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Abstract

Despite advances in medicine and technology, Acute Lower Respiratory Dis-

eases are a leading cause of sickness and mortality worldwide, highly affecting coun-

tries where access to appropriate medical technology and expertise is scarce. Chest

auscultation provides a low-cost, non-invasive, widely available tool for the examina-

tion of pulmonary health. Despite universal adoption, its use is riddled by a number

of issues including subjectivity in interpretation and vulnerability to ambient noise,

limiting its diagnostic capability. Digital auscultation and computerized methods

come as a natural aid towards overcoming such imposed limitations.

Focused on the challenges, we address the demanding real-life scenario of

pediatric lung auscultation in busy clinical settings. Two major objectives lead to

our contributions: 1) Can we improve the quality of the delicate auscultated sounds

and reduce unwanted noise contamination; 2) Can we augment the screening capa-

bilities of current stethoscopes using computerized lung sound analysis to capture

the presence of abnormal breaths, and can we standardize findings. To address the

first objective, we developed an adaptive noise suppression scheme that tackles con-
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tamination coming from a variety of sources, including subject-centric and electronic

artifacts, and environmental noise. The proposed method was validated using objec-

tive and subjective measures including an expert reviewer panel and objective signal

quality metrics. Results revealed the ability and superiority of the proposed method

to i) suppress unwanted noise when compared to state-of-the-art technology, and ii)

faithfully maintain the signature of the delicate body sounds.

The second objective was addressed by exploring appropriate feature represen-

tations that capture distinct characteristics of body sounds. A biomimetic approach

was employed, and the acoustic signal was projected onto high-dimensional spaces

spanning time, frequency, temporal dynamics and spectral modulations. Trained clas-

sifiers produced localized decisions on these breath content features, indicating lung

diseases. Unlike existing literature, our proposed scheme is further able to combine

and integrate the localized decisions into individual, patient-level evaluation. A large

corpus of annotated patient data was used to validate our approach, demonstrating

the superiority of the proposed features and patient evaluation scheme. Overall find-

ings indicate that improved accessible auscultation care is possible, towards creating

affordable health care solutions with worldwide impact.

Primary Reader: Dr. Mounya Elhilali

Secondary Reader: Dr. James E. West
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Chapter 1

Motivation and Background

Information

The use of chest auscultation to diagnose lung infections has been in practice since the

invention of the stethoscope in the early 1800s. It is a diagnostic instrument widely used by clinicians

to ”listen” to lung sounds and flag abnormal patterns that emanate from pathological effects on the

lungs. While often complemented by other clinical tools such as chest radiography or other imaging

techniques, as well as chest percussion and palpation, the stethoscope remains a key diagnostic

device due to its portability, low-cost and its non-invasive nature. Chest auscultation with standard

acoustic stethoscopes is not limited to resource-rich industrialized settings. In low-resource high-

mortality countries with weak health care systems there is limited access to diagnostic tools like

chest radiographs or basic laboratories. As a result, health care providers with variable training

and supervision rely upon low-cost clinical tools like standard acoustic stethoscopes to make critical

patient management decisions. Despite its universal adoption, the use of the stethoscope is riddled by

a number of issues including subjectivity in interpretation of chest sounds, inter-listener variability

and inconsistency, need for medical expertise, as well as vulnerability to ambient noise which can
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mask the presence of sound patterns of interest.

1.1 Understanding the True Need

Most modern clinics are equipped with advanced facilities and tools of increased sensitivity

for pulmonary diagnostics: chest X-Rays can reveal lung abnormalities with increased or decreased

density, including consolidation, interstitial or chronic lung diseases; Ultrasounds effectively reveal

the presence of fluid excess in the lungs, and help diagnose, among others, consolidation and pneu-

mothorax cases; CT scans can provide high resolution images for assessing lung disorders like COPD,

cancer, pneumonia. In places where this technology is accessible, the stethoscope is of little use and

one might be tempted to assume that its value is declining. But the stethoscope remains the most

used diagnostic tool in a vast number of settings where fast, low-cost and portable solutions are a

priority; i) mobile clinics or emergency units, including ambulance vehicles, helicopters, airplanes,

space crafts or military units; ii) developing or remote countries with limited access to medical ex-

perts or advanced technology. Clinical examination in these settings is hindered by severe ambient

noise leaks into the audible body sounds, masking their clinical value, and challenging their medical

interpretation. Computerized solutions are of paramount importance for delivering an enhanced,

high-quality signal, and for providing robust automated diagnostic assistance. And as the need for

computerized systems and automated patient diagnosis has clearly been portrayed in real life scenar-

ios, why havent they taken over the health care system yet? Is medical research still riddled by the

challenges of automated auscultation diagnostics, or is there simply a research gap between actual

need and available solutions? A closer look into the available literature will help answer this question.
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1.2 Review on Previous Work

Literature

Computerized analysis for medical sound interpretation has been blooming over the last few decades;

research breakthroughs come from scientific teams all around the globe, and yet, this work has not

been sufficient to fully address the requirements of an automated diagnostic aid-tool, whose value

lies in its ability to adapt to unseen auscultation protocols and clinical settings, and its requirement

of limited or no supervision.

The need for improved auscultation solutions has always been urgent: a study in 1996

assessed lung sound interpretation scores of emergency physicians, as compared to paramedics,3

revealing that paramedics scored significantly worse in lung sound diagnostics. A year later, an-

other study revealed the same urgent need, this time under challenging settings: physicians breath

sound assessment-accuracy dropped by 42% in a moving ambulance when compared to a quiet room

assessment.4 Unfortunately up to date, there is limited work addressing such real-life scenarios:

most recent studies consider computerized solutions for marginally challenging environments where

auscultation is performed in quiet or controlled rooms with little or no ambient noise.5,6 Addressing

noise contaminations during auscultation is a crucial factor for efficient signal diagnostics. Signal

characteristics of natural, environmental noise can yield critical overlap with both normal and ab-

normal breaths and impair their clinical value:7 it is only after eliminating interfering noise that

disease-diagnostic algorithms can be effectively applied. However, there has been limited relevant

work for suppressing real ambient noise in auscultation settings8,9 . De-noising techniques intro-

duced over the last decade resort on simple filtering methods10 or use simulated noise environments.11

Adaptive noise cancellation techniques have been proven inefficient for extreme or unpredicted noise,

while the use of alternative, accelerometer sensors has recently been found more promising.9 Other

signal enhancement techniques use the term noise to refer to unwanted signal components, such as

suppressing heart beat sounds from a lung sound signal,12 or separating abnormal explosive occur-
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rences from normal airflow.13 By design, most available studies cannot yet address ambient noise

at its fullest or have limited or unknown applicability to generalized clinical settings. Extending

results from existing studies to realistic settings is a nontrivial task. If we briefly disregard the

importance of noise suppression, available work on disease diagnostics still cannot be generalized

in a straightforward manner, since the development of computerized solutions for complete patient

diagnostics hasnt yet reached its full potential. Feature extraction and decision-making techniques

are developed, applied and validated using supervised, pre-annotated excerpts of data, or manually

extracted breaths.14,15 And, although, this is a very critical part of the processing pipeline before

generalizing to global solutions, the ultimate step toward full patient diagnosis has not yet been

taken. What would be the optimal way of combining isolated localized results to form a lung disease

diagnostic protocol? What is the appropriate way of interpreting segmented lung sound findings still

remains unexplored. Furthermore, can such diagnostic protocols be applicable to different ausculta-

tion scenarios? How can methods developed with specific assumptions on the auscultation protocol

or the target population, be extended to account for the general case. We hope to stimulate interest

and invested efforts towards applicable, generalized protocol solutions.

Data availability

Similar to a health care trainee, an automated computer-based algorithm requires large pools of

data for training and learning purposes. A greater availability of online breath-sound databases

is needed, to incorporate data from everyday settings, in both quiet and busy environments, with

no restriction on the characteristics of the subject population. Such diversified data availability

will give researchers the opportunity to develop methods applicable to a variety of patients and

clinical scenarios, as well as to cross-validate their results, and develop better systems to recognize

abnormalities and potential health threats in future occasions. Unfortunately most studies are

challenged by limited data availability and an inherent difficulty to evaluate their systems in true

4



CHAPTER 1. BACKGROUND INFORMATION

environments. Authors in16 presented a 97% Positive Predictive Value for their crackle identification

model, but the evaluation process was limited to ten lung sound segments of 200 ms. Similar

validation methods on only a few breaths were used by most studies.17–19

But it is not easy to find publicly available data for the purpose: only a few lung sound

databases exist and are available to the scientific community: R.A.L.E,20 S.T.A.R,21 and book

inserts1,22 are some of the few examples. Data included within these sets are mostly limited to

an adult population auscultated in quiet examination rooms, offering low diversity in lung sounds

within normal or abnormal groups. Naturally, automated methods developed and tested after these

databases23 are subject to potential failure when challenged by the busy clinical settings of an ER or

by different patient profiles such as pediatric populations. Unlike adults, children cannot be easily

instructed on how to behave during a medical examination; typical instructions for slow, steady, deep

breathing or restful seating cannot be guaranteed; instead, crying, agitation and fidgeting are a com-

mon theme during pediatric examination. Fig. 1.1 illustrates some key differences on the acquired

lung sounds: an adult breath sound from a CD-insert database1 is compared to a pediatric breath

recorded in a busy clinic. Arrows indicate abnormal breath patterns while circles depict overlapping

energy patterns of ambient noise. Notice the extent of masking introduced by the background crying

Figure 1.1: Abnormal lung sound spectrograms; top: an adult case from CD-insert database;1

bottom: a child case recorded in a busy clinic in Zambia. Arrows demonstrate abnormal breaths
while circles the ambient noise overlap. Notice the clean, deep, long, steady breaths of the adult
case, similar to most lung sound recordings in available databases, and contrast with the highly
irregular, explosive breaths of the child case, where background noise is prominently interfering.
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and talking in the bottom panel. This is just a glimpse on the inherent difficulty when diagnosing

respiratory diseases in a busy, real-life clinical environment. And as mentioned above, it is busy

settings like these that have a real need of automated auscultation diagnosis. When auscultating

patients, their age group is an important piece of information for physicians; it is, also, crucial to

know their medical history, their living conditions and possible geographic risk factors for a more

accurate diagnosis. This information is rarely available in volumes, to trainees learning from medical

databases. Their rare availability further impacts computer algorithms geared towards automated

diagnostic procedures and hampers their adaptability, sensitivity and detection accuracy. In order

to expand the impact of the developed methods worldwide, new, extensive, and diversified databases

need to become available to medical researchers.

Inherent Uncertainty

Analyzing auscultation signals and developing automated decision-making processes requires intelli-

gent systems that go beyond a yes or no answer, both for easy- and hard-to-diagnose patient cases.

Hard-to-make decisions and diagnostic uncertainty cases should ideally be part of a complete, devel-

Figure 1.2: Annotated lung sound excerpts from2 depicting: a) agreement between reviewers; b)
uncertain/non-interpretable annotation by at least one reviewer; c) disagreement between reviewers.
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oped system. The system can learn how to handle challenging scenarios by incorporating elaborate

case examples from real practices. There are currently no standardized databases that can provide

the necessary in-depth information. Consider the scenario of an expert panel of two physicians,

annotating digital lung sound recordings, possibly for training future practitioners. Fig. 1.2a shows

a spectrogram example of a lung sound excerpt where both reviewers agree on the existence of crack-

les, with certainty, provided by the PERCH study.2 A different excerpt is shown in Fig. 1.2b, where

one of the reviewers indicated that the sound was non-interpretable and that it could not be anno-

tated with certainty, possibly due to the background noise or the quality of the recording. Fig. 1.2c

depicts another commonly occurring scenario: disagreement among expert listeners. One reviewer

indicated the existence of crackles, while the other indicated a normal breath. When situations like

these arise, situations of uncertainty or disagreement, the opinion of a third expert can be requested,

or a panel discussion can take place before reaching a final decision. A computer algorithm trained

to detect or interpret abnormal sounds can face the same uncertainty. The computerized analysis

might reach a grey area where none of the normal or abnormal labels it was trained on can be as-

signed with confidence. Instead of applying a hard decision, as is typically the case, the system can

learn from real practice examples, flag a particular segment as an uncertain case, and request the

further attention of a physician or request more incoming data if no assistance is available. Instead

of focusing on optimizing hard-decision systems, we need to understand that it is okay for a system

to be unsure and we should shift our efforts towards more realistic fuzzy decisions. To our knowl-

edge, there are no studies currently addressing this common matter of uncertain occurrences; and in

fact this can hardly be achieved when considering the limited information provided by the available

databases. Uncertain or ambiguous interpretation cases are not part of databases, but would be an

invaluable added feature when updating or building new ones. Handling hard-to-diagnose cases is

an essential part of medical training and, similarly, it should be include in all realistic automated

system; the limitations behind a state of the art machine-learning algorithm can very well be due

to the limitation of its intrinsic learning procedures and associated learning data.
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1.3 Proposed Work and its Significance

We introduce an integrated scheme shown in Fig.1.3 that (i) encompasses noise suppression

to improve the signal quality, (ii) offers a rich feature representation to address the unpredictable

nature of adventitious auscultation patterns, and (iii) provides patient-level assessment of patholog-

ical status by combining partial signal-level assessments without the need for exhaustively detailed

annotations. For validation and evaluation, we use a large realistic dataset collected in develop-

ing countries in non-ideal rural and outpatient clinics. When it comes to distinguishing between

normal vs. pathological lung sounds, we demonstrate the need for noise-free quality signals by

using objective quality measures; we further demonstrate the advantages of the proposed feature

extraction against state-of-the-art methods, which are shown here to lack the robustness to perform

effectively on a diverse set of adventitious sounds, especially when noise events further mask the

signal signatures.

Chapter 2 provides details on our methodological approach for improving the quality of

the delivered signal, including large scale validation and discussions on state of the art technologies.

Chapter 3 presents our approach to providing an improved feature space for auscultation data, able

to capture the intricate details of the breath sounds and differentiate normal from abnormal breaths;

and Chapter 4 concludes this work, by summarizing the importance of the findings, our continuing

efforts, along with directions for future work.

