10,726 research outputs found

    Scientific Computing Meets Big Data Technology: An Astronomy Use Case

    Full text link
    Scientific analyses commonly compose multiple single-process programs into a dataflow. An end-to-end dataflow of single-process programs is known as a many-task application. Typically, tools from the HPC software stack are used to parallelize these analyses. In this work, we investigate an alternate approach that uses Apache Spark -- a modern big data platform -- to parallelize many-task applications. We present Kira, a flexible and distributed astronomy image processing toolkit using Apache Spark. We then use the Kira toolkit to implement a Source Extractor application for astronomy images, called Kira SE. With Kira SE as the use case, we study the programming flexibility, dataflow richness, scheduling capacity and performance of Apache Spark running on the EC2 cloud. By exploiting data locality, Kira SE achieves a 2.5x speedup over an equivalent C program when analyzing a 1TB dataset using 512 cores on the Amazon EC2 cloud. Furthermore, we show that by leveraging software originally designed for big data infrastructure, Kira SE achieves competitive performance to the C implementation running on the NERSC Edison supercomputer. Our experience with Kira indicates that emerging Big Data platforms such as Apache Spark are a performant alternative for many-task scientific applications

    Real-Time Context-Aware Microservice Architecture for Predictive Analytics and Smart Decision-Making

    Get PDF
    The impressive evolution of the Internet of Things and the great amount of data flowing through the systems provide us with an inspiring scenario for Big Data analytics and advantageous real-time context-aware predictions and smart decision-making. However, this requires a scalable system for constant streaming processing, also provided with the ability of decision-making and action taking based on the performed predictions. This paper aims at proposing a scalable architecture to provide real-time context-aware actions based on predictive streaming processing of data as an evolution of a previously provided event-driven service-oriented architecture which already permitted the context-aware detection and notification of relevant data. For this purpose, we have defined and implemented a microservice-based architecture which provides real-time context-aware actions based on predictive streaming processing of data. As a result, our architecture has been enhanced twofold: on the one hand, the architecture has been supplied with reliable predictions through the use of predictive analytics and complex event processing techniques, which permit the notification of relevant context-aware information ahead of time. On the other, it has been refactored towards a microservice architecture pattern, highly improving its maintenance and evolution. The architecture performance has been evaluated with an air quality case study

    DALiuGE: A Graph Execution Framework for Harnessing the Astronomical Data Deluge

    Full text link
    The Data Activated Liu Graph Engine - DALiuGE - is an execution framework for processing large astronomical datasets at a scale required by the Square Kilometre Array Phase 1 (SKA1). It includes an interface for expressing complex data reduction pipelines consisting of both data sets and algorithmic components and an implementation run-time to execute such pipelines on distributed resources. By mapping the logical view of a pipeline to its physical realisation, DALiuGE separates the concerns of multiple stakeholders, allowing them to collectively optimise large-scale data processing solutions in a coherent manner. The execution in DALiuGE is data-activated, where each individual data item autonomously triggers the processing on itself. Such decentralisation also makes the execution framework very scalable and flexible, supporting pipeline sizes ranging from less than ten tasks running on a laptop to tens of millions of concurrent tasks on the second fastest supercomputer in the world. DALiuGE has been used in production for reducing interferometry data sets from the Karl E. Jansky Very Large Array and the Mingantu Ultrawide Spectral Radioheliograph; and is being developed as the execution framework prototype for the Science Data Processor (SDP) consortium of the Square Kilometre Array (SKA) telescope. This paper presents a technical overview of DALiuGE and discusses case studies from the CHILES and MUSER projects that use DALiuGE to execute production pipelines. In a companion paper, we provide in-depth analysis of DALiuGE's scalability to very large numbers of tasks on two supercomputing facilities.Comment: 31 pages, 12 figures, currently under review by Astronomy and Computin

    Performance Evaluation of Job Scheduling and Resource Allocation in Apache Spark

    Get PDF
    Advancements in data acquisition techniques and devices are revolutionizing the way image data are collected, managed and processed. Devices such as time-lapse cameras and multispectral cameras generate large amount of image data daily. Therefore, there is a clear need for many organizations and researchers to deal with large volume of image data efficiently. On the other hand, Big Data processing on distributed systems such as Apache Spark are gaining popularity in recent years. Apache Spark is a widely used in-memory framework for distributed processing of large datasets on a cluster of inexpensive computers. This thesis proposes using Spark for distributed processing of large amount of image data in a time efficient manner. However, to share cluster resources efficiently, multiple image processing applications submitted to the cluster must be appropriately scheduled by Spark cluster managers to take advantage of all the compute power and storage capacity of the cluster. Spark can run on three cluster managers including Standalone, Mesos and YARN, and provides several configuration parameters that control how resources are allocated and scheduled. Using default settings for these multiple parameters is not enough to efficiently share cluster resources between multiple applications running concurrently. This leads to performance issues and resource underutilization because cluster administrators and users do not know which Spark cluster manager is the right fit for their applications and how the scheduling behaviour and parameter settings of these cluster managers affect the performance of their applications in terms of resource utilization and response times. This thesis parallelized a set of heterogeneous image processing applications including Image Registration, Flower Counter and Image Clustering, and presents extensive comparisons and analyses of running these applications on a large server and a Spark cluster using three different cluster managers for resource allocation, including Standalone, Apache Mesos and Hodoop YARN. In addition, the thesis examined the two different job scheduling and resource allocations modes available in Spark: static and dynamic allocation. Furthermore, the thesis explored the various configurations available on both modes that control speculative execution of tasks, resource size and the number of parallel tasks per job, and explained their impact on image processing applications. The thesis aims to show that using optimal values for these parameters reduces jobs makespan, maximizes cluster utilization, and ensures each application is allocated a fair share of cluster resources in a timely manner
    corecore