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Abstract

Specification methods in formal program verification enable the enhancement of source
code with formal annotations as to formally specify the behaviour of a program. This is
a popular way in order to subsequently prove software to be reliable and meet certain
requirements, which is crucial for many applications and gains even more importance in
modern society. The annotations can be taken as a contract, which then can be verified
guaranteeing the specified program element – as a receiver – to fulfil this contract with
its caller. However, these functional contracts can be problematic for partial functions,
e.g. a division, as certain cases may be undefined, as in this example a division by zero.
Modern programming languages such as Java handle undefined behaviour by casting an
exception.

There are several approaches to handle a potential undefinedness of specifications. In
this thesis, we chose one which automatically generates formal proof obligations ensuring
that undefined specification expressions will not be evaluated.

Within this work, we elaborate on so-called Well-Definedness Checks dealing with un-
definedness occurring in specifications of the modelling language JML/JML? in the
KeY System, which is a formal software development tool providing mechanisms to
deductively prove the before mentioned contracts. Advantages and delimitations are
discussed and, furthermore, precise definitions as well as a fully functional implementation
within KeY are given. Our work covers the major part of the specification elements
currently supported by KeY, on the higher level including class invariants, model fields,
method contracts, loop statements and block contracts. The process of checking the
well-definedness of a specification forms a preliminary step before the actual proof and
rejects undefined specifications. We further contribute by giving a choice between two
different semantics, both bearing different advantages and disadvantages. The thesis also
includes an extensive case study analysing many examples and measuring the performance
of the implemented Well-Definedness Checks.





Deutsche Zusammenfassung

Spezifikationstechniken der formalen Programmverifikation erlauben es, Quelltext mit
formalen Annotationen zu versehen und damit Programmverhalten formal zu spezifi-
zieren. Dies ist eine weit verbreitete Herangehensweise, um Software anschließend auf
Verlässlichkeit und die Erfüllung bestimmter Forderungen zu überprüfen und Programm-
eigenschaften insbesondere formal zu beweisen. Solche Überprüfungen und Beweise sind
für viele Anwendungen äußerst wichtig und nehmen in der modernen Gesellschaft einen
wachsenden Stellenwert ein. Formale Annotationen können als ein funktionaler Vertrag
oder Kontrakt verstanden werden, die verifiziert werden können und somit zusichern,
dass das spezifizierte Programmelement diesen gegenüber seinem Nutzer beziehungsweise
Aufrufer erfüllt. Diese funktionalen Kontrakte können in sich aber bereits problematisch
sein, wenn sie partielle Funktionen, wie beispielsweise eine Division, spezifizieren. Solche
Funktionen besitzen die Eigenschaft, dass bestimmte Fälle, wie eine Division durch Null,
undefiniert sind. Moderne Programmiersprachen wie Java veranlassen beim Auftreten
von undefiniertem Verhalten eine Ausnahmebehandlung, sie werfen eine Exception.

Es gibt verschiedene Ansätze, mit der potentiellen Undefiniertheit von Spezifikationen
umzugehen. In dieser Studienarbeit wird ein Ansatz gewählt, der automatisch formale Be-
weisverpflichtungen erzeugt, die sicherstellen, dass in Spezifikationen keine undefinierten
Ausdrücke zur Auswertung kommen.

Innerhalb dieser Arbeit werden sogenannte Wohldefiniertheitstests oder Well-Definedness
Checks erarbeitet, die mit dem Auftreten von undefinierten Ausdrücken in Spezifikationen
der Modellierungssprache JML/JML? im KeY System umgehen. KeY ist ein formales
Werkzeug der Softwareentwicklung, das Mechanismen zum deduktiven Beweisen der
erwähnten Kontrakte bereitstellt. Vor- und Nachteile werden erörtert und des Weite-
ren präzise Definitionen sowie eine voll funktionale Realisierung innerhalb von KeY
gegeben. Diese Studienarbeit deckt den Hauptteil der aktuell von KeY unterstützen
Spezifikationselemente ab. Darin sind die übergeordneten Elemente Klasseninvarianten,
Modellfelder, Methodenkontrakte, Schleifenanweisungen und Blockverträge enthalten.
Das Verfahren, die Wohldefiniertheit einer Spezifikation zu prüfen, stellt einen dem
eigentlichen Beweis vorangehenden Schritt dar und sortiert undefinierte Spezifikationen
aus. Zusätzlich werden zwei verschiedene Semantiken – wobei im Programm eine der
beiden gewählt werden kann – beigesteuert, die beide verschiedene Vor- und Nachteile
aufweisen. Diese Arbeit enthält außerdem eine Evaluierung einer umfangreichen Menge
von Fallbeispielen, innerhalb derer viele Beispiele und die Effizienz und Laufzeit der
implementierten Well-Definedness Checks untersucht werden.
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1. Introduction
For computerised systems and with them software being an integral part of modern society,
reliability is and becomes more and more indispensable. In particular, applications in
medical engineering, transportation and security imply a strong need for reliable software.
One major approach to analyse this quality is software verification using formal methods.
However, when talking about reliability, it falls into place that a universal idea of
reliability seems neither feasible nor possible. Hence, we need to enhance software by a
definition of its reliability. To handle this in a formal way, formal specifications defined
by a formal specification language are needed. One major concept dealing especially
with object-oriented programming languages is design by contract, where operations are
specified on the basis of pre- and postconditions, and objects by means of invariants.
These specifications are contracts between caller and receiver and, if proven correctly,
certify a certain behaviour for the specified operation or object.
This thesis examines one modelling language for formal specifications and proposes a
way to deal with potentially undefined, ill-defined or meaningless specifications. Our
goal can be described as to not give room to undefinedness resulting in potentially
unintended or ambiguous specifications. We will perform this on JML?, a variant of
the Java Modeling Language (JML), by using the KeY System, a formal and deductive
software verification tool. The result will be precise formal proof obligations for the most
common specification elements and their practical implementation in KeY, incorporating
two significantly different theories on the meaning of well-definedness.