Figure 1.3: Proposed integrated framework for complete auscultation solutions
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Significance

Over the last decades, there has been extensive work on computerized analysis of auscultation sounds;

but the true potential of automated computer methods has not yet been reached. Due to limited

data availability, current studies are developed and evaluated based on limited and isolated breath

sound segments, unable to address the true need for full patient diagnostics. And although challeng-

ing auscultation protocols or environmental noise are common and can highly impede a physicians

work, there is still a large literature gap towards providing robust realistic noise suppression so-

lutions. Bridging the gap between the real need in auscultation care and the available literature

would involve an extensive global collaboration between doctors and researchers. Access to diverse

database resources would allow incorporation of challenging data and decision-making knowledge

into the computer models. This knowledge will enable systems to improve and adapt to unpredicted

scenarios. Computerized solutions are far from being a means to substituting medical personnel:

once developed to their full potential, such algorithms will be the means to a globally accessible

health care. Remote locations and societies depending on limited or minimally trained health care

providers will highly benefit from automated diagnostic aid-tools. The required time per patient

will be minimized and a more confident diagnosis will be provided. Finally, automated segmentation

and classification algorithms can allow enrichment on available data, ensuring a complete, profound

training for medical personnel worldwide.
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Chapter 2

Obtaining a High Quality

Auscultation Signal

Lung sound auscultation in non-ideal or busy clinical settings is challenged by contamina-

tions of environmental noise. Digital pulmonary measurements are inevitably degraded, impeding

the physicians work or any further processing of the acquired signals. The task is even harder

when the patient population includes young children. Agitation and/or crying are captured into

the recordings, additionally to any existing ambient noise. This chapter focuses on 1) character-

izing the different types of signal contaminations, expected to be encountered during lung sound

measurements in non-ideal environments; 2) a proposed automated multiband denoising scheme for

improving the quality of auscultation signals against such heavy background contaminations. Meth-

ods: Using a database of noise sounds acquired by our collaborating doctors and physicians in a

busy hospital in Peru, all encountered noise types were considered, including background talk, radio

playing, subjects crying, electronic interference sounds and stethoscope displacement artifacts. The

individual characteristics were extracted, discussed and further compared to characteristics of clean

segments.

10



CHAPTER 2. OBTAINING A HIGH QUALITY AUSCULTATION SIGNAL

Once the noise profiles were characterized, a noise suppression method was developed to

address the heavy contamination of recordings acquired in West Africa and other Asian countries.

The proposed noise suppression algorithm works on a simple two-microphone setup, dynamically

adapts to the background noise and suppresses contaminations while successfully preserving the

lung sound content. The proposed scheme is refined to offset maximal noise suppression against

maintaining the integrity of the lung signal, particularly its unknown adventitious components that

provide the most informative diagnostic value during lung pathology. Significance: Incorporating

knowledge of the recommended noise features into computer aided diagnostic tools could contribute

to better discrimination between adventitious events and noise contaminations, thus, leading to

improved and more robust automated signal analysis and processing techniques. When it comes to

the proposed method for suppressing unwanted contamination, its strengths and benefits lie in the

simple automated setup and its adaptive nature, both fundamental conditions for everyday clinical

applicability. It can be simply extended to a real-time implementation, and integrated with lung

sound acquisition protocols.

2.1 Profiling Noise Contamination in Lung Sound Record-

ings

Lung sound auscultation has been a valuable part of clinical assessment for patients. It is

usually the first tool used by primary care providers as it can reveal lung diseases in a noninvasive

and cost-effective manner simply by listening to the chest sounds. Respiratory and lung diseases

are a major public health concern in both industrial and developing countries, though the latter

usually lacks experienced or well-trained clinical personnel. The challenge in such settings is the

high inter observer variability in interpreting sound content as captured by the stethoscope, as

well as the many different sources of noise contamination. In contrast to well-controlled clinical

environments where noise is of little or no concern, when auscultation is performed in outpatient
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or busy clinics, the signal can be significantly corrupted or degraded by environmental sounds,

thus impeding the work of the physician. In addition, when pediatric auscultation is considered,

agitation, movement and cry can be most prominent throughout auscultation. Computer aided

analysis offers the advantages of meticulous, offline revision and further processing of the recorded

signal, towards noise reduction and identification of events-indicators of possible pulmonary disease

or dysfunction. A lot of work has been published on lung sound signal denoising, but mostly focused

on reducing the heart sounds or identifying adventitious events. To the best of our knowledge, limited

literature has been found to address pediatric auscultation in non-ideal settings. Bahoura etal.24

proposed a denoising technique using Wavelet Packets on white and instrumentation/ventilation

noise; Suzuki etal. implemented an adaptive filter with the use of a reference recording, applied

on an adult recording exposed in background radio talking.25 In order to better understand the

nature of these potential contaminations, the current study focuses on characterizing different types

of noise being captured during digital auscultation, when subjects are young children and data are

acquired in busy non-ideal environments. Signal contaminations considered here involve ambient

noise, background talking, crying, electronic interference and artifacts produced by intentional or

unintentional stethoscope displacements.

2.1.1 Methods & Implementation

Data were obtained from a pool of lung sound recordings acquired in a childrens hospital

in Lima, Peru. More information on the acquisition protocols can be found in.26 53 subjects (con-

trol cases) were considered in the current study. A digital recording stethoscope of ThinkLabs Inc.

connected to an MP3 player at 44.1 KHz sampling rate was used for the acquisition. All sounds

were then downsampled to 8 KHz. Short sound segments with duration of 0.5-3 sec were manually

extracted from various recording segments within the signal, including left/right anterior/posterior

inferior/superior sites. Samples, consisting of noise- and lung sound-related content, where the latter

contained no kind of adventitious events, were divided into 5 categories. The first one, CleanB , in-
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cluded clean lung sound signal. These segments were picked from control patient cases with limited

background or other noise. Four further groups were formed to capture distinct sources of signal

corruption: BackgroundN , representing any background noise such as background talking, distant

children crying, radio playing or children toys sounds; CryN including intervals of crying coming

from the child under examination; InterferenceN , with sound segments contaminated by mobile

or other source of electronic interference (buzzing) and finally StethMoveN , a group capturing in-

tentional displacement of the stethoscope during the recording, i.e. when the physician changed

location of recording site, or unintentional displacement, e.g. when subject appeared to be agitated.

Note that StethMoveN group contained limited lung sounds contents which were very prominent

in all other categories. All isolated segments were processed into short 500ms-windows with 50%

overlap.

Noise profiling

• Spectral Characteristics

The short-time 214-point Fast Fourier Transform (FFT) was calculated for each sound segment,

smoothed with a 5th order Butterworth filter with cutoff frequency at 60 Hz and averaged over

all windows. From the smoothed amplitude spectrum, a number of features were extracted

Figure 2.1: Illustration of the spectral characteristics.
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(see Fig. 2.1):

– Peak Width (PW ) The maximum spectrum peak was extracted and its width measured at

75% of its corresponding height. To avoid confusion with high-frequency peaks (see profile

of CryN in Fig. 2.4), the search for the maximum peak was restrained to frequencies below

200 Hz.

– Spectrum Slope (SL) It has been previously shown27 that the spectrum produced by

lung sound recordings decays exponentially with frequencies higher than 75 Hz. These

findings came from adult recordings with controlled environmental noise. In our case this

threshold was found to be closer to 100 Hz and so it was increased accordingly. The

spectrum P, expressed in logarithmic scale as 20log(P/Pthr), with Pthr = 510-5, was fit

with a linear regression line and its slope calculated in dB/octave.

– Power Ratio (PR) Calculated as the total estimated power versus the power of the regres-

sion line. The estimated power at frequency f was expressed as Pest(f) = Pthr(f/fmax)
SL,

with fmax the point where the logarithmic spectrum curve crosses the frequency axis, as

proposed in.27 The power of the regression line depicts the area underneath the linear

regression line described above.

– Low-to-High Frequency Ratio (LHFR500) It is the ratio of average squared power spec-

trum for frequencies below 500 Hz versus the average power at frequencies above 500 Hz.

Lung sound content containing no adventitious events has been found to be concentrated

at low frequencies, and thus, this metric was expected to capture frequency content not

related to any respiratory or heart sounds.28,29

• Harmonicity

In a spectrum amplitude representation of a signal, when spectral components are found at

integer multiples of a common low frequency- the fundamental frequency, F0- they are said to

be harmonically related and provide evidence of the harmonic profile of the sound excerpt. In
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complex sounds like the ones used in this study, possible harmonics are expected at roughly-

not necessarily exact- integer multiples of a F0. The following algorithm was used to capture

harmonicity of short term bursts of high energy content (Fig. 2.2): In step 1, the transient

events with broadband energy were identified as follows. The short-time Fourier transform

of the signal was calculated using 50ms windows with 50% overlap. The spectrum of each

segment was then averaged across frequencies above 1 KHz. This cutoff was chosen to exclude

most of lung sound-specific information. All instances with non-negligible power were then

isolated from the resulting time series, revealing locations of high frequency content. In step

2, a 50ms window centered at each time-peak location was extracted from the original sound

waveform, and its 29-point FFT was computed. From the calculated spectrum, a sequence

of at most 8 peaks was identified, excluding the very first spectrum peak. If at least 80%

of the spectral peaks formed a harmonic stack with 20 Hz tolerance, then the time clip was

considered to be harmonic. This process was repeated for all time-peak locations of step 1.

2.1.2 Findings

• Spectral Characteristics

Twenty reference samples were considered for each one of the five noise sound categories. Seg-

ments were processed into short time windows, as discussed earlier, to extract the individual

Figure 2.2: Illustration of the harmonicity extraction.
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spectrum characteristics. The mean spectrum profile of each class is shown in Fig. 2.4 (left col-

umn) and representative examples and spectrum slope plots in Fig. 2.4 (right column). Mean

feature values for each group are reported in the Table of Fig. 2.1.2. Samples of group CryN

showed a high peak width, PW , and a significant content concentration in higher frequencies,

achieving a very small LHFR500. Spectrum slope value, SL, was not very informative in

this group since crying profiles were far from being exponentially decaying with frequencies

above 100 Hz. The latter was also depicted in the high PR value. Cases of the StethMoveN

group showed a steep spectrum slope with increased power ratio when compared to CleanB or

InterferenceN groups. The CleanB group yielded the lower PW , SL, PR values, with spec-

trum content mostly concentrated below 500 Hz. As expected, the BackgroundN group being

heavily contaminated with talking and crying revealed increased LHFR500 compared to group

CleanB , where most spectrum contents were pulmonary-related and in lower frequencies.

Figure 2.3: Table showing average spectrum features per sound group.

• Harmonicity

The spectral features presented provided general evidence of the peculiarities of the distinct

noise types. A more detailed look into the profiles of InterferenceN noise and StethMoveN

artifacts showed isolated or repeated short-time bursts of broadband energy. Listening to
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!
Figure 2.4: Left panels: average spectrum profile of all sound group. Shaded regions reflect the
standard deviation among group cases. Right panels: logarithmic spectrum plot of selected case
examples. The slope line represents the linear line fit to the spectrum and the slope shown in
legend.

these burst of energy in samples of electronic interference a certain musicality emerged, an

attribute of signals harmonicity. Such a characteristic is neither heard nor expected for sounds

in the StethMoveN group. The reader is referred to Fig. 2.4(d) where arrows indicate the

evident harmonic profile of a StethMoveN case. The harmonically detection algorithm was

applied to first identify transient events of the time-frequency representation and then decide

if a harmonic structure was exhibited. Considering the detected harmonic segments of group

InterferenceN from all case files, a consistent fundamental frequency was found at 215.09Hz
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(±2.76Hz) after rejecting 10% of possible extreme outliers. There was no obvious harmonic

structure observed for the cases of group StethMoveN . Fig. 2.5 shows the spectrogram of two

case examples, where the identified bursts of energy were marked within black margin regions.

Clips exhibiting a harmonic structure are shown with an X.

 

!

Figure 2.5: Selected case examples of InterferenceN (a) and StethMoveN (b) groups. The time
waveforms (top panels) and corresponding spectrograms (bottom panels) are shown. Black dashed
lines mark the identified transient events of broadband energy. Segments found to exhibit a harmonic
structure are noted with an ”X” mark.

Discussion

A number of noise factors such as crying, talking, background radio playing, patients movement

etc., are rarely or never considered in adult auscultation and well controlled clinic environments,

on which the majority of published work relies. However, pediatric auscultation performed in busy

environments is inevitably challenged by all the aforementioned factors and it was the purpose of this

paper to present, describe and analyze the different signal contaminations expected to be encountered

in such settings. A number of feature characteristics were extracted and revealed distinguished

patterns for the different noise categories. Although signals from all five sound groups shared a lot
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of common information, i.e. the actual lung sound content and the background or environmental

noise, the features presented above, such as the spectral width, the content concentration within

frequency bands, a possible harmonic structure, revealed distinct spectrum characteristics for each

specified group. For example, a strong harmonic profile can reveal probable interference noise; or

high energy contents within the range of (200-600) Hz can suggest significant cry contaminations

and so on. Incorporating knowledge of all those noise features into computer aided diagnostic tools

could contribute to better discrimination between adventitious events and noise contaminations,

thus, leading to improved and more robust automated signal analysis and processing techniques.

2.2 Improving the Quality of Measured Signal

The issue of environmental and artifact noise contaminations is of particular interest, es-

pecially in busy clinics and rural health centers where a quiet examination environment is often

not possible, background chatter and other environmental noises are common and patient agitation

(especially in children) contaminate the sound signal picked up by the stethoscope. This distortion

affects the clarity of the lung sound, hence limiting its clinical value for the health care practi-

tioner. It also impedes the use of electronic auscultation combined with computerized lung sound

analysis which are gaining traction in an effort to remedy the inconsistency limitations of standard

(acoustic) stethoscope devices and to provide an objective and standardized interpretation of lung

sounds.14,30,31 However, these automated approaches have mainly been validated in well-controlled

or quiet clinical settings with adult subjects. The presence of noise impedes the applicability of

these algorithms or leads to unwanted false positives.32

The current study investigates a series of steps to help alleviate subject-centric and artifact

noise. It further proposes the use of multiband spectral subtraction to address noise contaminations

in busy patient-care settings where prominent subject-centric noise and room sounds corrupt the

recorded signal and mask the lung sound of interest. The setup employs a simple digital stetho-
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scope with a mounted external microphone capturing the concurrent environmental or room noise.

The algorithm focuses on two parallel tasks: (i) suppress the surrounding noise; (ii) preserve the

valuable lung sound content. While spectral subtraction is a generic signal denoising approach,

its applicability to the problem at hand is non-trivial in two ways: Firstly, although the signal of

interest (i.e. lung sounds) has relatively well defined characteristics,27,33 unknown anomalous sound

patterns reflecting lung pathology complicate the analysis of the obtained signal. These adventitious

patterns vary from quasi-stationary events such as wheezes to highly transient sounds such as crack-

les.34,35 They are unpredictable irregular patterns whose signal characteristics are not well defined

in the literature.15,36,37 Yet, any processing needs to faithfully preserve these occurrences given

their presumed clinical and diagnostic significance. Secondly, noise is highly non-stationary and its

signal characteristics differ in the degree of overlap with the signal of interest. Noise contamina-

tions can include environmental sounds picked up in the examination room (chatter, phones ringing,

fans, etc.), patient-specific noises (child cry, vocalizations, agitation) or electronic/mechanical noise

(stethoscope movement, mobile interference).

Figure 2.6: Proposed noise suppression scheme for digital auscultation data.

This work tries to balance the suppression of the undesired noise contaminations while

maintaining the integrity of the lung signal along with its adventitious components. The proposed

scheme is shown in Fig. 2.6. The performance of the proposed approach is validated by formal

listening tests performed by a panel of licensed physicians as well as objective metrics assessing the

quality of the processed signal.

Clipping distortions
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Clipping distortions are produced when the allowed amplitude range of the stethoscope sensor or

recording device is exceeded. The incoming sound signal is then truncated, enforcing the loss of

high amplitude content and resulting in significant distortion. Both the time and spectral signal

signatures are heavily affected by the non-trivial high frequency harmonics formed.

