26,131 research outputs found

    Development of The Supporting Tool for Testing-Based Formal Verification

    Get PDF
    Software development is costly endeavors. In general, the development cost can be reduced by checking whether the program meets the specification. Mostly, Software is composed of several modules so that by checking the correctness of each module, developers can find the causes of errors efficiently. Formal verification and specification-based testing are widespread techniques to verify programs. Formal verification based on Hoare logic can establish the correctness of programs from the theoretical point of view. However, it is regarded as an impractical technique for realistic programs, due to some challenges. On the other hand, specification-based testing is able to detect errors, and it is quite easy to perform. Therefore, it is frequently used for realistic developments. However, in most cases, the testing cannot guarantee the correctness of programs. As we described above, both of these techniques cannot do satisfactory job alone. To solve this problem, a novel verification approach was suggested, which is called testing-based formal verification (TBFV). In this paper, we aim to reveal the feasibility of TBFV through developing a supporting tool for Java programs and conducting a case study. As a result, our supporting tool has achieved a semi-automatic application of TBFV, which can help reduce the cost of a verification process

    Proving Well-Definedness of JML Specifications with KeY

    Get PDF
    Specification methods in formal program verification enable the enhancement of source code with formal annotations as to formally specify the behaviour of a program. This is a popular way in order to subsequently prove software to be reliable and meet certain requirements, which is crucial for many applications and gains even more importance in modern society. The annotations can be taken as a contract, which then can be verified guaranteeing the specified program element – as a receiver – to fulfil this contract with its caller. However, these functional contracts can be problematic for partial functions, e.g., a division, as certain cases may be undefined, as in this example a division by zero. Modern programming languages such as Java handle undefined behaviour by casting an exception. There are several approaches to handle a potential undefinedness of specifications. In this thesis, we chose one which automatically generates formal proof obligations ensuring that undefined specification expressions will not be evaluated. Within this work, we elaborate on so-called Well-Definedness Checks dealing with undefinedness occurring in specifications of the modelling language JML/JML* in the KeY System, which is a formal software development tool providing mechanisms to deductively prove the before mentioned contracts. Advantages and delimitations are discussed and, furthermore, precise definitions as well as a fully functional implementation within KeY are given. Our work covers the major part of the specification elements currently supported by KeY, on the higher level including class invariants, model fields, method contracts, loop statements and block contracts. The process of checking the well-definedness of a specification forms a preliminary step before the actual proof and rejects undefined specifications. We further contribute by giving a choice between two different semantics, both bearing different advantages and disadvantages. The thesis also includes an extensive case study analysing many examples and measuring the performance of the implemented Well-Definedness Checks

    Extensible Technology-Agnostic Runtime Verification

    Full text link
    With numerous specialised technologies available to industry, it has become increasingly frequent for computer systems to be composed of heterogeneous components built over, and using, different technologies and languages. While this enables developers to use the appropriate technologies for specific contexts, it becomes more challenging to ensure the correctness of the overall system. In this paper we propose a framework to enable extensible technology agnostic runtime verification and we present an extension of polyLarva, a runtime-verification tool able to handle the monitoring of heterogeneous-component systems. The approach is then applied to a case study of a component-based artefact using different technologies, namely C and Java.Comment: In Proceedings FESCA 2013, arXiv:1302.478

    Towards a General Framework for Formal Reasoning about Java Bytecode Transformation

    Full text link
    Program transformation has gained a wide interest since it is used for several purposes: altering semantics of a program, adding features to a program or performing optimizations. In this paper we focus on program transformations at the bytecode level. Because these transformations may introduce errors, our goal is to provide a formal way to verify the update and establish its correctness. The formal framework presented includes a definition of a formal semantics of updates which is the base of a static verification and a scheme based on Hoare triples and weakest precondition calculus to reason about behavioral aspects in bytecode transformationComment: In Proceedings SCSS 2012, arXiv:1307.802

    Procedure-modular specification and verification of temporal safety properties

    Get PDF
    This paper describes ProMoVer, a tool for fully automated procedure-modular verification of Java programs equipped with method-local and global assertions that specify safety properties of sequences of method invocations. Modularity at the procedure-level is a natural instantiation of the modular verification paradigm, where correctness of global properties is relativized on the local properties of the methods rather than on their implementations. Here, it is based on the construction of maximal models for a program model that abstracts away from program data. This approach allows global properties to be verified in the presence of code evolution, multiple method implementations (as arising from software product lines), or even unknown method implementations (as in mobile code for open platforms). ProMoVer automates a typical verification scenario for a previously developed tool set for compositional verification of control flow safety properties, and provides appropriate pre- and post-processing. Both linear-time temporal logic and finite automata are supported as formalisms for expressing local and global safety properties, allowing the user to choose a suitable format for the property at hand. Modularity is exploited by a mechanism for proof reuse that detects and minimizes the verification tasks resulting from changes in the code and the specifications. The verification task is relatively light-weight due to support for abstraction from private methods and automatic extraction of candidate specifications from method implementations. We evaluate the tool on a number of applications from the domains of Java Card and web-based application

    Formal Verification of Security Protocol Implementations: A Survey

    Get PDF
    Automated formal verification of security protocols has been mostly focused on analyzing high-level abstract models which, however, are significantly different from real protocol implementations written in programming languages. Recently, some researchers have started investigating techniques that bring automated formal proofs closer to real implementations. This paper surveys these attempts, focusing on approaches that target the application code that implements protocol logic, rather than the libraries that implement cryptography. According to these approaches, libraries are assumed to correctly implement some models. The aim is to derive formal proofs that, under this assumption, give assurance about the application code that implements the protocol logic. The two main approaches of model extraction and code generation are presented, along with the main techniques adopted for each approac

    Using Graph Transformations and Graph Abstractions for Software Verification

    Get PDF
    In this paper we describe our intended approach for the verification of software written in imperative programming languages. We base our approach on model checking of graph transition systems, where each state is a graph and the transitions are specified by graph transformation rules. We believe that graph transformation is a very suitable technique to model the execution semantics of languages with dynamic memory allocation. Furthermore, such representation allows us to investigate the use of graph abstractions, which can mitigate the combinatorial explosion inherent to model checking. In addition to presenting our planned approach, we reason about its feasibility, and, by providing a brief comparison to other existing methods, we highlight the benefits and drawbacks that are expected

    Formally based semi-automatic implementation of an open security protocol

    Get PDF
    International audienceThis paper presents an experiment in which an implementation of the client side of the SSH Transport Layer Protocol (SSH-TLP) was semi-automatically derived according to a model-driven development paradigm that leverages formal methods in order to obtain high correctness assurance. The approach used in the experiment starts with the formalization of the protocol at an abstract level. This model is then formally proved to fulfill the desired secrecy and authentication properties by using the ProVerif prover. Finally, a sound Java implementation is semi-automatically derived from the verified model using an enhanced version of the Spi2Java framework. The resulting implementation correctly interoperates with third party servers, and its execution time is comparable with that of other manually developed Java SSH-TLP client implementations. This case study demonstrates that the adopted model-driven approach is viable even for a real security protocol, despite the complexity of the models needed in order to achieve an interoperable implementation
    corecore