1.1. Well-Definedness
A rough description of undefinedness could be a “lack of information”. To give a simple
example, let us take the arithmetic operation division. It is not well-defined for its divisor
being equal to zero. Only with the information that this is not the case, we can guarantee
the result to be defined. In many programming languages, the occurrence of an undefined
expression results in an exception at run-time. Since specifications are not part of the
execution of a program, they do not play any role at run-time and thus cannot produce
any exception at run-time. However, the possibility of throwing an exception at run-time
if being executed can very well play a role for its verification and thus a need for an
equivalent on specification level comes into being.
Let us further discuss the before mentioned example of the division. Furthermore, a
well-known law in classical two-valued logic is the law of excluded middle or tertium
non datur. By making use of this law, most calculi would deduce a formula as e.g.
“x/0 = 1 ∨ ¬(x/0 = 1)” to be valid. However, most compilers for modern programming
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languages would cast an exception and thus not take it to be valid. At least for the
matter of deductive formal program verification, this becomes an issue as both logicians
as well as programmers are involved. Besides, the matter is not as trivial as it might
seem in this simple example, because it concerns all partial functions and predicates.
As mentioned in [BCJ84], especially recursive definitions often result in partial functions
and its iteration gives rise to programs which may fail to terminate for some inputs. The
work also states that proofs about such functions or programs should be conducted in
logical systems which reflect the possibility of “undefined values”. Moreover, [Sch11]
even gives examples that for alternative solutions such as under-specification (with the
advantage to not need to define evaluation of terms and formulas in partial structures), a
lot of non-intuitive or even strange properties can be derived. This rules out the option
of ignoring this discrepancy and leaves us with the question of whether to change one of
those semantics in favour of the other or to find a different means of uniting them both.

1.2. Related Work
In [AM02], six different approaches dealing with undefinedness in program verification
are presented and evaluated on the example of the arithmetic formula “2 + 3

0 = 2” and
its negation “2 + 3

0 6= 2”. We will briefly review the different possibilities in the following.
1. Three-Valued Logic: In this approach, we use the value undefined to express

undefinedness. Solutions using this approach are sometimes referred to as weak
logic theory [Hol91]. The general idea is to extend the usual set of truth-values
{true, false} by the value “⊥” denoting undefined and also the domain likewise.
In some sense, this is the “proper way to do it” as it tackles the appearance of
undefined in any place of the proof. The main disadvantages are a loss of applicable
axioms (e.g. the law of excluded middle) and the open question of how to propagate
the undefined value through functions (e.g. what is the value of “false ∧ ⊥”?)
[Häh05]. Practically speaking, the advantages of this approach do not outweigh the
fact that proofs become much harder herein. In practice it might also be useful to
find out the source of the undefinedness (similar to exception types in programs),
so it might be necessary to define more than one value to denote undefined, which
then results in an unjustified complex semantics.

2. Forced Value: In this approach, we always assign a valid value. Here one would,
for example, systematically give the value zero to a term of the form a

0 , which is
probably a very unexpected result. Consequently some kind of “zero-value” would
be necessary for every result type. We gain from this approach that every value is
fixed and we stay in two-valued semantics. The argument against this approach is
that “many mathematicians feel uneasy with the identity x

0 = 0.” [Sup57].

3. Under-Specification: In this approach, we always claim a term to have a value
(in classical logic). However, this value might be unknown, i.e. not fixed and
without assumptions about it. This approach does not allow any assumptions or
constraints about the term a

0 , but saves equality, i.e.
a
0 = a

0 holds.
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4. Conditional Definitions: In this approach, we banish any definition of new
term symbols and only allow new predicate symbols. Hence, division would be
defined by a predicate symbol Div(a, b, c) meaning a = b

c
with the definition

“Div(a, b, c)⇔ ¬Zero(c) ∧Mult(b, a, c)”. This has the downside of a rather heavy
system of definitions and still leaves undefined terms indiscernible.

5. Evaluation to False: In this approach, undefined predicates always evaluate to
false. This approach is argued to be the one “commonly used by mathematicians”
[AM02]. It leaves us with the problem of not being able to distinguish undefined
predicates of defined, but still invalid predicates. Therefore, the approach highly
differs from classical logic.