Figure 2.7: (a) Waveform of a lung sound excerpt distorted by clipping (flat amplitude regions
in panel ”before”), and the corresponding output of the correction algorithm (panel ”after”); (b)
waveform of a lung sound excerpt illustrating the effects of the heart sound interference suppression;
notice the suppressed heart sound patterns (panel ”after”) when compared to the original waveform
(”before”); (c) two spectrogram representations of lung sound excerpts illustrating the inherent
difficulty in differentiating between wheezing patterns and crying contamination.

Clipped regions were identified as consecutive time samples with constant maximum-value

amplitude, up to a small 3% perturbation tolerance (Fig. 2.7a). Then, the identified regions were

repaired using spline piece-wise cubic interpolation; given the brief duration of clipping intervals

(a few consecutive data samples), this method was adequate for replacing the distorted portions

without distorting the physiological sound signal.

Mechanical or sensor noise is usually generated when the physician moves the stethoscope to various

body locations or when the stethoscope is unintentionally and abruptly displaced. This is a common

distortion, and especially prominent during pediatric auscultation. Sharp stethoscope movements

are typically associated with skin friction and produce irregular short-time broadband energy bursts

in the sound signal, resembling profiles of abnormal lung sounds such as crackles. In the current

dataset, the stethoscope transition noise was identified as follows: the auditory spectrogram (ASP)

representation was calculated on an 8 ms window (described in details later in (3.1)), and normal-
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ized to [0,1]. Mostly interested in broadband events, the region of interest ROIASP within the ASP

spectrum, was defined as high spectral content above 1 kHz, with a span greater than 1.5 kHz. Con-

secutive frames, of 8 up to 100 ms, exhibiting high energy content within ROIASP were identified

and discarded.

In the context of auscultation recordings, heart sounds (HS) are yet another added component

masking respiratory sounds. Heart signal suppression has been addressed in several studies using

various techniques including wavelets and Short Time Fourier Analysis.38,39 In order to maintain

the integrity of the lung sounds, particularly any adventitious events, a conservative approach was

used here, utilizing a wavelet multi-scale decomposition.40

(i) HS identification: The original lung sound signal was band-pass filtered in [50, 250]

Hz and down-sampled to 1 kHz, using a 4th order Butterworth filter. This step enhanced heart

beat components by suppressing lung sounds and noise components outside this range. Next, the

discrete Static Wavelet Transform (SWT) was obtained at depth 3, using Symlet decomposition

filters (due to their appropriate shape): after Detail Dj(t), and Approximation Aj(t) coefficients

were obtained, signals did not undergo down-sampling, which allows for the time-invariance of

the transform. Signal reconstruction was then easily obtained by averaging the inverse wavelet

transforms.41 Let SWTj{s(t)} be the wavelet decomposition at the jth scale level of the lung sound

signal s(t) and Aj(t) be the obtained normalized approximation coefficient. Then P1:J(t) is the

multiscale product of all J approximation coefficients, defined in (2.1). Intervals achieving high

values for Pi:j , were identified as heart sounds and were replaced using an ARMA model.

Pi:j(t) =
J
∏

j=1

Aj(t)/max(|Aj(t)|) (2.1)

(ii) HS replacement: Assuming that lung sounds are locally stationary, an ARMA model

was employed to replace missing data of x(n) using past or future values. First a stationarity check
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- explained next - was performed on the neighboring area of the removed segment. If the post-

neighboring segment was found non stationary, then a forward linear prediction model was used

(2a); otherwise, a backward model was used (2b):

x̂(n) = −

p
∑

k=1

αp(k)x(n− k) (2.2a)

x̂(n− p) = −

p
∑

k=0

βp(k)x(n− k) (2.2b)

where {−αp(k), −βp(k)} denote the prediction coefficients of the order-p predictors. Solving for the

coefficients by minimizing the mean-square value of the prediction error {x(n)− x̂(n)} leads to the

normal equations involving the autocorrelation function, γxx(l):
∑p

k=0 αp(k)γxx(l−k) = 0, with lags

l = 1, 2, .., p and coefficient ap(0) = 1. The Levinson-Durbin algorithm was used to efficiently solve

the normal equations for the prediction coefficients. The order of each linear prediction model was

determined by the length of the particular heart sound gap, using an upper bound of pmax = 125

ms.

For the stationarity check, the two neighboring intervals around the missing data, of length

Ti = 200 ms, were partitioned into M non-overlapping windows of length L. Using the Wiener-

Khintchine theorem, the power spectral density of the m-th segment, Γm
xx(l), was computed via the

multitaper periodogram and the following spectral variation measure was introduced42

V (x) =
1

ML

L−1
∑

l=0

M−1
∑

m=0

(Γm
xx(l)−

1

M

M−1
∑

k=0

Γk
xx(l))

2 (2.3)

with V (x) = 0 signifying a wide-sense stationary process.

Among identified HS intervals, only the very prominent ones were chosen to be replaced,

i.e. the ones achieving increased product values Pi:j > 0.2. Additionally, if the peak-to-peak interval

for identified heart sounds was too short for pediatric standards (< 0.28 s), then the corresponding

identified regions (possibly indicative of other adventitious sounds) were not replaced. Fig. 2.7b
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shows an example of a heart sound suppressed segment.

Subject’s Intense Crying

Depending on the cause of irritation, infants and young children can broadcast crying vocalizations

of varying temporal and frequency signature modes:43,44 phonation, consisting of the common cry

with a harmonic structure and a fundamental frequency ranging in 350-750 Hz; hyperphonation, a

sign of major distress or pain, also harmonically structured but with rapidly changing resonance and

a shifted fundamental frequency of 1-2 kHz or higher; and dysphonation (beyond the scope of this

work), a sign of poor control of the respiratory cycle, containing aperiodic vibrations.

Because of their spectral span and harmonic structure, instances of phonation and hyper-

phonation cry were identified using properties of the signal’s time-frequency representation. However,

since adventitious lung sounds (particularly wheezes) can produce patterns of similar or overlapping

specifications (Fig. 2.7c), here the focus was on longer, intense crying intervals bearing limited value

for clinical assessment.

For the detection of phonation mode cry: (i) The ASP representation was calculated for

every 8ms frame (described in details later in (3.1)). A pitch estimate for every frame was calculated,

using an adaptation of a template matching approach.45 Each spectrogram slice was compared to

an array of pitch spectral templates, generated by harmonically-related sinusoids, modulated by

a Gaussian envelope. The dominant pitch per frame was then extracted and the average pitch

(excluding 20% of distribution tails) constituted the resulting pitch estimation per region. Frames

with an extracted pitch lower than 250 Hz were immediately rejected. To avoid confusion with

possible adventitious occurrences during inspiration or expiration, an identified interval was required

to be of duration Tdur > 600 ms, considering respiratory rate standards for infants;46 typical rates

in the current dataset were 18 - 60 breaths per minute. (ii) Features of spectro-temporal dynamics

(3.1)-(3.5) were extracted from all candidate time-segments, and fed to a pre-trained, binary SVM

classifier using radial basis functions, to distinguish crying from other voiced adventitious sounds
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like wheezes.

For hyperphonation, simpler steps were required as lung sounds were unlikely to overlap

with this type of cry: regions with high ASP spectral content above 1 kHz, and exceeding a duration

of Tdur, were detected as hyperphonation cry.

In total, 20% of all recorded lung signals were identified as phonation or hyperphonation

cry, demonstrating the necessity of such processing step.

Multiband Spectral Subtraction

Spectral subtraction algorithms have been widely used in fields of communication and speech en-

hancement to suppress noise contaminations in acoustic signals.47,48 The general framework behind

these noise reduction schemes can be summarized as follows: let y(n) be a known measured acoustic

signal of length N and assume it comprises of two additive components x(n) and d(n), correspond-

ing respectively to a clean unknown signal we wish to estimate and an inherent noise component

which is typically not known. In many speech applications, the noise distortion is estimated from

silent periods of the speech signal that are identified using a voice activity detector.48 Alternatively,

the noise distortion can be estimated using a dual or multi-microphone setup where a secondary

microphone picks up an approximate estimate of the noise contaminant. Here we employ the lat-

ter, a dual-microphone setup capturing both the internal signal coming from the stethoscope itself,

Figure 2.8: Pipeline illustration of the ambient noise suppression scheme.
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and the external signal coming from a mounted microphone. The external signal is assumed to be

closely related to the actual noise that contaminates the lung signal of interest, and shares its spec-

tral magnitude characteristics with possibly different phase profiles due to their divergent traveling

trajectories to the pickup microphones. See 2.8 for an illustration.

Noise here is assumed to have additive effects on the desired signal and originate through a

wide-sense stationary process. Without loss of continuity, we alleviate the stationarity requirements

for the noise process, and assume a smoothly varying process whose spectral characteristics change

gradually over successive short-time periods. In this work, such noise signal d(n, τ) represents

the patient or room specific noise signal; x(n, τ) denotes the desired unknown clean lung sound

information, free of noise contaminations; and y(n, τ) the acoustic information captured by the

digital stethoscope:

y(n, τ) = x(n, τ) + d(n, τ) (2.4)

τ is used to represent processing over short-time windows w(n). In other words, x(n, τ) = x(n)w(τ−

n) and similarly for y(n, τ) and d(n, τ). For the corresponding frequency domain formulation,

let X(ω, τ) denote the discrete Fourier transform (DFT) of x(n, τ), implemented by sampling the

discrete-time Fourier Transform at uniformly spaced frequencies ω. Letting Y (ω, τ) and D(ω, τ) be

defined in a similar way for y(n, τ) and d(n, τ), (2.4) becomes: |Y (ω, τ)|ejφy(ω,τ) = |X(ω, τ)|ejφx(ω,τ)+

|D(ω, τ)|ejφd(ω,τ). Short-term magnitude spectrum |D(ω, τ)| can be approximated as |D̂(ω, τ)| using

the signal recorded from the external microphone. Phase spectrum φd(ω, τ) can also be reasonably

replaced by the phase of the noisy signal φy(ω, τ) considering that phase information has mini-

mal effect on signal quality especially at reasonable Signal-to-Noise Ratios (SNR).49 Therefore, the

denoised signal can be formulated as:

X̂(ω, τ) = (|Y (ω, τ)| − |D̂(ω, τ)|) ejφy(ω,τ) (2.5)

The same formulation can be extended to the power spectral density domain, by making the rea-
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sonable assumption that environmental noise d(n, τ) is a zero-mean process, uncorrelated with the

lung signal of interest x(n, τ):

|X̂(ω, τ)|2 = |Y (ω, τ)|2 − |D̂(ω, τ)|2 (2.6)

Building on this basic spectral subtraction formulation to synthesize the desired signal, we extend

this design in a number of ways:

(i) Extending the subtraction scheme into multiple frequency bands {ωk} ∈ [ωmin
k , ωmax

k ]. This

localized frequency treatment is especially crucial given the variable, unpredictable, and non-

uniform nature of noise distortions that affect the lung recording (see7 for a discussion of

signal characteristics of noise contaminants). Looking back in equation (2.6), the subtraction

term D̂(ω, τ) can be weighted differently across frequency bands by constructing appropriate

weighting rules (δk) that highlight the most informative spectral bands for lung signals.

(ii) Altering the scheme to weight the subtraction operation across time windows and frequency

bands, by taking into account the current frame’s Signal to Noise Ratio (SNR).

(iii) Reducing the residual noise in the signal reconstruction by smoothing Y (ω, τ) estimate over

adjacent frames.

Therefore, for frame τ and frequency band ωk, the enhanced estimated signal spectral

density is given by

|X̂(ωk, τ)|
2 = |Ȳ (ωk, τ)|

2 − αk,τ δk |D̂(ωk, τ)|
2 (2.7)

Bar notation Ȳ (ωk, τ) signifies a smooth estimate of Y (ωk, τ) over adjacent frames. αk,τ is an over-

subtraction factor adjusted by the current frame’s SNR, for each band ωk and frame τ . δk is a

spectral weighting factor that highlights lower frequencies typically occupied by lung signals33,50

and penalizes higher frequencies where noise interference can spread. Partial noise is then added

back to the signal (2.8) using a weighing factor γτ ∈ (0, 1), to suppress musical noise effects.47,51

27



CHAPTER 2. OBTAINING A HIGH QUALITY AUSCULTATION SIGNAL

The final estimate x̃(n) is re-synthesized using the inverse DFT and overlap and add method across

frames.48

|X̃(ωk, τ)|
2 = (1− γτ )|X̂(ωk, τ)|

2 + γτ |Ȳ (ωk, τ)|
2 (2.8)

2.2.1 Methods & Implementation

Lung signals were acquired using a Thinklabs ds32a digital stethoscope at 44,1 kHz rate,

by the Pneumonia Etiology Research for Child Health (PERCH) study group.2 Thinklabs stetho-

scopes used for the study were mounted with an independent microphone fixed on the back of the

stethoscope head, capturing simultaneous environmental contaminations without any hampering of

the physician’s examination. Auscultation recordings were obtained from children enrolled into the

PERCH study with either World Health Organization-defined severe and very severe clinical pneu-

monia (cases) or community controls without clinical pneumonia52 in a busy clinical setting in Basse,

Gambia in West Africa. A total of 22 infant recordings among hospitalized pneumonia cases with

an average age of 12.2 months (2-37 months) were considered. Following the examination protocol,

9 body locations were auscultated for a duration of 7 s each. The last body location corresponded

to a cheek position and is not used in this study.

Noise contaminations were prominent throughout all recordings in the form of ambient

noise, mobile buzzing, background chatter, intense subject’s crying, musical toys in the waiting

room, power-generators, vehicle sirens or animal sounds. Patients were typically seated in their

mothers’ lap and were quite agitated, adding to the distortion of auscultation signal.

Pre-processing

All acquired signals were low-pass filtered with a 4th order Butterworth filter at 4 kHz cutoff, down-

sampled to 8kHz, and centered to zero mean and unit variance. Resampling can be justified by

guidelines of the CORSA project of the European Respiratory Society,50 as lung sounds are mostly

concentrated at lower frequencies.
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A clipping distortion algorithm was then applied to correct for truncated signal amplitude

(occurring when the microphone reached maximum acoustic input). Although clipped regions were

of the order of a few samples per instance, they produced very prominent signal distortions. The

algorithm identifies regions of constant (clipped) amplitude, and replaces these regions using cubic

spline interpolation.53

Implementation

The proposed algorithm employs a wide range of parameters that can significantly affect the re-

constructed sound quality. An initial evaluation phase using informal testing and visual inspection

reduced the parameter space. The preliminary assessment of the algorithm suggests that 32 fre-

quency bands were adequate, using frequency domain windowing to reduce complexity. Since the

algorithm operates independently among bands, their boundaries can affect the final sound output.

Two ways of creating the subbands were explored: (i) logarithmic spacing along the frequency axis

and (ii) equi-energy spacing. The latter spacing corresponds to splitting the frequency axis into band

regions containing equal proportions of the total spectral energy. Other band splitting methods were

excluded from analysis after the initial assessment phase.

