling and Reconstruction of Sparse Signals on Circulant Graphs - An Introduction to Graph-FRI

    Full text link
    With the objective of employing graphs toward a more generalized theory of signal processing, we present a novel sampling framework for (wavelet-)sparse signals defined on circulant graphs which extends basic properties of Finite Rate of Innovation (FRI) theory to the graph domain, and can be applied to arbitrary graphs via suitable approximation schemes. At its core, the introduced Graph-FRI-framework states that any K-sparse signal on the vertices of a circulant graph can be perfectly reconstructed from its dimensionality-reduced representation in the graph spectral domain, the Graph Fourier Transform (GFT), of minimum size 2K. By leveraging the recently developed theory of e-splines and e-spline wavelets on graphs, one can decompose this graph spectral transformation into the multiresolution low-pass filtering operation with a graph e-spline filter, and subsequent transformation to the spectral graph domain; this allows to infer a distinct sampling pattern, and, ultimately, the structure of an associated coarsened graph, which preserves essential properties of the original, including circularity and, where applicable, the graph generating set.Comment: To appear in Appl. Comput. Harmon. Anal. (2017

    Matching

    Get PDF

    Algebraic matroids with graph symmetry

    Get PDF
    This paper studies the properties of two kinds of matroids: (a) algebraic matroids and (b) finite and infinite matroids whose ground set have some canonical symmetry, for example row and column symmetry and transposition symmetry. For (a) algebraic matroids, we expose cryptomorphisms making them accessible to techniques from commutative algebra. This allows us to introduce for each circuit in an algebraic matroid an invariant called circuit polynomial, generalizing the minimal poly- nomial in classical Galois theory, and studying the matroid structure with multivariate methods. For (b) matroids with symmetries we introduce combinatorial invariants capturing structural properties of the rank function and its limit behavior, and obtain proofs which are purely combinatorial and do not assume algebraicity of the matroid; these imply and generalize known results in some specific cases where the matroid is also algebraic. These results are motivated by, and readily applicable to framework rigidity, low-rank matrix completion and determinantal varieties, which lie in the intersection of (a) and (b) where additional results can be derived. We study the corresponding matroids and their associated invariants, and for selected cases, we characterize the matroidal structure and the circuit polynomials completely

    Two Results in Drawing Graphs on Surfaces

    Get PDF
    In this work we present results on crossing-critical graphs drawn on non-planar surfaces and results on edge-hamiltonicity of graphs on the Klein bottle. We first give an infinite family of graphs that are 2-crossing-critical on the projective plane. Using this result, we construct 2-crossing-critical graphs for each non-orientable surface. Next, we use 2-amalgamations to construct 2-crossing-critical graphs for each orientable surface other than the sphere. Finally, we contribute to the pursuit of characterizing 4-connected graphs that embed on the Klein bottle and fail to be edge-hamiltonian. We show that known 4-connected counterexamples to edge-hamiltonicity on the Klein bottle are hamiltonian and their structure allows restoration of edge-hamiltonicity with only a small change

    Convergent Sequences of Dense Graphs I: Subgraph Frequencies, Metric Properties and Testing

    Get PDF
    We consider sequences of graphs and define various notions of convergence related to these sequences: ``left convergence'' defined in terms of the densities of homomorphisms from small graphs into the graphs of the sequence, and ``right convergence'' defined in terms of the densities of homomorphisms from the graphs of the sequence into small graphs; and convergence in a suitably defined metric. In Part I of this series, we show that left convergence is equivalent to convergence in metric, both for simple graphs, and for graphs with nodeweights and edgeweights. One of the main steps here is the introduction of a cut-distance comparing graphs, not necessarily of the same size. We also show how these notions of convergence provide natural formulations of Szemeredi partitions, sampling and testing of large graphs.Comment: 57 pages. See also http://research.microsoft.com/~borgs/. This version differs from an earlier version from May 2006 in the organization of the sections, but is otherwise almost identica
    corecore