6. Rejection: In this approach, we reject to prove ill-defined expressions [BBM98]
[DMR08]. This approach is based on the idea that a formal language containing
potentially ill-defined expressions can be given a semantic interpretation within
a three-valued logical domain. In this way, the approach is very similar to the
first one using a three-valued logic, but the practical treatment of undefinedness
is different. Here, undefinedness does not interfere with two-valued logic as it
proposes a Well-Definedness Check, which acts as a filter before the actual proof.
If this check is successful for some formula, i.e. proves it to be well-defined, it is
guaranteed that the result of the proof can never be undefined if evaluated in a
three-valued logic, leaving us with a pseudo-two-valued logic.

To give an understanding of these approaches, table 1.1 illustrates the evaluation of our
example:

Formula 2 + 3
0 = 2 2 + 3

0 6= 2
Appr. 1 undefined undefined
Appr. 2 true false
Appr. 3 unprovable unprovable
Appr. 4 true true
Appr. 5 false false
Appr. 6 rejected rejected

Table 1.1.: Exemplary illustration for the various approaches to treat undefinedness

All these approaches treat the issue on a purely logical or mathematical level. In [Sch11],
a definition supporting the approaches 1, 3 and 6 is presented:

Definition 1 A formula φ is well-defined with respect to a theory Th if the truth value
of φ in any model of Th does not depend on the values of functions f outside their fixed
value formula fixf .
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However, since we talk about specification languages aimed and designed to describe
and specify program elements, it can be justified to treat the issue on a somehow more
“programming” kind of level acting similar to a run-time assertion checker (RAC). This
point of view is pursued in [Cha05], arguing that it is mostly programmers who write
specifications and thus are accustomed to the semantics of programming languages similar
to Java, where short-circuit evaluation is a common practise.
Another opinion, especially since we are talking about the specification language JML, is
given in [Lea+11]. Initially, JML semantics for undefinedness was based on approach 3
[Ulb09], but in 2007, semantics was changed to be based on “strong validity”, which is
defined as follows:

Definition 2 An assertion is taken to be valid if and only if its interpretation does not
cause an exception to be raised, and yields the value true.

This would actually support approach 5, with the rather heavy downside of not being
able to distinguish undefined predicates of defined, but still invalid predicates. Thus,
considering the views from [Cha05] with respect to the very reasonable definition 1,
this leaves us with approaches 1 and 6. To cope with definition 2, we simply evaluate
undefined results to false, but still know the reason for this evaluation.
In the following, we decided for an approach in the spirit of approach 6 by using a
Well-Definedness Operator (section 2.5). For this operator, we basically present two
different options or semantics, one treating well-definedness on a purely mathematical
level and another one taking the programming level into account.

1.3. Outline
The rest of this work is structured as follows.

• Chapter 2 presents the fundamental terms, concepts and notions used in this thesis.
This includes the specification language JML, the extensions and adjustments
defined by JML?, a procedure to desugar JML specification elements using the
example of method contracts, the KeY System, the Well-Definedness Operator and
different semantics for it, the black box semantics assumed in this work and the
underlying state semantics.

• Chapter 3 formally defines the operator introduced in this thesis, with all its
detailed rules for predicates, expressions and whole specification elements as class
invariants, model fields and method contracts as well as specification statements
such as loop statements and block contracts.

• Chapter 4 describes the implementation of Well-Definedness Checks in the KeY Sys-
tem, justifies our design decisions, discusses the rule implementation and illustrates
the practical process on two short examples, thereby discovering new undefinedness
problems.
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• Chapter 5 demonstrates the usage of our implementation on a set of examples,
discusses specifications found to be ill-defined by classifying them according to
Java exception types and finally depicts performance observations for the presented
Well-Definedness Check.

• Chapter 6 finally concludes by discussing the results of this work and giving an
outlook on further ideas and future work related to the topic.





2. Fundamentals
In the following, we will give some fundamental concepts, upon which this work is based.
More specifically, section 2.1 will introduce the reader with JML, the essential modelling
language which defines the specification elements, for which we developed our Well-
Definedness Checks. To be more precise, we actually used JML?, described in section 2.2.
Furthermore, section 2.3 elaborates the process for desugaring these specification elements
as to have exact blueprints to talk about. Section 2.4 familiarises the reader with the
KeY System, which is the development tool for our practical work. In section 2.5, the
fundamental operator for well-definedness with two different semantics is given. An
assumption for our semantic considerations is given in section 2.6. Finally, section 2.7
sets the stage for a common understanding of our abstract concept of programs, namely
state semantics.

2.1. The Java Modeling Language (JML)
JML is a notation for formally specifying the behaviour and interfaces of Java classes and
methods [Lea+11], which makes it a formal behavioural interface specification language
(BISL). It contains the essential notations used in DBC (design by contract) as a subset
[LC06]. The principal idea behind DBC is that a class and its clients have a contract with
each other. The client must guarantee certain conditions before calling a method defined
by the class, and in return the class guarantees certain properties that will hold after the
call. JML is targeted to provide a comprehensive specification of both interfaces (names
and static information in Java declarations, i. e. syntax) and behaviour (how the module
acts when used, i. e. semantics) for every aspect of Java and simultaneously retain an
easy-to-read format [LBR06]. As such, it pursuits three major goals [LC06]:

1. “JML must be able to document the interfaces and behaviour of existing software,
regardless of the analysis and design methods to create it.”