An important factor related to the frequency binning of the spectrum is the weighing among

frequency bands, regulated by factor δk in (2.7). Since interfering noise affects the spectrum in a non-

uniform manner, we imposed this non-linear frequency-dependent subtraction to account for different

types of noise. It can be thought of as signal dependent regulator, taking into account the nature

of the signal of interest. Lung sounds are complex signals comprised of various components:50,54,55

normal respiratory sounds typically occupy 50-2500 Hz; tracheal sounds reach energy contents up to

4000 Hz and heart beat sounds vary within 20-150 Hz. Finally, wheeze and crackles, the commonly

studied adventitious (abnormal) events, typically have a range of 100-2500 Hz and 100-500 Hz

respectively. Other abnormal sounds like stridor, squawk, low-pitched wheeze or cough, all exhibit

a frequency profile below 4 kHz. The motivation for appropriately setting factor δk is to minimize
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distortion of lung sounds that typically occupy low frequencies, and penalize noise occurrences with

strong energy content at high frequencies.7 Our analysis suggested two value sets for parameter δk,

in Table 2.1. In logarithmic spacing, subbands F17, F25, F26, F27 correspond to 80, 650, 850 and

1100 Hz respectively. In equi-energy spacing, Fm corresponds to the mth subband whose frequency

ranges are signal dependent; F17, F25, F26 roughly correspond to 750, 2000 and 2300 Hz. Comparing

the proposed sets, δ
(1)
k resulted in stronger suppression of high frequency content.

Table 2.1: Two proposed sets of values for δk

fk band range δ
(1)
k value δ

(2)
k value

(0, F17] 0.01 0.01

(F17, F25] 0.015 0.02

(F25, F26] 0.04 0.05

(F26, F27] 0.2 0.7

else 0.7 0.7

This non-linear subtraction scheme was further enforced by the frequency dependent over-

subtraction factor αk,τ defined in (2.9) which regulates the amount of subtracted energy for each

band, using the current frame’s Signal to Noise Ratio. Larger values were subtracted in bands

with low a posteriori SNR levels, and the opposite was true for high SNR levels. This way, rapid

SNR-level changes among subsequent time frames could be accounted for. On the other hand, such

rapid energy changes were not expected to occur within a frequency band, considering the natural

environment where recordings took place; thus, the factor αk,τ could be held constant within bands.

Such frame-dependent SNR calculations could also remedy for a type of signal distortion known as

musical noise, which can be produced during the enhancement process.

αk,τ =







































4.75 : SNRk,τ < −25

4−
3SNRk,τ

20 : −25 ≤ SNRk,τ ≤ 40

1 : SNRk,τ > 40

SNRk,τ = 10 log10(
∑

ω∈ωk

|Ȳ (ω, τ)|2/
∑

ω∈ωk

|D(ω, τ)|2)

(2.9)
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The window length for short-time analysis of the signal was another crucial parameter that can

result in noticeable artifacts, since a long time window might violate the stationarity assumptions

of the algorithm. Following the initial algorithm assessment phase, we proposed two ways of short-

time processing: (i) 50-millisecond window (N=400) and 90% overlap; (ii) 80-milisecond window

(N=640) with 80% overlap. Hamming windowing w(n), was applied in the time-waveform to produce

all frames. Negative values possibly arising by (2.7) were replaced by a 0.001% fraction of the original

noisy signal energy, instead of using hard thresholding techniques like half-wave rectification.

Finally, the enhancement factor γτ for frame τ in (2.8) was an SNR-dependent factor and

was set closer to 1 for high SNRτ , and closer to 0 for low SNRτ values. For the calculation of

Ȳ (ωk, τ), the smooth magnitude spectrum was obtained by weighting across ± 2 time frames; given

by |Ȳ (ωk, τ)| =
∑2

j=−2 W (j)|Yτ−j(ωk)|, with coefficients W = [0.09, 0.25, 0.32, 0.25, 0.09].

Post-processing

Typically, time intervals where the stethoscope is in poor contact with the subject’s body tended to

exhibit insignificant or highly suppressed spectral energy. After the application of the enhancement

algorithm, intervals with negligible energy below 50 Hz were deemed uninformative and removed.

A moving average filter smoothed the transition edges.

2.2.2 Validation

The validation of the proposed enhancement algorithm requires a balance of the audio

signal quality along with a faithful conservation of the spectral profile of the lung signal. It is also

important to consider that clinical diagnosis using stethoscopes is ideally done by a physician or

health care professional whose ear has been trained accordingly, i.e. for listening to stethoscope-

outputted sounds. Any signal processing to improve quality should not result in undesired signal

alterations that stray too far from the ’typical’ stethoscope signal, since the human ear will be in-

terpreting the lung sounds at this time. For instance, some aspects of filtering result in ”tunnel
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Figure 2.9: Spectrogram representation of four lung sound excerpts. Top panel: internal microphone
; middle panel: external microphone recording; bottom panel: signal as outputted by spectral
subtraction algorithm B. The quasi-periodic energy patterns, more pronounced in subfigures (a-
b), correspond to the breathing and heart cycles and are well preserved in the enhanced signal.
Electronic interference contaminations in (a) and soft background cry in (b) have successfully been
removed. Panels (c-d) show cases heavily contaminated by room noise and loud background crying
which have substantially been suppressed using the proposed algorithm. Notice how concurring
adventitious events were kept intact in (c) at 1.5-3 s and in (d) at 0.6-0.8 s . The period at the
beginning of (d) corresponded to an interval of no contact with the child’s body and was silenced
after the post-processing algorithm.

hearing” effects which would be undesirable even if the quality is maintained. In order to prop-

erly assess the performance of the proposed algorithm, we used three forms of evaluations: visual

inspection, formal listening tests and objective signal metrics as detailed below. We also used the

field recordings employed in the current study to compare performance of existing enhancement

algorithms from the literature.

1. Visual inspection

Fig. 2.9 shows the time-frequency profile of four lung sound excerpts appearing per column. Typical

energy components that emerge from such spectrograms are the breaths and heart beats, producing

repetitive patterns that follow the child’s respiratory and heart rate - subfigures (a,b). Such energy

components are well-preserved in the enhanced signals (bottom). Middle rows depict concurrent

noise distortions captured by the external microphone. Contamination examples include mobile

interference (a) and background chatting or crying (b-d) which have successfully been suppressed or

eliminated, providing a clearer image of the lung sound energies.
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2. Human Listener Experiment

The listening experiment was designed with a two-fold purpose: (i) evaluate the effectiveness of the

proposed enhancement procedure and (ii) evaluate the effect of the proposed parameters including

frequency band binning, window size and customized band-subtraction factor δk,τ on the perceived

sound quality. All methods were designed within the scope of the PERCH study and approved by

the Johns Hopkins Bloomberg School of Public Health Institutional Board of Review (IRB).

Participants: Eligible study participants were licensed physicians with significant clinical experi-

ence auscultating and interpreting lung sounds from children. A total of 17 physicians (6 pediatric

pulmonologists and 11 senior pediatric residents) were enrolled, all affiliated with Johns Hopkins

Hospital in Baltimore, MD, with informed consent, as approved by the IRB at the Johns Hopkins

Bloomberg School of Public Health, and were compensated for participation.

Data included in the listening experiment was chosen ’pseudo-randomly’ from the entire dataset

available. Although initial 3 second segments were chosen randomly from the entire data pool, the

final dataset was slightly augmented in order to include: (i) abnormal occurrences comprising of

wheeze, crackles or other; (ii) healthy breaths; (iii) abnormal and normal breaths in both low- and

high-noise environments. A final selection step ensured that recordings from different body locations

were among the tested files.

Setup: The experiment took place in a quiet room at Johns Hopkins University and was

designed to last for 30 minutes, including rest periods. Data recorded in the field in the Gambia

clinic were played back on a computer to participants in the listening experiment. Participants

were asked to wear a set of Sennheiser PXC 450 headphones and listen to 43 different lung sound

excerpts of 3 s duration each. The excerpts originated from 22 distinct patients diagnosed with World

Health Organization-defined severe or very severe pneumonia.52 For each excerpt, the participant

was presented with the original unprocessed recording, along with 4 enhanced versions A, B, C, D.
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These enhanced lung sounds were obtained by applying the proposed algorithm with different sets

of parameter values, as shown in Table 2.2. In order to increase robustness of result findings, the

experiment was divided into two groups consisting of 8 and 9 listeners respectively. Each group was

presented with a different set of lung sound excerpts, making sure that at least one excerpt from all

22 distinct patients were contained within each set. In order to minimize selection bias, fatigue and

concentration effects, the sound excerpts were presented in randomized order for every participant.

The list of presented choices was also randomized so that, on the test screen, choice A would not

necessarily correspond to algorithmic version A for different sound excerpts, and similarly for choices

B, C, and D.

Table 2.2: Implementation details behind algorithms A, B, C, D running on different short-time
analysis windows, frequency band splitting and selection of the band-subtraction factor δk.

A B C D

Window (ms) 50 50 50 80

Band Split log equi-
linear

log log

Selection δk δ
(1)
k δ

(1)
k δ

(2)
k δ

(1)
k

Listeners were given a detailed instruction sheet and presented with one sound segment at

Figure 2.10: Main screen of listening test. Original and enhanced versions are presented for each
excerpt before participants indicate their preferred choice.
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Figure 2.11: (a) Average results with error bars on the evaluation of objective, quality and intelli-
gibility measures for original noisy signal (left bar) and the enhanced signal (right bar), compared
with noise as the ground truth. Enhanced signals were found to be more ”distant” representations
of the noise signals. Stars indicate statistically significant differences. (b) Average responses of the
listening text where bars indicate the preference percentage per choice. Left: overall results, com-
paring average preference of the original sounds versus preference of any of the enhanced versions.
Panel [A to Any] includes choices {A, B, C, D, Any}; Right: the break-down among all choices.
Choice Any of A,B,C,D has been abbreviated to Any.

a time via a custom designed computer program seen in 2.10. They were asked to listen to each

original sound and the enhanced versions as many times as needed. Listeners indicated their preferred

choice while considering the preservation or enhancement of lung sound content and breaths, and

the perceived sound quality. Instructions clearly stated that this was a subjective listening task

with no correct answer. If participants preferred more than one options they were instructed to just

choose one of them. If they preferred all of the enhanced versions the same, but better than the

original, an extra choice, ”Any”, (brief for ”Any of A,B,C,D”) was added.

Results: Fig. 2.11b summarizes the opinions of the panel of experts. Considering all

listeners and all tested sound excerpts, the bars indicate the percentage of preference among the

available choices. Bar plots were produced by first forming a contingency table per listener, counting

his/her choice preferences, and then averaging across listeners. The vertical lines depict the standard

variation among all listeners.

The listed choices on the x-axis correspond one by one to the ones presented during the

listening test, where choice Any of A,B,C,D has been abbreviated to Any. An extra panel, [A to

Any], is added here illustrating preference percentages for any enhancement version of the algorithm,

irrespective of choice of parameters. On average, listeners prefer mostly choice Any (34.06 % of the
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time), followed by choices B and C. Overall, listeners prefer the enhanced signal relative to the

original -unprocessed- signal 95.08 % of the time. Considering responses across groups of listeners,

results are consistent across Group 1 and Group 2. A statistical analysis across the two Groups

using a parametric t-test and a non-parametric Wilcoxon rank sum test show no difference among

the two populations except possibly for choice D. The corresponding p-values for the t-test and the

Wilcoxon test, (pt, pw), are ; for choice Original : (0.28, 0.23); choice A: (0.37, 0.52); choice B : (0.74,

0.62); choice C : (0.33, 0.74); choice D : (0.08, 0.10); choice Any : (0.11, 0.05); choice [A to Any] :

(0.28, 0.23).

Discussion: Analyzing the results, choice C is preferred over B when the test sound consists

of a low or fade normal breath. To better understand this preference, it is important to note that

algorithm C is relaxed for higher frequencies due to the δk parameter. Qualitatively, low-breath

excerpts all retained the normal breath information after noise suppression, but with an added soft

wind sound effect. This wind distortion or hissing was at a lower frequency range for algorithm

B and proved to be less pleasant than the one produced by algorithm C, which ranged in higher

frequencies. This observation was consistent across different files and listeners. Looking further into

algorithm C, a larger preference variation was noticed for group 2 when compared to group 1. This

variation was found to be produced by two participants who preferred C over any other choice 35%

of the time and who both preferred the original only in two cases.

The original recording was preferred 4.9% of the time. While this percentage constitutes

a minority on the tested cases, a detailed breakdown provides valuable insights on the operation of

the enhancement algorithm. In most cases, it is determined that low-volume resulting periods affect

the listeners’ judgments.

- Clipping distortions make abnormal sound events even more prominent. Clipping tends to

corrupt the signal content and produce false abnormal sounds for loud breaths. However,

when such clipping occurs during crackle events, it results in more distinct abnormal sounds,

which can be better perceived than a processed signal with muted clipping. For two such
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sound files in group 1, 2/8 users prefer the original raw audio and for one such file in group 2,

2/9 prefer the original.

- Child vocalization are typically removed after enhancement. Since the algorithm operates with

the internal recording as a metric, any sound captured weakly by the internal but strongly by

the external microphone is flagged as noise. One such file in group 2 leads 4/9 users to prefer

the original sound: a faint child vocalization is highly suppressed in the enhanced signal. As

users are not presented with the external recording information, it can be hard to tell the

origin of some abnormal sounds that overlap with profiles of abnormal breaths. Nevertheless,

a post analysis on the external microphone shows that this is indeed a clear child vocalization.

- Reduced normal breath sounds. The proposed algorithm has an explicit subtractive nature; the

recovered signal is thus expected to have lower average energy compared to the original internal

recording. Before the listening test all recordings are amplified to the same level; however

isolated time periods of the enhanced signal are still expected to have lower amplitude values

than the corresponding original segment, especially for noisy backgrounds. This normalization

imbalance has perceivable effects in some test files. For auscultation recordings in lower site

positions, breath sounds can be faintly heard, and the subtraction process reduces those sounds

even further. Two such cases were included in the listening test, where suppression of a loud

power generator noise resulted in a faded post-processed breath sound. In this case, listeners

preferred the original file where the breath sounds stronger than the processed version.

