21,533 research outputs found

    Asymptotic properties of random matrices and pseudomatrices

    Get PDF
    We study the asymptotics of sums of matricially free random variables called random pseudomatrices, and we compare it with that of random matrices with block-identical variances. For objects of both types we find the limit joint distributions of blocks and give their Hilbert space realizations, using operators called `matricially free Gaussian operators'. In particular, if the variance matrices are symmetric, the asymptotics of symmetric blocks of random pseudomatrices agrees with that of symmetric random blocks. We also show that blocks of random pseudomatrices are `asymptotically matricially free' whereas the corresponding symmetric random blocks are `asymptotically symmetrically matricially free', where symmetric matricial freeness is obtained from matricial freeness by an operation of symmetrization. Finally, we show that row blocks of square, lower-block-triangular and block-diagonal pseudomatrices are asymptotically free, monotone independent and boolean independent, respectively.Comment: 33 pages, 2 figure

    Gaussian fluctuations of characters of symmetric groups and of Young diagrams

    Full text link
    We study asymptotics of reducible representations of the symmetric groups S_q for large q. We decompose such a representation as a sum of irreducible components (or, alternatively, Young diagrams) and we ask what is the character of a randomly chosen component (or, what is the shape of a randomly chosen Young diagram). Our main result is that for a large class of representations the fluctuations of characters (and fluctuations of the shape of the Young diagrams) are asymptotically Gaussian; in this way we generalize Kerov's central limit theorem. The considered class consists of representations for which the characters almost factorize and this class includes, for example, left-regular representation (Plancherel measure), tensor representations. This class is also closed under induction, restriction, outer product and tensor product of representations. Our main tool in the proof is the method of genus expansion, well known from the random matrix theory.Comment: 37 pages; version 3: conceptual change in the proof

    Mode-Dependent Loss and Gain: Statistics and Effect on Mode-Division Multiplexing

    Full text link
    In multimode fiber transmission systems, mode-dependent loss and gain (collectively referred to as MDL) pose fundamental performance limitations. In the regime of strong mode coupling, the statistics of MDL (expressed in decibels or log power gain units) can be described by the eigenvalue distribution of zero-trace Gaussian unitary ensemble in the small-MDL region that is expected to be of interest for practical long-haul transmission. Information-theoretic channel capacities of mode-division-multiplexed systems in the presence of MDL are studied, including average and outage capacities, with and without channel state information.Comment: 22 pages, 8 figure

    The Trace Problem for Toeplitz Matrices and Operators and its Impact in Probability

    Full text link
    The trace approximation problem for Toeplitz matrices and its applications to stationary processes dates back to the classic book by Grenander and Szeg\"o, "Toeplitz forms and their applications". It has then been extensively studied in the literature. In this paper we provide a survey and unified treatment of the trace approximation problem both for Toeplitz matrices and for operators and describe applications to discrete- and continuous-time stationary processes. The trace approximation problem serves indeed as a tool to study many probabilistic and statistical topics for stationary models. These include central and non-central limit theorems and large deviations of Toeplitz type random quadratic functionals, parametric and nonparametric estimation, prediction of the future value based on the observed past of the process, etc. We review and summarize the known results concerning the trace approximation problem, prove some new results, and provide a number of applications to discrete- and continuous-time stationary time series models with various types of memory structures, such as long memory, anti-persistent and short memory
    • …
    corecore