2. “The notation used in JML should be readily understandable by Java programmers,
including those with only standard mathematical training.”

3. “The language must be capable of being given a rigorous formal semantics, and
must also be amenable to tool support.”

It is primarily intended to specify existing code, rather than to implement programs
according to a preexisting specification. These specifications are written directly into
the source files of Java modules, having the basic syntax of expressions — with some
extensions — as in Java. As they are always given inside comments, JML constitutes
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a proper extension to the Java language, not interfering with the program execution.
JML is being developed and maintained by a community led by Gary T. Leavens at the
University of Central Florida (UCF).
It primarily serves the purpose of documenting artefacts of the Java language. Ap-
plications of JML include static type checking, run-time assertion checking as well as
deductive formal verification methods. Regarding its structure, JML includes a common
expression language as almost1 a superset of Java expressions and — being a higher level
— several specification elements in order to describe the program behaviour in different
ways. These specification elements include assertion statements within the program
code, method specifications (based on the DBC paradigm) and type specifications such
as invariants, which must be preserved throughout the run of a program. Moreover,
variables and fields may be used in specifications (model fields, ghost variables/fields).

2.2. JML?

JML? is a variant of JML making use of dynamic frames [Kas06]. The idea consists in
decoupling location sets (data groups) from model fields, and to make them first-class
elements of the language. Consequently, in JML? data groups and data group inclusions
are omitted. It also introduces a new primitive type (as int or boolean), namely \locset,
standing for sets of memory locations and replacing JML’s “store ref expressions” by a
proper type. This approach and further features of JML? are covered in-depth in [Wei11].

2.3. Desugared Specifications
JML (or JML? in our case) features a great deal of syntactic sugar that is designed to
enrich specifications to be more comprehensible and usable [RL05]. Since dealing with this
syntactic sugar would be redundant and there is an algorithm for desugaring JML/JML?-
specifications, this subsection will describe the format of desugared specifications in order
to not lose focus and concentrate on the core syntax of specifications (without losing any
expressiveness) in the following.
The desugaring process for method specifications as in [RL05] is an algorithm of 11 steps,
where V ∈ {public, private, protected} (allowed to be empty) denotes a visibility
level. We mostly stick to this algorithm by performing the following steps:

1. Desugar the use of the non_null modifier for argument types of reference or array
type by explicitly prepending according preconditions, e.g. x != null for x being
an argument of reference type, to the precondition of every individual corresponding
specification case.

2. Desugar the use of the non_null modifier for result types of reference or array type
by prepending explicit postconditions to the original postcondition, in a similar
fashion as the previous step was performed.

1This is except for expressions with side-effects such as e.g. i++ for i being of type int.
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3. Desugar the use of pure by adding diverges false (for every specification case)
and assignable this.* (for constructors) or assignable \nothing (for all other
specification cases).

4. Desugar specifications that are empty (i.e. have no specification cases) to the
default specification (i.e. it makes minimal assumptions). If another method is
overridden, then we add “requires false;” as to not change the meaning of the
inherited specification. In all other cases, this usually results in simply adding
“requires true;”.

5. Desugar the use of nested specification cases in specifications from the inside out
to eliminate nesting.

6. Desugar different behavioural cases to V behaviour, where V is the visibility level
of the method or constructor being specified, mostly by filling the defaults for
omitted clauses. This leaves only spec-cases that begin with V behaviour, for
some visibility level V .

7. Combine each extending-specification (in a subclass or refinement) with the inherited
or refined method specifications, mostly by copying inherited assertions from
supertypes to subtypes, also including various kinds of renaming.

8. Desugar each signals-clause so that it refers to an exception of type Exception
with a standard name by using a standard, but fresh, name for all exceptions (to
allow combining all signals-clauses in the next step). In order to keep the originally
declared exception’s type, an instanceof-check is added.

9. Desugar the use of multiple clauses of the same kind, such as e.g. multiple
requires-clauses. For assignable-clauses this consists in simply joining the lists, for
signals-only-clauses the combination is the intersection (the exception type has to
be a subtype of an exception type in each signals-only-clause) and for the other
clauses (requires-clauses, ensures-clauses, diverges-clauses and signals-clauses) the
process mostly simply conjoins the predicates in each clause. All these con- and
disjunctions are done using the according short-circuit operator to allow clauses to
be guarded by one another (depending on the operator used, cf. section 2.5).

10. Desugar each signals-only-clause by conjuncting the equivalent disjunction “∨E∈S

(e instanceof E)” (S denoting the set of all exception types E declared in
the signals-only-clause and e denoting the exception variable) to the according
signals-clause.