A finalized enhancement algorithm is proposed consisting of parametric choices that combine ver-

sions B and C. The smoother subtraction scheme enforced by factor δ
(2)
k is kept along with the

equi-linear model of frequency band-splitting using a 50 ms frame size window. An informal valida-

tion by a few members of the original expert panel confirms that the combined algorithm parameters

result in improved lung sound quality and preservation of low breaths.
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3. Objective validation of processed signals

To further assess improvements on the processed signals, objective methods were used to compare

the signals before and after processing. Choosing an evaluation metric for enhancement is a non-

trivial issue; many performance- or quality measures commonly proposed in the literature often

require knowledge of the true clean signal or some estimate of its statistics.56 This is not feasible

in our current application: bio-signals such as lung sounds have both general characteristics that

can be estimated over a population, but also carry individual traits of each patient that should be

carefully estimated. It is also important to maintain the adventitious events in the lung sound,

while mitigating noise contamination and other distortions. To provide an objective assessment of

the proposed method, we employed a number of qualitative and quantitative measures, coming from

telecommunication and speech processing fields but adapted to the problem at hand. The metrics

were chosen to assess how much shared information remains in the original and enhanced signals,

relative to the background noise recording. While it is important to stress that these are not proper

measures of signal quality improvement, they provide an informative assessment of shared signal

characteristics before and after processing:

* Segmental Signal-to-Noise Ratio (fSNRseg): Objective quality measure, estimated over

short-time windows accounting for signal dynamics and non stationarity of noise.48

fSNRseg = 10
T

∑T

τ=1

∑K
k=1

wkSNRF

∑
K
k=1

wk

with SNRF = log10{(|X(k, τ)|2) / (|X(k, τ)| − |X̂(k, τ)|)2}, where wk represents the weight for

frequency band k, X̂ represents the processed signal, and X typically represents the clean (desired)

signal. As mentioned above, in this work X will represent the background noise, since the clean

uncontaminated signal in not available. SNRF is calculated over short-time windows of 30 ms

to account for signal dynamics and non stationarity of noise, using a Hanning window. For each

frame, the spectral representations X(k, τ) and X̂(k, τ) are computed by critical band filtering. The

bandwidth and center frequencies of the 25 filters used and the perceptual (Articulation Index)

38



CHAPTER 2. OBTAINING A HIGH QUALITY AUSCULTATION SIGNAL

weights wk follow the ones proposed in.48,57 Using the described method, fSNRseg value can reach

a maximum of 35 when the signals under comparison are identical. Comparatively, a minimum value

just below -8 can be achieved when one of the signals comes from a white Gaussian process.

* Normalized-Covariance measure (NCM): A metric used specifically for estimated speech

intelligibility (SI) by accounting for audibility of the signal at various frequency bands. It is a

speech-based Speech Transmission Index (STI) measure capturing a weighted average of a Signal to

Noise quantity SNRN , where the latter is calculated from the covariance of the envelopes of the two

signals over different frequency bands k58 and normalized to [0,1]. The band-importance weights wk

followed ANSI-1997 standards.59 Though this metric is speech-centric (as many quality measures

in the literature), it is constructed to account for audibility characteristics of the human ear hence

reflecting a general account of improved quality of a signal as perceived by a human listener.

NCM = {
∑K

k=1 wk SNRN (k)} /
∑K

k=1 wk

* Three-level Coherence Speech Intelligibility Index (CSII): The CSII metric is also a speech intelligibility-

based metric, based on the ANSI standard for the Speech Intelligibility Index (SII). Unlike NCM,

CSII uses an estimate of Signal-to-Noise ratio in the spectral domain, for each frame τ = 1, ..., T :

the signal-to-residual SNRN
ESI ; the latter is calculated using the ro-ex filters and the Magnitude-

Squared Coherence (MSC) followed by [0,1] normalization. A 30 ms Hanning window was used and

the three-level CSII approach divided the signal into low, mid, and high-amplitude regions, using

each frame’s root mean square level information.48,60

CSII. =
1
T

∑T

τ=1

∑K
k=1

wkSNRN
ESI(k,τ)∑

K
k=1

wk

All metrics generally require knowledge of the ground-truth undistorted lung signal, which

is not available in our setup. In the current work, we apply them to contrast how much information

is shared between the improved and the background (noise) signal, relative to the non-processed

(original) auscultation signal. Specifically, each metric was computed between the time-waveforms

of the original y(n) and the background noise d̂(n) signals; then contrasted for the enhanced x̃(n)
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and the background d̂(n) signals. The higher the achieved metric value, the ”closer” the compared

signals are, with respect to their sound contents. Fig. 2.11a shows histogram distribution results for

each metric: Segmental Signal-to-Noise Ratio (fSNRseg) yielded on average a value of 1.02 between

the original and the noise signals, likely reflecting leak through the surrounding environment to the

internal microphone. Such measure was reduced to -0.44 when contrasting the improved with the

noise signal indicating reduced joint information. The two distributions were statistically signifi-

cantly different (paired t-test: t-statistic=15.99 and p-value pt=3E-13; Wilcoxon: Z-statistic=4.5

and p-value pw=8E-06) providing evidence that the original signal was ”closer” -statistically- to the

surrounding noise, relative to the enhanced signal. Significant difference was also observed in all

other metrics (Fig.2.11a ), with NCM ( pt=1E-10; pw=2E-06) , CSIImed ( pt=1E-10; pw=3E-05)

and CSIIhigh ( pt=7E-10; pw=7E-06).

2.3 Comparison with state-of-the-art methods and technol-

ogy

This comparion entails two parts: A) comparison of proposed methods with published

work on noise suppression for auscultation signals; and B) comparison of novel stethoscope design

embedding the proposed methods, with commercially available products.

2.3.1 Part A: Comparison with published work

A proper comparison to existing noise suppression methods for auscultation signals is

largely limited due to the scarce literature on this topic, especially when dealing with busy real-life

environments, particularly in pediatric patients. Published methods typically consider auscultations

in soundproof chambers, highly controlled environments with low ambient or Gaussian noise5-.6

Moreover, the term noise often refers to suppressing heart sounds in the context of healthy lung
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sound analysis61-,12 or to separate normal airflow from abnormal explosive occurrences13-.24 Ex-

tending results from published studies to realistic settings is nontrivial, particularly in non-healthy

patients where abnormal lung events occur in an unpredictable manner and whose signal character-

istics may overlap with those of environmental noise.

Here, we contrast our results with the performance of a published lung sound enhancement scheme,62

which mainly focuses on post-classification of auscultation sounds, rather than production of improved-

quality auscultation signals to be used by health care professionals in lieu of the original recording.

The authors adopted the speech-based spectral subtractive scheme of Boll, 197963 which has well

documented shortcomings.64,65 For a fairer comparison, we used a more robust instantiation of

speech-based spectral subtraction, proposed in,48,66 which we call here speechSP. We contrasted

our proposed method with speechSP, maintaining the same window size, window overlap factor and

number of frequency bands as mentioned above; both algorithms were applied on the same pre-

processed signals, after downsampling, normalizing and correcting for clipping distortions.

A visual inspection of the speechSP method is sufficient to observe the notable resulting artifacts.

Fig.2.12 (a) illustrates an example comparing the two methods when applied on the same auscul-

Figure 2.12: Spectrogram illustrations comparing the proposed method with speechSP (a), and
FX-LMS (b) applied on the same sound excerpt. SpeechSP suppresses important lung sounds like
crackle patterns (black circles) and wheeze pattern (blue circle). FX-LMS convergence is challenged
by both the parametric setup and the complex, abrupt noise environment resulting in non-optimal
lung sound recovery. Colormap is the same as Fig.1.
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tation excerpt. SpeechSP algorithm highly suppressed the wheezing segment around 2 s in Fig.

2.12a, along with the crackle occurrences around 0.5 and 3.5 secs. In this example (and all cases in

the current study -not shown-), the speechSP method suffered from significant sound deterioration;

and in the majority of cases, the speechSP -processed signal was corrupted by artifacts impeding the

acoustic recognition of alarming adventitious events. Overall, the combination of visual inspection,

signal analysis and informal listening tests, clearly indicate that speechSP maximizes subtraction of

background noise interference, at the expense of deterioration of the original lung signal as well as

significant masking of adventitious lung events. Both effects are largely caused by its speech-centric

view which considers specific statistical and signal characteristics for the fidelity of speech that do

not match the nature of lung signals.

Next, we compared the proposed method to Active Noise Cancellation (ANC) schemes.

Such algorithms typically focus on noise reduction using knowledge of a primary signal and at least

one reference signal. Here, we consider the case of a single reference sensor and use a feed-forward

Filtered-X Least Mean Square algorithm (FX-LMS). FX-LMS has been previously used for denoising

in auscultation signals recorded in a controlled acoustic chamber with simulated high noise inter-

ference.67 Here, we adopt an implementation of the Normalized LMS (NLMS) as in67-.9 Using all

signals of the current study, we tested the effectiveness of NLMS in suppressing external noise inter-

ference. The filter coefficients were optimized in the MSE sense, with filter tap-order NLMS varying

between [4, ..., 120], step size ηLMS varying between [1E-08, ..., 2] and denominator term offset step

size CLMS in [1E-08, ..., 1E-02]. A representative example is shown in Fig. 2.12b; zero initial filter

weights were assumed with the optimal solution occurring for (NLMS , ηLMS , CLMS)=(90, 5E-7, 1E-

8). Our results indicate that NLMS fails to sufficiently reduce the effect of external noise, especially

in low SNR instances or during abrupt transitions in background interferences.

As previously noted in,9 difficult acoustic environments typically pose a challenge to ANC methods

for auscultation where ambient recordings are rendered ineffective as reference signals. This limita-
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tion is due to a number of reasons.68 Firstly, the presence of uncorrelated noise between the primary

and reference channels largely affects the convergence of NLMS and the performance of the denoising

filter. Nelson et al.9 have indeed demonstrated that, using an external microphone is sub-optimal

in case of auscultation recordings, proposing use of accelerometer-based reference mounted on the

stethoscope in line with the transducer; a non-feasible setup for our study. Furthermore, iterative fil-

ter updates in the NLMS are heavily dependent on the statistics of the observed signal and reference

noise.69 Abrupt changes in signal statistics pose real challenges in updating filter parameters fast

enough to prevent divergence70.71 This is particularly true in field auscultation recordings where

brusque changes in the signal often occur due to poor body seal of the stethoscope - caused by child

movement or change of auscultation site. Noise sources are also abruptly appearing and disappearing

from the environment (e.g. sudden patient cry, phone ring); hence posing additional challenges to

the convergence of the algorithm without any prior constraints or knowledge about signal statistics

or anticipated dynamics. Furthermore, unfavorable initial conditions of the algorithm can highly

affect the recovered signal and lead to intractable solutions.

2.3.2 Part B: Comparison with commercially available technology

Here we attempt a comparison with state of the art electronic stethoscopes, while consid-

ering a variety of auscultation scenarios. We invented a new screening tool, the X2V, that is able to

embed the proposed noise suppression system and put it in action. This novel smart device mitigates

a number of limitations in the existing auscultation systems discussed above, while also providing

the flexibility to realize solutions to automated body sound recognition as a computerized-aid via

the use of add-on embedded software. It allows for real-time capabilities that include active filtering

of ambient noise: knowledge of the lung sounds profile and the concurrent noise profile is used to

dynamically adapt to abrupt and highly unpredicted environmental noise. It offers the ability to
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maintain the sounds of interest in any challenging environ- ment and therefore provides quality care

and offers increased confidence in following diagnostic procedures.

The aim here is to evaluate the quality of the body signal that reaches the ears of the

end-user of a particular auscultation system. In order to test the capabilities of the proposed aus-

cultation system, a simulated noisy clinical setting was created inside a sound booth. Body sounds

were played via a chest sound simulator device (details to follow) placed on top of an examination

table. The table was surrounded by loudspeakers that played various noise combinations reflecting

a variety of examination settings from a quiet room to a busy clinic. The device was placed ontop of

the chest sound simulator, and the auscultated signal was recorded for quality evaluation. The same

setup was used to further compare the proposed system with six commercially available auscultation

systems incuding both acoustic and electronic devices.

Proposed system

The sensors: The body sensing unit is an array of five omnidirectional microphones from Shenzhen

Horn Electroacoustic Technology. The microphones are spaced 7mm apart in a cross pattern with

the fifth microphone in the middle. The choice of the array ensures uniform pickup throughout the

surface of the chest-piece. An externally-facing omnidirectionl microphone is secured next to the

sensing array for capturing environmental sound signals.

The DSP hardware: The digital hardware design comprises of two main sys- tems an audio codec

and a microprocessor. The implemented audio codec is the NXP SGTL5000, a low power, 96 kHz,

24-Bit audio codec. The microprocessor is the low-power NXP Kinetis MK64 microcontroller unit

with a USB inter- face. These two systems work in tandem to receive the signal from the sensing

units and implement a real-time noise- cancellation. The output signal is fed to a standard 3.5mm

headphone jack for real-time listening and monitoring. The microprocessor can also store audio data

on a micro SD card for data logging in the field or clinic without the need of a secondary device. If

needed, it can be re-programmed with updated software and algorithms through the USB port.
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The software: The embedded noise-cancellation feature works in real-time and can dynamically adapt

to the current temporal and spectral signatures of the noise. Implementation is based on the spectral

subtractino methods presented above.

Methods

Clinical Room Simulation: Inside a soundbooth, of dimensions (148in long) x (123in wide) x (89in

high), six loud speakers, one examination table and one chest sound simulator were placed, Fig.

2.13. The examination table was stationed towards one end of the room while the six Genelec

6010A loudspeakers were arranged to losely face towards it at different angle and height placements

(Table 2.3), independently broadcasting noise sounds of various types and levels. On top of the

examination table, the chest sound simulator transmitted low volume body signals. The noise and

body sounds were delivered via a connected computer, stationed outside of the room.

Chest Sound Simulation: A chest sound simulator (ChestSim) was designed for transmitting the

relevant body sounds, built comprising of a loudspeaker covered in ballistic gelatin. The ChestSim

transmitted digital breath signals at a low, fixed level, comparable to real chest auscultation signals

Figure 2.13: Left panel: schematic of the experimental setup illustrating the placement of the
loudspeakers and the chest sound simulator (blue rectangular prism). The red circle on the chest
simulator illustrates the designated signal pickup area (SPA), used as a reference point for mea-
suring the loudspeakers’ relative position. Right panel: illustration of the loudspeaker placement
calculation, with individual speaker angle and position shown in Table 2.3.
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Table 2.3: Speaker placement relative to the SPA reference point on the chest sound simulator

Speaker: 1 2 3 4 5 6

h (m) 1.55 0.88 1.50 0.76 0.00 0.77

λ (m) 1.51 0.84 1.65 1.75 1.60 0.76

θ (angle o) +47 0 −9 +30 +6 −9

via a connected computer installed outside of the soundbooth. It was built comprising of a Jawbone

Jambox loudspeaker with frequency response of 40-20,000 Hz and improved low-frequency sensitivity

(via a proprietary bass radiator). The loudspeaker was covered in 1.5in-thick ballistic gelatin from

Clear Ballistics, that closely simulates the density and viscosity of human muscle tissue and can be

kept at room temperature without deforming.72,73

Auscultation Process Simulation: The device of an individual auscultation system was placed at

the designated SPA area on top of the chest simulator (Fig. 2.13) and held in position using a

clamp. The clamp, braced on a pole mount, was secured around the lowest surface of the device,

while a moderate pressure was applied as a result of the clamp’s weight. This moderate pressure

level was preferred over heavier pressure so as to create a more realitic auscultation setup. The

setup remained the same throughout the completion of all simulations.

