3 research outputs found

    Multiscale tsallis entropy for pulmonary crackle detection

    Get PDF
    Abnormalities in the lungs can be detected from the sound produced by the lungs. Diseases that occur in the lungs or respiratory tract can produce a distinctive lung sound. One of the examples of the lung sound is the pulmonary crackle caused by pneumonia or chronic bronchitis. Various digital signal processing techniques are developed to detect pulmonary crackle sound automatically, such as the measurement of signal complexity using Tsallis entropy (TE). In this study, TE measurements were performed through several orders on the multiscale pulmonary crackle signal. The pulmonary crackle signal was decomposed using the coarse-grained procedure since the lung sound as the biological signal had a multiscale property. In this paper, we used 21 pulmonary crackle sound and 22 normal lung sound for the experiment. The results showed that the second order TE on the scale of 1-15 had the highest accuracy of 97.67%. This result was better compared to the use of multi-order TE from the previous study, which resulted in an accuracy of 95.35%

    A Combined Model for Noise Reduction of Lung Sound Signals Based on Empirical Mode Decomposition and Artificial Neural Network

    Full text link
    Computer analysis of Lung Sound (LS) signals has been proposed in recent years as a tool to analyze the lungs' status but there have always been main challenges, including the contamination of LS with environmental noises, which come from different sources of unlike intensities. One of the common methods in noise reduction of LS signals is based on thresholding on Discrete Wavelet Transform (DWT) coefficients or Empirical Mode Decomposition (EMD) of the signal, however, in these methods, it is necessary to calculate the SNR value to determine the appropriate threshold for noise removal. To solve this problem, a combined model based on EMD and Artificial Neural Network (ANN) trained with different SNRs (0, 5, 10, 15, and 20dB) is proposed in this research. The model can denoise white and pink noises in the range of -2 to 20dB without thresholding or even estimating SNR, and at the same time, keep the main content of the LS signal well. The proposed method is also compared with the EMD-custom method, and the results obtained from the SNR, and fit criteria indicate the absolute superiority of the proposed method. For example, at SNR = 0dB, the combined method can improve the SNR by 9.41 and 8.23dB for white and pink noises, respectively, while the corresponding values are respectively 5.89 and 4.31dB for the EMD-Custom method

    IMPROVING THE QUALITY, ANALYSIS AND INTERPRETATION OF BODY SOUNDS ACQUIRED IN CHALLENGING CLINICAL SETTINGS

    Get PDF
    Despite advances in medicine and technology, Acute Lower Respiratory Diseases are a leading cause of sickness and mortality worldwide, highly affecting countries where access to appropriate medical technology and expertise is scarce. Chest auscultation provides a low-cost, non-invasive, widely available tool for the examination of pulmonary health. Despite universal adoption, its use is riddled by a number of issues including subjectivity in interpretation and vulnerability to ambient noise, limiting its diagnostic capability. Digital auscultation and computerized methods come as a natural aid towards overcoming such imposed limitations. Focused on the challenges, we address the demanding real-life scenario of pediatric lung auscultation in busy clinical settings. Two major objectives lead to our contributions: 1) Can we improve the quality of the delicate auscultated sounds and reduce unwanted noise contamination; 2) Can we augment the screening capabilities of current stethoscopes using computerized lung sound analysis to capture the presence of abnormal breaths, and can we standardize findings. To address the first objective, we developed an adaptive noise suppression scheme that tackles contamination coming from a variety of sources, including subject-centric and electronic artifacts, and environmental noise. The proposed method was validated using objective and subjective measures including an expert reviewer panel and objective signal quality metrics. Results revealed the ability and superiority of the proposed method to i) suppress unwanted noise when compared to state-of-the-art technology, and ii) faithfully maintain the signature of the delicate body sounds. The second objective was addressed by exploring appropriate feature representations that capture distinct characteristics of body sounds. A biomimetic approach was employed, and the acoustic signal was projected onto high-dimensional spaces spanning time, frequency, temporal dynamics and spectral modulations. Trained classifiers produced localized decisions on these breath content features, indicating lung diseases. Unlike existing literature, our proposed scheme is further able to combine and integrate the localized decisions into individual, patient-level evaluation. A large corpus of annotated patient data was used to validate our approach, demonstrating the superiority of the proposed features and patient evaluation scheme. Overall findings indicate that improved accessible auscultation care is possible, towards creating affordable health care solutions with worldwide impact
    corecore