Whereas only method specifications are covered in this subsection, any specification
element will be assumed to be fully desugared (in an a similar fashion as described by
the steps above) throughout the text. In the following, a method specification will be
assumed to boil down to the following specification elements:
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/*@ V behaviour
@ requires pre ;
@ measured_by measured ;
@ diverges div ;
@ accessible access ;
@ assignable assign ;
@ ensures post ;
@ signals (Exception exc ) xpost ;
@*/

We call this a method contract, whereof several can be specified for one method (combined
by the keyword also). The elements pre , div , post and xpost denote formulas,
assign and access location sets, measured an integer, exc an exception variable and
V a visibility. As they are not supported by KeY, the clauses forall (defining universal
quantifications over the specification case), old (defining expressions to be evaluated
in the pre-state), when (specifying concurrency aspects), callable (specifying which
methods may be called), captures (specifying when an object, passed as an actual
parameter, may be captured), working_space (specifying the maximum amount of heap
space used) and duration (specifying the maximum processing time needed) are not
covered in this work.

2.4. The KeY System
The KeY System1 is a formal software development tool, which provides mechanisms
for deductive proofs of the correctness of Java programs with respect to their JML?

specification by using a theorem prover for the first-order Dynamic Logic for Java [BKS07].
In order to do this, a Java program including its specification gets translated into proof
obligations. These are formulas whose validity corresponds to the correctness of the
program with respect to its specifications. The underlying logic is JavaDL?, a dynamic
logic for Java, which extends first order logic by modal operators holding executable
Java program fragments. The subsequent verification is deductive and often automatic,
where one can intervene to help interactively and occasionally must do so. A successful
verification results in proving universal validity of the proof obligations. One concept
significantly distinguishing JavaDL? from other dynamic logics is the concept of (state)
updates. These are explicit syntactic representations of state changes, independent of
the programming language. They allow a calculus to symbolically execute formulas
in a way, which is equivalent to the actual program execution with symbolic values.
Ultimately, symbolic execution removes all programs from the proof obligations, such
that the verification process gets reduced to the problem of proving (universal) validity
of formulas in first order logic. This task can be performed either directly by KeY or by
another theorem prover. KeY is a joint project of Karlsruhe Institute of Technology and
Chalmers University of Technology, Gothenburg and TU Darmstadt.

1http://www.key-project.org/

http://www.key-project.org/
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2.5. Well-Definedness Operator
As already indicated, there is a strong motivation to not only interpret JML boolean
expressions in a standard two-valued logic, but to also consider a semantics, which is
more programming-oriented and thus leaves room for exceptions similar to those in Java
programs. Following the rejection approach (approach 6), we additionally introduce
the Well-Definedness Operators WD (taking a formula as argument) and wd (taking
a term as argument) as a semantic assertion for the specification’s well-definedness (cf.
[RDM08], [Bru09] and [Ulb09]). Their primary function is to tell whether Java would
throw an exception on evaluation of the given specification expression and can be seen
as a kind of second, orthogonal filter function. On the top-level, a boolean expression
is taken to be valid if and only if1 it evaluates to true and is well-defined. For most
expressions, except the short-circuit versions of boolean operators, wd (WD) is true iff
wd (WD) holds for every sub-expression.
It is important to note that these operators do not tell whether an expression is
syntactically well-formed and subsequently syntactical correctness will be always assumed
in this work. In particular, WD and wd do not report Java expressions, which result
in an error at compile time, but exceptions which would occur at run-time. Although
in general, Java expressions can have side-effects and thus WD and wd would need to
depend on the state of evaluation, this can be neglected for most JML specifications, since
it has either no effect on the specification’s well-definedness, or it is not permitted in JML
specifications, e.g. expressions as “i++” are not allowed in JML specifications. Exceptions
are \old expressions and postconditions. For both, it is sufficient to distinguish two
different states, the pre- and the post-state. In KeY this is done by distinguishing two
different heaps and by performing updates (section 2.7.2) on these two. In the following,
we will only distinguish between the two Well-Definedness Operators WD and wd from
section 3.1.1 to section 3.1.9 and subsequently only denote wd for the appropriate choice
for reasons of simplicity.
The semantics of these two operators should be seen more as a syntactical procedure
than as a function in the sense that the argument is always interpreted as a whole and
rules cannot be applied to sub-arguments. As such, it is similar to predicate transformer
semantics as for example the well-known weakest precondition defined in [Dij75]. In the
case of the KeY semantics, this means that the argument is seen as a purely syntactical
construct, which is left uninterpreted until application of any of the well-definedness rules
defined in the following chapter. This includes e.g. the rule of commutativity, and also
other operations as e.g. updates (section 2.7.2) and instantiations are blocked until the
argument is fully transformed by WD and wd, meaning that WD and wd do not occur
anywhere in the scope of this operation (e.g. the update) anymore. In the further course
of this work, we will denote this concept of syntactical transformation by the name term
transformer.
In the following, we present three different implementations ofWD, as the difference only
exists for boolean expressions. The reason for this limitation is simply the fact that in

1From now on, this will be abbreviated as iff.
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Java, short-circuit operators only exist for boolean expressions. One might also think of
applying both of these two different semantics for determining the well-definedness of e.g.
a whole method contract, taking the precondition as the guarding and the postcondition
as the guarded expression. This is, however, not a useful approach as JML models a
method with a two-state semantics, where it is only executed – hence can only terminate
and thus reach its post-state – iff its precondition holds in its pre-state. Consequently,
an evaluation of the postcondition without evaluating the precondition contradicts the
underlying blocking two-state semantics and is therefore no subject to consider for a useful
Well-Definedness Check. Whereas the D-operator and the Y-operator are semantically
equivalent and only differ technically, the L-operator semantically differs from the former
two. In the following chapters, we will only distinguish the D-operator and the L-operator,
where the semantical difference matters. However, we will denote rules for all three
operators in the next chapter.