Figure 2.14: Spectrogram plots of a wheezing breath sound in the Abnormal group during quiet
auscultation (middle left) and noisy auscultation of -10dB SNR high stationary noise (middle right).
The average spectral profile of all lung sounds is shown in the leftmost panel for the quiet condition,
and the rightmost panel for the noisy conditions (all net noise recordings at -10dB SNR) respectively.
The dashed lines correspond to the upper bound of the standard deviation over all sounds. Mind
the different magnitude axis.
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Table 2.4: Ambient Noise Database Grouping

High Stationary Comprised exclusively of various colored noises and fan noise

Low Stationary Comprised of ambulance sirens, pulse monitor sounds, babble and
crying noises, chirp sounds and street noise

Data preparation - Chest sound data: A collection of ten abnormal and ten control breath sounds

of 10 s duration each were selected from.74 The abnormal group consisted of breath sounds contain-

ing wheeze, crackle and stridor sounds, while the control group consisted of mostly normal breath

sounds recorded over various chest and tracheal areas. All digital clips were downsampled to 8 kHz.

Examples taken from the database are shown in Fig. 2.14, along with average spectral profiles per

group.

Data preparation - Noise data: The ambient noise database was selected having a variety of clinical

settings in mind varying from a quiet clinic to a busy examination room, and sounds were split into

two main categories: High Stationary and Low Stationary (see Table 2.4). The High Stationary

group consisted of several colored noise subgroups including white, pink, violet, blue and brown,

and fan-like noise found in the BBC database.75 In total, 20 ten-second clips were selected from

each subgroup, resulting in 120 High Stationary noise sounds. The Low Stationary noise group

consisted of noise types found in the BBC and NoiseX-92 databases,75,76 and included subgroups

of hospital ICU noise, hospital corridor noise, pulse monitor sounds, ambulance noise, babble noise

and ambient talk, baby cry, street noise, chirping birds. Random silence periods were intejected to

the noise clips to accentuate their non-stationary nature.

Sound playback and capture: While the ChestSim emitted the selected body sounds at a fixed low

volume, the loudspeakers independently broadcasted noise sounds randomely selected from the

database. The volume of individual speakers was set to a random difference of {0, ± 0.5, ± 1,

± 2} dB from each other. The master speaker volume was automatically adjusted at th ebegin-

ning of each trial, ensuring a net noise effect of Signal-To-Noise ratio (SNRtrue) varying within

[−20, ..., 15] dB. All transmitted lung sound clips were pre-amplified independently to ensure equal
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average sound levels. In total 10 normal and 10 control lung sounds were used, each assigned to 5

random net noise combinations (trials), resulting in a total of 100 sound recordings per SNRtrue

value: 50 abnormal and 50 control combination sets. The true SNR level, SNRtrue, for each breath

sound/net noise combination was determined by the short-term average of the ratio of the individual

signal powers, averaged over M frames of duration 100 ms each:

SNR
∧

true =
1

M

M
∑

m=1

10 log10
Ps(n)

Pd(n)
(2.10)

where P∗(n) is the average signal power of the nth time frame; s corresponds to the sound signal

picked up on the designated signal pickup area (SPA) on top of the chest simulator (Fig 2.13 left);

and d corresponds to the net ambient noise picked up adjacent to the designated SPA point. For

the calculation of SNRtrue, only the top 30% frames were considered, achieving the average highest

signal power. This way, it is ensured that no sound events exceed the desired SNR, while allowing

for lower sound level events to be present.

For the calculation of the true SNR, the signals of interest s and d were obtained using

two PCB Piezotronics prepolarized condenser microphones of 1/4” pressure, connected to a Brüel

& Kjaer type 5935-L preamplifier at 20dB gain. The first microphone was placed ontop of the

ChestSim, facing downwards onto point SPA, for recording signal s; and the second microphone was

placed next to point SPA, facing upwards, for recording signal d. Signals s and d were recorded

independently (not simultaneously).

For capturing auscultated signals, the built-in digital sound-output port of each system was

used, if available. For systems with no such built-in ability, the PCB/preamplifier sensing system

was used, as described above. Digital sounds were captured using an 8-track ZOOM H4 recorder,

situated outside the soundbooth room. All inherent sound effects and sound filters were disabled

and the master recording gain was set at 0dB.
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Compared systems

The proposed auscultation system was evaluated in terms of the quality of the body sound reaching

the ear of the end user, and was further compared to six existing and commercially available systems,

including state-of-the art and widely used acoustic or electronic devices, as listed in Table 2.5.

Devices ADC SCOPE and Littmann Cardiology II were evaluated using their tunable

diaphragm chestpiece. Device UNICEF only entailed a diaphragm chestpiece. For these three

devices, acquisition of the captured body sounds was performed using the PCB microphone, placed

into one side of the corresponding earpiece, and was secured with electrical tape. Both sides of the

earpiece were then sealed via a 3-step process: i) covered with a thick layer of clay ii) wrapped in

multiple layers of acoustic foam, ii) wrapped in multiple layers of cotton cloth. This 3-step process

ensured restriction of potential noise leakage through the ends of the earpiece. It is important to

highlight here that for such systems were sound travels through a chestpiece, noise leakage is more

than likely to occur throughout the full length of the tubing piece. It was outside of the scope of

this study to attempt to contain all possible sources of noise leakage, especially those that add to a

device’s vulnerabilities.

The EKO Core electronic device was toggled to ON, to ensure digital acquisition, and the

middle volume setting was selected while the diaphragm chestpiece was used for auscultation. Sound

acquisition was performed using the PCB Piezotronics condenser microphone, placed into one side of

the earpiece, and connected to the recording system. Both sides of the earpiece were then sealed and

covered using the 3-step process above. Notice here that the device offers an accompanying phone

application for digital sound capturing; and while the bluetooth indicator was flushing, the device

was not connected to a phone to ensure uniformity in the recording process. The importance of this

experiment is merely to compare the audio signal reaching the ears of the user directly, simulating a

scenario of real-time auscultation, and thus, additional computer software was not considered here.

The Littmann 3200 electronic device was set to active mode (non standby mode), the
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Table 2.5: List of stethoscope devices and settings

Device Type Filter Vol./ max

ADC SCOPE Acoustic Diaphragm piece N.A.

UNICEF Acoustic Diaphragm piece N.A.

EKO Core Electronic Diaphragm piece 3/ 7

Littmann Cardiology II Acoustic/ Traditional Diaphragm piece N.A.

Littmann 3200 Electronic Extended 3/ 7

Thinklabs One Electronic 3-4 for Lung Sounds 5/ 10

filter option was set to diaphragm mode, volume set at the middle setting. Sound acquisition was

performed using the PCB Piezotronics condenser microphone connected to the recording system,

and placed into one side of the earpiece. Both sides of the earpiece were sealed and covered, once

again, using the 3-step process above. Due to the restricted automatic shut-off feature, the device

had to be set into active mode regularly throughout the duration of the experiments. This device

comes with an accompanying computer software for digital sound acquisition; however, the software

was not prefered to ensure uniformity in the recording process and a more realistic use-case.

Thinklabs One electronic device does not come with an earpiece, and the auscultation setup

is different here. The device offers and audio jack output where the listener/user can connnect cus-

tom headphones, providing the capability of directly recording the transmitted sound via an audio

cable connected to the recording system. The filter option recommended for lung sounds was used

(filter setting 3-4), and the volume was set at the middle point.

Performance metrics

The following metrics were chosen for their i) objective and standardized quality assessment ii) high

correlation to human intelligibility scores,58 and iii) independence to signal amplification or volume

variations of the picked up signals.

Normalized Covariance measure (NCM) (section 2.2.2) a speech-based measure accounting

for signal audibility at various frequency bands. Though this metric is speech-centric (as are many
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quality measures in the literature), it is constructed to account for audibility characteristics of the

human ear hence reflecting a general account of improved quality of a signal as perceived by a human

listener.

Magnitude squared coherence (MSC) is a statistical index that operates in the spectral

domain and examines the relation between two signals. It gives high values for signals that are

”close” in coherence to each other.

MSC(ωk) = 10 log 10
1

K

K
∑

k=1

|Pxy(ωk)|
2

Pxy(ωk)Pxy(ωk)
(2.11)

where Pxy(ωk) is the cross-power spectrum density between signal x and y, with frequency spectrums

X(ωk) and Y (ωk) respectively. For a given frequency band ωk, the spectral density Pxy was estimated

by P̂xy =
∑M

m=1 Xm(ωk)Y
∗
m(ωk) along m = 1, ..,M window frames, where M is determined by

duration p in (2.14).

The denominator in (2.11) makes the MSC index normalized in [0,1].

Notice that by definition, NCM and MSC are invariant to scalar multiplications of signals

x and y; this renders the metrics independent of the volume settings of the individual auscultation

systems.

The two metrics, NCM and MSC, were computed over M non-overlapping Hamming win-

dows and were normalized in [0,1]. The duration of the windows varied from short to longer windows:

{0.1, 0.5, 1, 2} sec. Both metrics are invariant to amplification of the input signals and obtain values

close to 0 when the signals under consideration have low similarity (where the definition similarity

is metric-dependent). As a reference, a value of zero would be obtained if one of the compared

signal originated from a white Gaussian process. The overal measures of coherence were calculated

by averaging the output of the NCM and MSC metrics over all window sizes, yielding quantities

SNRlungsound and SNRnoisesound that represent the average coherence of the auscultated signal

with the true lung sound, and with the net ambient noise respectively. Quantity SNRest represents
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the final metric, which accounts for both a) the faithful representation of the truly emitted lung

sounds and b) the amount of noise leakage into the auscultated signal:

SNRest = SNRlungsound − SNRnoise (2.12)

SNRlungsound =
1

Pm

Pm
∑

p=1

Qp(x, y) (2.13)

SNRnoise =
1

Pm

1

Pm

Qp(d, y) (2.14)

where Qp is the combined quality metric averaging NCM and MSC values, and p refers to the seg-

mentation windows {0.1, 0.5, 1, 2} sec. Signal x corresponds to the true clean breath sound signal

driving the chest simulator, y to the measured output signal of a particular auscultation system,

Figure 2.15: Illustration of the sound-preservation ability of different auscultation systems, with
varying simulated noise levels. The true SNR is depicted on the x-axis and the estimated SNR
is plotted on the y-axis. Main panel (a) depicts results for calculated metric SNRest; panel (b)
depicts the SNRlungsound metric, and panel (c) the SNRnoise metric. In panels (a-b) high values
correspond to high quality of the pick-up signal; in panel (c) high values correspond to maximal
noise leakage.
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and d to the concurrent net ambient noise during auscultation.

Results:

Results in this section show the performance of the proposed auscultation system when

tested within a simulated noisy environment where body sounds where transmitted at Signal to

Noise ratios varying from low (-20 dB) to high (15 dB); in this setup a -20 dB SNR condition

corresponds to a simulated auscultation in 85 dB SPL noise (on average). The proposed system was

also compared with 6 state-of-the-art and commercially available stethoscopes that include a range

of acoustic and electronic stethoscope devices, all tested within the same simulated environment, Fig

2.15. Performance curves on the main (left) panel depict i) the similarity between the pick-up signal

of a particular system and the true body sound signal driving the chest-simulator (SNRlungsound)

when accounting for ii) the similarity of the pick-up signal with the ambient noise (SNRnoise). The

x-axis represents the true SNR (Eq. (2.10)) and the y-axis represents the estimated SNR achieved by

the different systems (Eq. (2.14)). High values in the main (left) panell demonstrate increased signal

fidelity and reduced noise leakage, while low values depict decreased signal quality and increased

noise contamination. The two right panels show the breakdown achieved by the SNRlungsound and

SNRnoise metrics alone.

The reader is advised not to interpret the results as an absolute comparison measure be-

tween the different auscultation devices (see discussion). The main points illustrated by these results

are the following: i) some devices perform well in quiet conditions and some are built to withstand

noisy environments, where it may be more important to suppress ambient noise leakage than pre-

serving the real signature of the breath sounds (compare the performance of device UNICEF (in

red) and device Thinklabs ONE (in cyan)); ii) acoustic stethoscopes perform well in low noise condi-

tions but cannot provide sufficient noise suppression capabilities in noisy settings (Fig. 2.15(c)); iii)

electronic stethoscopes can provide advanced filtering to suppress ambient noise but such filtering

can also affect the underlying signature of the true breath sounds (device Thinklabs One in cyan,
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Littmann 3200 in blue and device EKO core in yellow). The advanced real-time filtering techniques

offered by the proposed system (in purple), is shown to effectively suppress unwanted noise leakage,

while the sound quality is preserved for all true SNR levels, and the body signal is delivered faithfully

with minimum contamination.

Figure 2.16 illustrates the variability in performance curves incurred by the diverse noise

database. Variability of performance metric SNRlungsound is shown here at true SNR = -20 dB, for

device ADC SCOPE during auscultation of a 10 sec normal lung sound signal. When the simulated

noise environment comprised only of High Stationary noise, performance values have low variability

within the same auscultation recording Notice that for a long window frame (2 sec) results obtained

for High Stationary and Low Stationary noise have both low variability, since a long window tends to

Figure 2.16: Histogram display (bar plots) and fitted gamma distribution curves (solid lines), illus-
trating the SNRlungsound metric variability for simulated noise environments containing only High
and only Low Stationary noise. Variability is high for Low Stationary noise for a smaller window
frame (0.5 sec), and is equally low for a higher window frame (2 sec). Results shown here correspond
to metric SNRlungsound calculated for device ASC Scope, for true SNR condition of -20 dB, on a
10 sec auscultation of normal breath sounds.
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wash out any variability, while for a small size frame (0.5 sec), variability is much greater especially

for the Low Stationary case, reflecting the nature of Low Stationary noise.

Conclusion: This work describes a new programmable screening scope, that brings solutions to

old and recurring problems of auscultation tools, by entailing an advanced sensing mechanism and

dynamic noise suppression design to tackle known shortcomings. It delivers sound signals faithful

to the true body sounds, achieving increased pick-up sensitivity and decreased noise leakage. The

proposed system was compared with 5 state-of-the art auscultation tools in terms of sound quality

and delivery; it’s superiority was evaluated using a collection of objective quality measures within a

complex simulation environment. Noise leakage and sound alteration effects were evident among all

compared systems. And although high noise suppression is desirable, it can incur significant sound

alteration to the auscultated sounds. An intermediate solution is thus desirable, where maintenance

of the full spectrum of the sound can bring value to the ears of the physician for diagnostic pur-

poses, but also add value to computer-aided auscultation systems (CAAS) that would benefit from

a broader representation of body sounds.

The quality performance results presented in this work were based on the standalone ca-

pabilities of the included systems, and not on offered supplementary computer programs or phone

applications. The objective metrics can reflect the systems’ ability to preserve the true emanating

body sounds, but should not be used to reflect an expert’s ability to form a diagnostic opinion

without further exploration.