2.5.1. The D-Operator
This operator is complete and based on classical logic, where the order of terms and
formulas is irrelevant. By complete, we imagine our semantics to be a three-valued one
(i.e. formulas can result in either true, false or undefined (⊥)) and mean to not be left
with any expression possibly resulting in the value undefined. As stated in the description
for the approach of rejection (approach 6), this leaves us with a pseudo-two-valued logic,
where the value undefined does not play any critical role. The D-operator is based on
strong Kleene logic. Direct implementations are rather inefficient, since formulas may
blow up exponentially [BBM98]. In addition to the original definition, we give definitions
for the ternary and \ifEx operators (section 3.1.9.2).

2.5.2. The L-Operator
This operator is more intuitive for software developers and based on run-time assertion
semantics. Well-Definedness Checks are stricter (i.e. all expressions which are well-
defined under the L-operator are automatically well-defined under the D-operator, but
not necessarily vice versa) using this operator, since the order of terms and formulas
matters (using short-circuit evaluation). It is based on McCarthy logic and consequently
stricter than the D-operator. This also results in very efficient Well-Definedness Checks
(linear with respect to the input formula) and according to our test results in section 5.2,
it is the most efficient one of the three operators presented. There are surveys [Cha05]
giving justification for choosing this comparatively strict semantics. One main reason
presented there is the coping of user or practitioner needs, who accordingly do not want
to adapt to different semantics, but rather support the use of one semantics for both
programming language and program assertions. Since in Java the casting of exceptions is
highly order-dependent (e.g. “i != 0 && j/i >= 0” differs from “j/i >= 0 && i !=
0” exception-wise), this justifies JML to behave similarly.
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2.5.3. The Y-Operator
This operator is complete and based on classical logic, where the order of terms and
formulas is irrelevant. It is semantically equivalent to the D-operator, but more efficient
as the conditions grow only linearly with respect to the input formula, since it postpones
the distinction of cases to the end of the evaluation [DMR08]. The process of postponing
is done using the two operators T and F , meaning the argument to be well-defined
and evaluate to true or false respectively. Thus, the Well-Definedness Check consists in
evaluating the disjunction of these two operators.

2.6. Black Box Semantics
Throughout this whole work, we consider JML specifications and JML statements
independently of their enclosed, but very well dependent of the JML specification and
Java code, in which they are embedded (i.e. their context). For example, we assume
a method specification to know about the class invariant of the class in which it is
embedded, but not about any code or specifications inside the method it specifies (it
does know about the method’s signature though). Similarly, a JML loop statement is
assumed to know about the precondition of the method in which it is embedded and also
the method’s Java code being executed prior to the loop. However, it does not know
about anything happening inside the actual loop (it can talk about the loop’s guard
though).
A justification for this semantics or assumption is, that the well-definedness of any
JML specification should not depend on the code being specified, but be seen solely on
specification level.

2.7. State Semantics
As in JML specifications, especially in method contracts, we distinguish between two
different states, namely the pre- and the post-state, this also has to be considered when
deciding about their well-definedness. This being said, our black box assumption prevents
us from knowing the exact method code or what happens between those two states.
Nevertheless, expressions in a JML method contract can very well be well-defined in
the precondition but not in the postcondition and vice versa, especially when talking
about references. This is due to changes made by the code, e.g. when a global reference
is set to null, it can subsequently lead to a NullPointerException. Only looking at
the JML specification, the sole information about state changes we have lies in the
assignable-clause, which specifies the locations potentially to be changed in the method.
In KeY, the modelling of locations visible in method specifications is done by the usage
of an explicit heap and performing changes, e.g. incrementing the value of an integer
variable, on it through updates.
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2.7.1. The Heap
The heap can be seen as representation of a global system state when no execution is
in progress. Practically, it is a mapping of all locations persistent throughout program
execution to their domains [Ulb08]. For our matter, the assignable-clause specifies a
subset of those locations. KeY lets us use updates to express those changes on the heap.
The only problem left is that we do not know about the exact nature of those changes
and only know, which locations can be changed, but not how. We would like to have a
mechanism to describe the set HL(s) of “havoc”ed states having these possibly changed
locations (here denoted by the set L) set to arbitrary values, but coinciding on the rest
of the original heap with the state s [Ulb09]. For this matter, KeY gives us the feature of
heap anonymisation using an anonymous heap.