The proposed system is a robust, powerful and versatile tool, than can be reprogrammed

using user-defined algorithms to focus on a variety of applications such as heart and knee-joint

auscultation; it can address further aspects of CAAS systems such as suppression subject-specific

or application-specific noise; and even add functionalities like automated sound-event detection and

decision support frameworks.
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Chapter 3

Detecting Respiratory Disease

Indicators Using Computerized

Methods

Computerized auscultation analyses (CAA) provide a reliable and objective assessment

of lung sounds that can inform clinical decisions and may improve case management, especially

in resource-poor settings. The challenges in developing such computerized auscultation analysis

stem from two main hurdles. Firstly, there is great variability in the literature regarding a reliable

description of lung signals and their pathological markers. For instance, adventitious sounds of

wheeze have been reported to span a wide range of frequencies varying within 100-2500 Hz or 400-

1600 Hz; similarly crackles have been characterized as sounds with frequency content < 2 kHz or

> 500 Hz or within 100-500 Hz.77,78 Secondly, ambient noise often contaminates the auscultation

signal and masks important signature cues, as it often exhibits time-frequency patterns that greatly

overlap with characteristic events in lung sounds.79

Over the past few decades, few CAA approaches have been proposed to offer solutions
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to automated monitoring and diagnosis of lung pathologies. Nonetheless, the proposed approaches

remain limited in their applicability, and tend to be confined to laboratory or well-controlled clinical

settings or to simulated additive noise conditions.80–82 These artificial settings greatly oversimplify

environments in the field or the Emergency Department, where noisy and raucous clinical condi-

tions incur unpredictable non-additive noise contamination. Few studies have explored analysis and

classification techniques for breath sound diagnostics under more realistic clinical settings;83–87 yet

the majority suffers from limited patient evaluation or low protocol versatility. Unfortunately, the

applicability of such methods to child auscultation is unknown and expected to be hampered by

common pediatric challenges including irregular breathing, motion artifacts, crying or other body

sounds that cannot be held back during examination. Finally, most proposed methods offer analysis

techniques best suited to only identify context-specific pathological sound patterns.85–89

A parallel challenge to the development of fully automated CAA systems is the need for

hand-labeled information that can parse the respiratory phases in auscultation signals, identify spe-

cific signal instances with pathological markers as well as offer a reference medical interpretation

of the auscultation signals. The need for such labeled ground-truth annotations is crucial for the

development and training of supervised techniques, which explains why most studies are developed

depending on it. Yet, a fully-annotated reference database is unrealistic because: (i) it is an ex-

tremely expensive and laborious effort in a large sample size; and (ii) it is not consistent with common

medical practices where health care professionals rely on a global listening of the auscultation signal

and recurrence of specific patterns indicative of pathologies while ignoring irrelevant information.

Requiring an instant-by-instant labeling of hours of auscultation recordings is both unreasonable

and impractical.

To tackle these challenges, we introduce a scheme relying on the high quality signal obtained

in the previous chapter; (i) it offers a rich feature representation to address the unpredictable nature

of adventitious auscultation patterns, and (ii) provides patient-level assessment of pathological status

by combining partial signal-level assessments without the need for exhaustively detailed annotations.
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For validation and evaluation, we use a large realistic dataset collected in developing countries in

non-ideal rural and outpatient clinics. We demonstrate the advantages of the proposed feature

extraction against state-of-the-art methods, which are shown here to lack the robustness to perform

effectively on a diverse set of adventitious sounds, especially when noise events further mask the

signal signatures.

3.1 Feature Extraction

A biomimetic approach was employed to extract meaningful patterns from the enhanced

signals, and the acoustic signal was projected onto a high-dimensional space spanning time, frequency

as well temporal dynamics and spectral modulations. The analysis followed the model proposed

in90,91 by adapting it to auscultation signals; and is summarized below:

The auscultation signal s(t) was first analyzed through a bank of 128 cochlear filters h(t; f),

with 24 channels per octave. These filters were modeled as constant-Q asymmetric band-pass filters

and tonotopically arranged with their central frequencies logarithmically spaced. Then, signals

were pre-emphasized by a temporal derivative and spectrally sharpened using a first-order difference

between adjacent frequency channels, followed by half-way rectification and a short-time integration

µ(t; τ), with τ=8 ms. The result was an enhanced representation, the auditory spectrogram:

y(t, f) = max(∂f∂t s(t) ∗f h(t, f), 0) ∗t µ(t; τ) (3.1)

This time-frequency representation was further expanded to extract signal modulations using a mul-

tiscale wavelet analysis, akin of processes that take place in the central auditory pathway, particularly

at the level of auditory cortex.91 This analysis yields a rich feature representation that captures

intrinsic dependencies and dynamics in the lung sound signals along both time and frequency. This

stage is implemented by filtering the auditory spectrogram y(t, f) through a bank of modulation-

tuned filters G, selective to specific ranges of modulation in time (rates r in Hz) and in frequency
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(scales s in cycles/octave or c/o):

G+(t, f ; r, s) = A∗(hr(t; r))A(hs(f ; s)) (3.2a)

G−(t, f ; r, s) = A (hr(t; r))A(hs(f ; s)) (3.2b)

where A(.) indicates the analytic function, (.)∗ is the complex conjugate, and +/− indicates upward

or downward orientation selectivity in time-frequency space, i.e., detecting upward or downward

frequencies sweeping over time: a positive rate corresponds to downward moving energy contents

and a negative rate corresponds to upward moving energy contents. The seed functions hr(t) and

hs(f) were shaped as Gamma and Gabor functions respectively

hr(t) = t3e−4tcos(2πt), hs(f) = f2e1−f2

(3.3)

A filter bank was constructed by dilating the seed function and creating 31 filters of the form

hr(t; r) = rhr(rt) to capture slow/ fast temporal variations for modulations r = 2[1.4:0.22:8]; and

21 filters of the form hs(f ; s) = shs(sf), to capture narrow/broadband spectral content, with s =

2[−5:0.4:3]. Each modulation filter output modeled the response of differently-tuned filters, mapping

the time waveform onto a high-dimensional space:

r±(t, f ; r, s) = y(t, f) ∗t,f G±(t, f ; r, s) (3.4)

where ∗t,f corresponds to convolution in time and frequency and G± is the 2D modula-

tion filter response. The final representation was obtained by integrating the response along time,

achieving a frequency-rate-scale description:

R±(f ; r, s) =

∫

t

r±(t, f ; r, s) δt (3.5)
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Note that even though the time axis is integrated in the equation above, details of the temporal

changes in the signal are captured along the rate axis r.

Reduction of feature space dimension

To reduce the size of the feature space, tensor Singular Value Decomposition (SVD) was used. Data

was unfolded along each dimension of the SVD space, created by the training data set only. Let R

be the feature tensor of order 3 seen above, where the R− axis is concatenated with the R+ axis,

so that R ∈ R
d1xd2xd3 , where d1=128 for the frequency axis, d2= 31x2 = 62 for both ± rates, and

d3 = 21 for scales. When unfolding R along mode (dimension) 1, an order-2 tensor (or matrix)

was created, R(1), of dimensions d1x(d2xd3). Similar order-2 tensors were also created when unfold-

ing along dimension 2 and 3, creating matrices R(2) and R(3). Singular value decompositions were

obtained for each of the mode unfoldings R(n), for n = 1, .., 3 as:

R(n) = U (n)Σ(n)V (n) T (3.6)

For mode-1 unfolding, Σ(1) is a diagonal matrix of dimension r, with the nonzero singular values on

its diagonal; r ≤ min{d1, (d2xd3)} is the rank of R(1), i.e. the dimension of the space spanned by

the columns or rows of R(1) and U (1) and V (1) T are unitary matrices. The singular values in Σ(1)

are presented ranked, as σ
(1)
1 >σ

(1)
2 >... > σ

(1)
r >0. Similar expressions were obtained for mode-2 and

mode-3 decomposition. For each R(n), only components capturing up to 99% of the total variance

were kept (i.e. r(n) = argminx f(x) := {
∑x

i=1 σ
(n)
i ≥ 0.99 |x = 1, ..., dn}. The final space projection

was achieved by tensor-matrix multiplication (mode-n product), significantly reducing the feature

dimensions from 128x62x21 to about 5x3x3 (exact dimension can vary depending on the training

subset).
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3.2 Classification of detected features

The classification of feature vectors into Normal vs. Abnormal was obtained using a soft-

margin non-Linear Support Vector Machine (SVM) classifier. Let x be the matrix comprising of all

xi SVD-projected feature vectors ∈ R
r, where r =

∏3
n=1 r

(n); and let Φ be a kernel mapping where

data is believed to be separable, so that Φ(x) : x → Φ(x), mapping data from R
r → R

D, D > r.

Given knowledge of data points x, and their true class y, a binary SVM classifier, seeks to learn an

optimal hyperplane wT Φ(x), w ∈ R
D, where

f(x) = wTΦ(x) + b (3.7)

is the output class participation (f(xi) = ±1) of example xi; b = +1−wTΦ(x) for examples in class

1; b = −1 − wTΦ(x) for examples in class −1; and |w| = 1. The optimal hyperplane is found by

solving the unconstrained quadratic minimization problem over w:

min
w∈RD

||w||2 + C
N

Σ
i
max(0, 1− yi f(xi)) (3.8)

where N is the number of learning data points and C is a regularization parameter. The second

term represents the loss function, where yif(xi) > 1 if a data point xi falls over the correct side of

the separating hyperplane margin and yif(xi) = 1 if it falls on the margin; finally, yif(xi) < 1 if the

data point falls on the wrong side of the margin. The optimization problem can also be expressed

in its dual form:

f(x) =
N

Σ
i
αiyiK(xi, x) + b (3.9)

max
ai≥0

Σ
i
ai −

1

2
Σ
j,k

ajakyjykk(xj , xk) (3.10)
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subject to 0 ≤ ai ≤ C, ∀i, and
∑

i aiyi = 0. In the present work, radial-basis kernels (RBF) were

used K(xi, xj) = Φ(xi)
TΦ(xj) = exp(−|x(i)−x(j)|2). This way, only the learning of N -dimensional

vector a is needed, avoiding the learning of D-dimensional w in the primal problem.

3.3 Instrumentation & Implementation

All data and annotations were provided by the Pneumonia Etiology Research for Child

Health (PERCH) study.92 Digital auscultation recordings were acquired from children, ages 1 to

59 months (median age 7 ± 11.43 months), in outpatient or busy clinical settings in Africa (The

Gambia, Kenya, South Africa, Zambia) and Asia (Bangladesh, Thailand). In total, 1157 children

were enrolled into the digital auscultation study and were classified into one of the two categories:

cases, having World Health Organization-defined severe or very severe pneumonia,93 or age-matched

community controls, without clinical pneumonia.

The auscultation protocol called for recordings over 8 body locations (sites): four across

the child’s back, two in the axilla and two on the chest area (Fig. 3.1). To ensure two full breath

cycles, at least 7 s of body sounds were obtained per site. A commercial digital stethoscope was

used for data acquisition (ThinkLabs Inc. ds32a), sampling at 44.1 kHz. An independent Sony-

Figure 3.1: Illustration of the 8 auscultation sites and the annotation process. A reviewer labeled
the depicted site as crackles, C, in red/solid line, and then provided an indicative label of a crackling
excerpt in purple/dashed line.
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ICD-UX71-81 microphone was affixed on the back of the stethoscope, recording concurrent ambient

sounds. During examination the infant was seated, laid down or held to the most comfortable posi-

tion.

Data Collection

Digital auscultation recordings were acquired from children, ages 1 to 59 months (median age 7±11.43

months), in outpatient or busy clinical settings in Africa (The Gambia, Kenya, South Africa, Zambia)

and Asia (Bangladesh, Thailand). In total, 1157 children were enrolled into the digital auscultation

study and were classified into one of the two categories: cases, having World Health Organization-

defined severe or very severe pneumonia,93 or age-matched community controls, without clinical

pneumonia.

The auscultation protocol called for recordings over 8 body locations (sites): four across

the child’s back, two in the axilla and two on the chest area (Fig. 3.1). To ensure two full breath

cycles, at least 7 s of body sounds were obtained per site. A commercial digital stethoscope was

used for data acquisition (ThinkLabs Inc. ds32a), sampling at 44.1 kHz. An independent Sony-

ICD-UX71-81 microphone was affixed on the back of the stethoscope, recording concurrent ambient

sounds. During examination the infant was seated, laid down or held to the most comfortable posi-

tion.

Annotations

Nine expert reviewers (pediatricians or pediatric-experienced physicians) were enrolled for the an-

notation process. For each patient recording, two distinct primary reviewers annotated the 8 sites

(per site or site annotation) as being Normal or Abnormal (Table I), with an accompanying de-

scriptor label: ”definite”, ”probable” or ”non-interpretable”. A definite label was provided when

the reviewer could interpret two or more full breaths with certainty. If only one breath could be
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interpreted with certainty or if two or more breaths could be interpreted with uncertainty, then a

probable descriptor was given. If no full breath sounds could be distinguished (due to poor sound

quality, technical errors, or unrecognizable contamination), a ”non-interpretable” label descriptor

was assigned.

The above process ensured that every site recording was assigned an annotation explaining

breath sound findings, along with a confidence indicator for each finding. In case of disagreement

between the two primary reviewers, more reviewers listened to the recording to resolve ambiguities,

and provided additional labeling as needed (see94 for details on the annotation process). Finally,

within each per site label, reviewers were asked to specify a sub-interval label containing one segment

of arbitrary length that best exemplified the given per site label (Fig. 3.1).

Datasets

Based on the sub-interval and per site labels, two types of data sets were created for the evaluation

of this work:

• Sub-interval set: including all patients’ sub-interval recordings of arbitrary length, grouped

into Normal and Abnormal (Table 3.1, 1st row).

• Full patient set: including all patients’ records, grouped as Normal or Abnormal (Table 3.1,

2nd-3rd row).

A few key-observations on the formed data groups: (i) adventitious events may still ex-

ist within a normal annotation, as long as their occurrence was not regarded a pathological lung

sound; (ii) a per site recording was considered abnormal if there was full or partial agreement among

reviewers over an abnormal annotation. Full or partial agreement means that a ”definite” or ”prob-

able” presence of an abnormal sound was agreed by both primary reviewers or by at least two of

the total reviewers. Augmenting the data sets to include both full and partial agreement cases

ensured the minimization of excluded data, making the study more realistic, but at the expense of
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Table 3.1: Available Annotations of Patients’ Recordings

Annotation
Label

Abnormal (Intervals with wheeze
and/or crackles)

Normal (Intervals without wheeze
nor crackles)

SUB-
INTERVAL

annotated clip of arbitrary length
found in abnormal site recordings
of full or partial reviewer agree-
ment

annotated clip of arbitrary length
found in normal site recordings of
full or partial reviewer agreement

PER-SITE
(or SITE)

a site recording found abnormal by
full or partial reviewer agreement

a site recording labeled normal by
full or partial reviewer agreement

FULL-
PATIENT

includes all site recordings of a pa-
tient if at least one site was found
abnormal

includes all site recordings of a pa-
tient when all sites were found nor-
mal

infusing uncertainty to the classification model; (iii) a patient record labeled as Abnormal (Table

3.1, 3rd row), may contain one or more abnormal sites (Table 3.1, 2nd row); (iv) patient records

obtaining a ”non-interpretable” label or failing to obtain full or partial agreement, were excluded

from evaluation.

In total, 62 patients were excluded due to missing annotations, along with 29% of remaining

site recordings, due to: ”non-interpretable” labels, missing audio, recording malfunctions in one of

the two microphones, or high disagreement among reviewer labels. The final included data set

consisted of more than 250 hours of recorded lung sounds.

Data Processing

All acquired signals were processed using the augmented noise suppression scheme described in

Chapter 2, that included clipping correction, heart sound interference suppression, crying elimina-

tion, artifact removal and ambient noise suppression.

Timescale of diagnosis

Choosing the timescale (analysis window) over which to perform classification is a nontrivial task.

An ideal parsing of the signal would require a window segmentation aligned to the breathing cycle.

While this is often the chosen parsing method in studies of limited data,81,95,96 it is an impractical

solution for large datasets recorded in the field: obtaining pre-annotated breath cycles for all subjects
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is unrealistic and cannot be automated in a straight-forward manner, especially when considering

the irregularity of infant breathing. Alternatively, one could opt for a fixed-size window, which will

likely have an impact on the classification outcome. On one end of the spectrum, a very short win-

dow will highlight short adventitious events, at the expense of great heterogeneity among training

data, especially under noisy conditions. On the other end of the spectrum, a very long window would

capture average characteristics of normal vs. abnormal lung sound events but could blend details

pertaining to short pathological patterns. We investigated a variety of analysis windows ranging

from shorter to longer duration: Wi ∈ [ 0.3, ..., 5] s with 50% overlap.

Evaluation of classification results

A closely related issue is the timescale of evaluating classification results. The available auscultation

dataset contained one annotation per each 7s recording site; full-scale, extensive annotations of all

sounds of interest were not available and are not a realistic feature, thus, we propose the following

algorithmic performance evaluation techniques:

a) Sub-interval (used for study comparison in section 3.4): all arbitrary-length sub-

interval annotations of all available patient records were included in this dataset, grouped into two

groups (Normal/Abnormal). A decision for each sub-interval clip was made by the SVM classifier,

leading to performance evaluation on the sub-interval level;

b) Full patient (used for extended evaluation of proposed method in section 3.4): this

dataset combined individual frame decisions of each site into an overall patient decision. This is not

a trivial task, and our approach was designed to be highly sensitive to abnormal occurrences. First,

all grouped site recordings were split into individual frames of length Wi ∈ [0.3, ..., 5] s with 50%

overlap, and a classifier decision was made at the frame level. Next, a combined decision for each site

was obtained as follows: a site received an abnormal output label if at least (i) 2 consecutive intervals

of α duration were found to be abnormal by the classifier or if at least (ii) β% of all overlapping

frames were found to be abnormal; (this approach was partially inspired by the annotation protocol

66



CHAPTER 3. DETECTING RESPIRATORY DISEASE INDICATORS

that the medical experts followed, as described above). Finally, a full patient record was assigned

an abnormal label if at least one of its sites was found to be abnormal; otherwise the patient record

was assigned a normal output label. For each time window Wi, parameters α and β were optimized

in [0, 2] s and [30, 70] % respectively.

3.4 Findings and Comparison with State of the Art Methods

Findings

After combining the noise suppression scheme with the rich feature analysis and decision integration,

Figure 3.2: Final patient-classification results. Performance was calculated based on the full-patient
decision; Accuracy = (TP+TN)/All %, where TP: number of True Positives (abnormal patients),
TN: number of True Negatives (normal patients), All: total number of patients. Grey shading
depicts the standard deviation in patient accuracy among 10 MC runs.

the accuracy of the complete system was assessed for patient-level decisions, using the full-patient

evaluation process mentioned above. As outlined earlier, the system performance depends crucially

on the choice of analysis window Wi (timescale of diagnosis). Fig. 3.2 shows the system accuracy for

different analysis windows. On one hand, large windows > 1 s capture the coarse characteristics of

the lung sounds at the expense of the refined detection of adventitious events such as crackle which

can be very localized in time and are integrated in these longer time windows. Such coarse analysis

yields an accuracy of about 77%. On the other hand, a very short analysis window < 0.5 s can be

sensitive to very small or transient changes in the signal hence failing to track sustained patterns
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of interest such as wheezes which tend to be very musical in nature and can last few hundreds of

milliseconds. Such short windows also yield a smaller drop in accuracy. Overall, it is observed that

a balanced time window of about 0.5 s is preferred as it balances the detailed analysis with the

tracking of events of interest. Using the recommended 0.5 s, our proposed integrated system yields

an overall patient-level accuracy of 84.08% in Fig.3.2. The shaded area shows the standard deviation

in accuracy over 10 Monte-Carlo runs.

Figure 3.3: Accuracy of classifier with respect to the prercentage of data left unlabelled during the
testing phase.

At this point it is worth exploring whether the proposed model will be able to capture

the uncertainty in the annotated data. Remember, as discussed earlier, there can be disagreement

among the data that the reviewer panel annotated. While the results above reflect only cases where

there was agreement between doctors, it is nevertheless worth exploring cases of disagreement. Our

efforts are still ongoing but we are able to present some results here. We split the uncertainty level

into three groups: Sure, when all doctors agreed on a given annotation, Midsure, when the majority

of doctors agreed on a given annotation, and Unsure, when there was no immediate consensus. The

model was trained on ALL training examples (Sure, Midsure, Unsure). We altered our gaussian
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kernels for the training data to incorporate this uncertainty into the training phase by adjusting

the variance of the kernel function according to the type of annotation. Preliminary results shown

in Fig. 3.3, demonstrate that our model is able to capture the doctor’s opinion, and performs

better for cases of less uncertainty. The x axis represents the percentage of data left unlabelled in

the testing phase of the classifier (i.e. 100 minus the percentage of data included in the accuracy

calculation during the testing phase). The intuition here is that we do not want to classify test cases

that fall close to the separating hyperlplane of the classifier. Thus, as we threshold further from the

hyperplane, the more data we leave unlabelled. The yaxis represents accuracy (average of Sensitivity

and Sensitivity) achieved for the sub-interval classification. From the figure you can see that the

group of data annotated with certainty (Sure), i.e. blue curve, achieve the best classification rate.

On the other hand, the group with the highest uncertainty during the annotation process (Unsure),

i.e. green curve, achieve the lowest accuracy. More work needs to be done to further explore the

incorporation of uncertainty into the output labels, but this is a promising result towards the right

direction.

Comparison with other methods

The effectiveness of the proposed biomimetic features was furthered explored via a com-

parison with state of the art methods in the literature. Palaniappan et al. demonstrated the use

of the Mel-frequency cepstral coefficients (MFCCs) for capturing spectral characteristics of normal

and pathological respiratory sounds.97 MFCCs are powerful features commonly used in audio sig-

nal processing, particularly in speech applications; it is a type of nonlinear cepstral representation

calculated on a mel frequency axis, which approximates spectral perception of human listeners:98

first, the logarithm of the Fourier transform was calculated using the mel scale followed by a cosine

transform. One MFCC coefficient was obtained per frequency band, and in total, 13 MFCCs were

derived for each data excerpt, averaged over a processing window of 50 ms with 25% overlap. This

method is referred to as MFCC P . In a different study by Jing et al,99 a new set of discriminating
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Figure 3.4: Comparison of feature extraction methods for a normal (left) and a wheeze (right) lung
sound. Row 1: time-frequency breath characteristics; Row 2-3: binned MFCC coefficients extracted
as part of the MFCCP method, and features MISK, DFc, DFm and SEHD, part of the WV ILLE
method; Rows 4-7: proposed discriminating features including the auditory spectrogram ASP and
the combined spectral and temporal breath dynamics. Notice the high discriminatory nature of
the proposed features: the wheezing breath is highlighted with high energy concentration in the
Scales-Rates plot ∼ 1 c/o, capturing its harmonic structure, and in the Frequency-Rates and Scales-
Frequency plots ∼ 200 Hz, capturing its pitch. Comparatively, the normal breath exhibits much
lower temporal and spectral dynamics.

features was proposed for identifying adventitious events in respiratory sounds, based on spectral

and temporal signal characteristics. The features were extracted from a refined spectro-temporal

representation, the Gabor time-frequency (Gabor TF) distribution. As the order of the Gabor TF

representation increases, it converges to a Wigner-Ville distribution, and we used the latter to extract

multiple features from each frequency band, as proposed by the authors: MISK: mean instantaneous
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kurtosis, used as feature for adventitious sound localization; DFc and DFm denoting the contrast

and minimum value of the calculated discriminating function, used for signal predictability features;

and SEHD: sample energy histogram distortion, used as a nonlinear separability criterion for breath

discrimination. This method is referred to as WV ILLE.

For a comparison focused on the effectiveness of the extracted features, we used the data

pool created from the sub-interval annotations of all subjects in the PERCH database, after full

signal enhancement. Recall that the sub-interval annotations can be of arbitrary length (with an

average duration of 1.8 s in this database). In order to create a relatively uniform database, the

intervals were clipped or augmented to 2 s, while intervals shorter than 1 s were discarded.

Fig. 3.4 illustrates the differences of all the feature extraction techniques, as applied on a

normal and a wheezing lung sound clip. Row 1 depicts the sound spectrograms calculated on a 30ms,

50% overlap window simply shown here for reference. Row 2 shows MFCC coefficients #2 and #5

tuned at 75 Hz and 200 Hz respectively, extracted by MFCCP method. Row 3 shows the WVILLE

features: the 10 maximum average instantaneous kurtosis values (MISK); the minimum achieved

value of the enclosed discriminating function (DFm) and its center-surround contrast (DFc); and the

histogram distortion value (SEHD). Row 4 shows the ASP spectrogram used in the proposed method

for extracting the spectro-temporal breath dynamics. Rows 5-7 depict the 3-dimensional Frequency-

Rate-Scale space, shown on individual two-dimensional projections. Notice the high discriminatory

nature of the proposed set of features: the wheezing breath is highlighted by the presence of strong

energy components ∼ 1 c/o in the Scales-Rates plot (capturing its harmonic structure), and the

energy concentration around 200 Hz along the y-axis of the Frequency-Rates and Scales-Frequency

space (capturing its pitch). Compared to the normal breath, the wheezing breath exhibits much

higher temporal dynamics as captured by the rates axis.

The RBF SVM classifier was used for all compared methods evaluated on a 10-fold cross

validation and 20 Monte Carlo repetitions. Subjects in the training and testing sets were again,

mutually exclusive, to avoid classification bias. Recall, that while a normal annotation rules out
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Table 3.2: Comparative Classification Results

Sensitivity (TP)% Specificity (TN)% Accuracy%

PROPOSED 86.82 (±0.42) 86.55 (±0.36) 86.67

MFCC P 91.88 (±0.36) 53.40 (±0.74) 72.64

WVILLE 63.86 (±0.55) 58.47 (±0.60) 61.16

. *Performance based on sub-interval decision

wheeze or crackle occurrences, the lack of other abnormal sounds such as upper respiratory sounds

(URS) or remaining noise cannot be guaranteed, adding real life challenges to the data. Comparative

results are shown in Table 3.2, with the accuracy index depicting the average of sensitivity (True

Positives Rate) and specificity (True Negatives Rate). The superiority of the proposed feature

extraction method was revealed; the rich spectro-temporal space spans intricate details in the lung

signal and results in better discriminatory features. Importantly, the proposed features appear to be

equally robust in identifying normal and abnormal breath sounds without any bias. In contrast, low

accuracy percentages of the WV ILLE method are noticeable; the WV ILLE features were designed

to detect unexpected abnormal patterns within specific breath context, and the feature space seems

to lack the ability of separating respiratory-related abnormal sounds from noise-related sounds,

signal corruption, or breaths containing possible URS. MFCCP features were better qualified for

identifying abnormal breaths, but when it came to normal segments, both WV ILLE and MFCCP

fail to distinguish from noise or other contamination. The MFCCP and WV ILLE methods were

previously reported in97 and99 to obtain an average accuracy of 77.42% and Area Under the Curve

accuracy of 95.60% respectively, in distinguishing normal from pathological lung sounds. However

findings of the current work clearly illustrate the inherent difficulty of these feature extraction

methods to generalize findings to more realistic or challenging databases and auscultation scenarios.
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Chapter 4

Concluding Remarks - Future

Work

Over the last decades, there has been an increased interest in computer-aided lung sound

analysis. Despite the enthusiasm about possibilities in automated diagnosis, the literature is still shy

in tackling real-life challenges. The presented work addresses some of these limitations by proposing

a robust discriminative methodology for distinguishing normal and abnormal sounds. Validated

on a large-scale realistic dataset, it tackles two aspects crucial in the development of automated

auscultation analysis: noise and signal-mapping.

The proposed framework addresses the need for improved lung sound quality by using

noise-suppression techniques suitable for auscultation applications. It tackles various noise-sources

including ambient noise, signal artifacts, patient-intrinsic maskers (heart-sounds, crying); and ex-

plores the use of a rich biomimetic feature-mapping that covers the intricate spectro-temporal details

of lung sounds, and yields a notable improvement in distinguishing normal/abnormal events when

compared to state-of-the-art systems that tend to fixate on specialized pathologies and global fea-

tures.
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Crucially, the proposed system is further validated on large patient datasets acquired in

the field under realistic clinical conditions. The use of such validation data highlights an additional

aspect of the analysis; notably the need for full-patient decisions. Previous studies commonly pro-

pose methods for localized interpretations on limited pre-segmented breaths; this entails restricted

real-life applicability since it requires a pre-segmentation process that is extremely challenging. In-

stead, our work hopes to take a step towards realistic applicability of computer-aided diagnosis.

A number of challenges remain to be addressed including establishing the association between aus-

cultations and other clinical markers; identifying overlapping non-pathological sounds which can

incur significant false positives; and calibrating analysis-windows with respiratory cycles which can

benefit the interpretation of the observed patterns. Our continuing efforts focus on the integration of

important patient information into the decision making scheme, including body temperature, heart

rate, breathing rate, cough occurrence and other. Such augmented patient information supplements

the disease detection scheme and can provide an extra layer of robustness to the screening results.

Ongoing work further attempts to properly model uncertainty in experts annotations. We have

established so far that patient records the yield the highest disagreement amongst doctor experts

are also the ones more often confused by our model. Intelligently incorporating such uncertainty

and training future models accordingly, will enable computerized methods to learn with confidence

from less uncertain patient cases while predicting hard to diagnose patient records.

The following publications have been produced and co-authored as part of this thesis:

Journal Articles & Conference Proceedings

- Park D. et al, Digitally recorded lung sounds in cases and controls compared to standard lung auscultation

in the pneumonia etiology research for child health case-control study. 10th Int Symp on Pneumococci and

Pneumococcal Diseases, 2016

- McCollum, E. D. et al, Listening panel agreement and characteristics of lung sounds recorded from children

aged 159 months enrolled in the PERCH casecontrol study. BMJ Respiratory Research, 4(1), 2017.
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- Emmanouilidou D. et al, ”Computerized Lung Sound Screening for Pediatric Auscultation in Noisy Field

Environments,” in IEEE Trans on Biomed Eng, vol. PP, no. 99, pp. 1-1, 2017.

- Emmanouilidou D. et al, ”Rich Representation Spaces: Benefits in Digital Auscultation Signal Analysis,”

2016 IEEE International Workshop on Signal Processing Systems, Dallas, TX, pp. 69-73, 2016.

- Emmanouilidou D. et al. Adaptive noise suppression of pediatric lung auscultations with real applications
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