2.7.2. Updates
Updates enhance the JavaDL (Dynamic Logic for Java) calculus with the ability to handle
Java programs by doing a forward symbolic execution of the program. This is done by
stepwise turning all program assignments into updates to represent the state changes. For
e.g. u being an update and post a JavaDL formula, “{u}post” is also a JavaDL formula.
If, for example, we apply the update in the formula “{i := 3} i > 0”, we get “3 > 0”,
which results to true. In general, there are sequential and parallel updates, differing in
the order in which they are applied.

2.7.3. The Stack
But as there are more elements in JML, for example loop statements (section 3.3.1)
and block contracts (section 3.3.2) which can be found in the code and thus talk about
possibly changed (compared to the pre-state of the embedding method) variables and
references not persistent throughout program execution, we also need to consider the
stack.
The stack stores local variables and method parameters, local meaning local to the
current method frame. Changes to the stack can also be expressed via updates, but now
those changes are explicit and not arbitrary. The reason for this apparent deviation from
our black box assumption is that any code for a loop, block or similar is always seen and
considered in context, otherwise it would be written in its own method. Consequently it
would not make sense for the JML statement (e.g. a loop statement including a loop
invariant) to semantically differ from the annotated code (e.g. a loop). KeY also verifies
loop statements and block contracts as part of their embedding method and not as
separate or independent elements.



3. Formal Definitions
Generally formal specifications are well-defined iff all their partial operations are applied
within their domain. Then these specifications do not depend on ambiguous, i.e. ill- or
undefined, terms and always evaluate to either true or false, regardless of their ill- or
undefined subterms’ interpretations. E.g. a method call would hence be well-defined iff
its receiver is not equal to null and the called method’s precondition is satisfied. In
this chapter, we give well-definedness definitions for a major part of the expressions and
specification elements in JML?, strongly focussing on the ones supported by KeY.
However, these definitions will be given for their arguments being formulas or expressions
in JavaDL as KeY does some effort on pretranslating the given specification, e.g. by
adding certain assumptions as for example for non-static non-constructor methods that
“this” is an exact instance of the method’s class. Both the argument and the result of the
Well-Definedness Operator are expressions of JavaDL?. Nonetheless, we will mostly stick
to the better-known JML/Java syntax whenever possible, also to state that a syntactical
expression is taken and a semantical one returned.

3.1. Predicates and Specification Expressions
In this section, we give definitions for the well-definedness of predicates and specification
expressions, forming the lower-level elements in JML/JML?. Many of them are equal or
similar to a Java expression or predicate, as JML/JML?’s expression language is almost a
superset of Java expressions. They also include location sets, which are used to describe
locations instead of values.

3.1.1. Primary Terms and Formulas
As wd and WD operate purely syntactically, expressions with no sub-arguments are
trivially well-defined. In the following, let f be a constant predicate symbol and t a
constant function symbol.

WD(f) , true
wd(t) , true

3.1.2. General Expressions and Predicates
For the well-definedness of typecasts, the instanceof-condition is added in order to detect
a possible throw of a ClassCastException. The exactInstance expression, denoting a
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term to be exactly of a specific type (as opposed to the usual instanceof-expression,
this does not hold for subtypes), is not part of JML but JavaDL, and added in the
pretranslation process done by KeY.
In the following, let s and t be terms of compatible types and T a type.

wd((T )t) , wd(t) ∧ (t instanceofT )
wd(exactInstanceT (t)) , wd(t)

wd(t instanceofT ) , wd(t)
WD(s == t) , wd(s) ∧ wd(t)
WD(s != t) , wd(s) ∧ wd(t)

3.1.3. Numerical Expressions
Most of the numerical expressions in JML? are standard JML. However, in JML?

the quantifiers \sum and \prod are replaced by \bsum and \bprod, which are their
bounded equivalents. An expression “(\bsum T i; a; b; c)” is thus the equivalent to
“(\sum T i; a <= i && i < b; c)” and likewise for \prod and \bprod. The quantifier \bsum
can also be used to specify the numerical quantifier \num_of, similar to the description
in [Lea+11]. For the well-definedness of numerical expressions, the main concern is to
handle the possible cast of an ArithmeticException, e.g. in case of a division by zero.
In expressions using the quantifiers \bsum or \bprod, the well-definedness of the last
argument only propagates in case it actually is evaluated. If there is no case of actual
evaluation of this argument, its well-definedness does not propagate at all as it does
not influence the end result. However, we do not handle the possible occurrence of
any numerical overflow as this is considered to be a valid operation in the semantics of
programming languages as e.g. Java or C++.
In the following, let T be a type, i an identifier, a, b and c expressions of exact numerical
types, ◦ ∈ {+, -, *, >>, <<, >>>, |, &, ˆ} and � ∈ {<, <=, >, >=}. Also i does not appear
freely in a or b.

wd(-a) , wd(a)
wd(˜a) , wd(a)

wd(a ◦ b) , wd(a) ∧ wd(b)
wd(a / b) , wd(a) ∧ wd(b) ∧ (b 6= 0)
wd(a % b) , wd(a) ∧ wd(b) ∧ (b 6= 0)

wd(\bsum T i; a; b; c) , wd(a) ∧ wd(b)
∧ ∀ T i : (a ≤ i ∧ i < b)→ wd(c)

wd(\bprod T i; a; b; c) , wd(a) ∧ wd(b)
∧ ∀ T i : (a ≤ i ∧ i < b)→ wd(c)

WD(a � b) , wd(a) ∧ wd(b)
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3.1.4. Location Sets
As KeY uses dynamic frames, location sets (i.e. sets of memory locations) are elevated
to first-class citizens of JML? and specification expressions are enabled to talk about
them directly. This includes statements about not overlapping (\disjoint), that some
concrete location or location set is or is not part of a particular location set (elementOf,
\subset), to form an infinite union in the mathematical sense (\infinite_union) and
other standard set theoretical operators. The predicate createdInHeap can result from
the pretranslation process in KeY and states that some location set l is already created
in a specific heap h.
For the well-definedness of location sets, the exception types NullPointerException,
NegativeArraySizeException and IndexOutOfBoundsException, in particular the
ArrayIndexOutOfBoundsException, are handled. For fields, we need to distinguish
between static and non-static ones, as in the static case checking the referenced object for
an equality to null does not make sense. As in KeY static references are distinguished
from non-static ones by the usage of null instead of an actual object, the check has to
be done in this manner.
In the following, let T be a type, o an object, a an array object, b a non-array object, h
a heap, i an identifier, f a field, s a static field, t a non-static field, k and l location sets
and m and n expressions of exact numerical types.

wd(a[*]) , wd(a) ∧ (a 6= null)
wd(b.*) , wd(b)

wd(\all_objects(f)) , wd(f)
wd(b.t) , wd(b) ∧ wd(t) ∧ (b 6= null)
wd(b.s) , wd(b) ∧ wd(s)

wd(a[n]) , wd(a) ∧ wd(n) ∧ (a 6= null)
∧ 0 ≤ n ∧ n < a. length

wd(\set_union(k, l)) , wd(k) ∧ wd(l)
wd(\intersect(k, l)) , wd(k) ∧ wd(l)
wd(\set_minus(k, l)) , wd(k) ∧ wd(l)

wd(a[m. .n]) , wd(a) ∧ wd(m) ∧ wd(n) ∧ (a 6= null)
∧ 0 ≤ m ∧m ≤ n ∧ n < a. length

wd(\infinite_union T i; l) , ∀ T i : wd(l)
WD(elementOf (o.t, l)) , wd(o) ∧ wd(t) ∧ wd(l) ∧ (o 6= null)
WD(elementOf (o.s, l)) , wd(o) ∧ wd(s) ∧ wd(l)
WD(\subset(k, l)) , wd(k) ∧ wd(l)

WD(\disjoint(k, l)) , wd(k) ∧ wd(l)



18 3. Formal Definitions

WD(createdInHeap(l, h)) , wd(l) ∧ wd(h) ∧ wellFormed(h)
WD(\fresh(h, l)) , wd(l) ∧ wd(h) ∧ wellFormed(h)

3.1.5. Heap Expressions
As KeY uses an explicit heap model, the changes on it also need to be represented. As
such, we talk about object creations (create), a specific symbol denoting created objects
(o.created for some created object o), storing operations (store) similar to the storing
operation in array theory, heap anonymisation (anon) (section 2.7.1) and well-formedness
of heaps (wellFormed). The predicate wellFormed states for a heap h that all objects
stored in h are either the null object or are created in h, that all location sets stored in
h contain only locations belonging to objects that are created or to null and finally that
only finitely many objects may be created in h. This is again a predicate resulting from
the pretranslation process in KeY as these are properties assumed for any fresh heap
before a program starts. It is a property maintained by any terminating Java program.
The syntax h[e] denotes a read access of the element e on a heap h.
What is handled by these definitions is less an actual cast of an exception than it is to
make sure that we only make statements about actually created objects in the state of
the expression. This cannot occur in actual Java programs, but very well in JML/JML?

specifications, and as such, we will refer to it by the name ObjectNotCreatedException.
For example, the postcondition “\old(o) != null” should not be well-defined for an
object o which did not exist in the pre-state.
In the following, let o be an object, a an array object, b a non-array object, g and h
heaps, f a field, r a non-static field, s a static field, l a location set, n an expression of
exact numerical type and t a term.

wd(a. length) , wd(a) ∧ (a 6= null)
wd(create(h, o)) , wd(h) ∧ wd(o) ∧ wellFormed(h) ∧ (o 6= null)
wd(h[o.created]) , wd(h) ∧ wd(o) ∧ wellFormed(h) ∧ (o 6= null)

wd(h[b.r]) , wd(h) ∧ wd(b) ∧ wd(r)
∧ wellFormed(h) ∧ (b 6= null)
∧ ((r = created) ∨ h[b.created])

wd(h[b.s]) , wd(h) ∧ wd(b) ∧ wd(s)
∧ wellFormed(h)

wd(h[a[n]]) , wd(h) ∧ wd(a) ∧ wd(n) ∧ wellFormed(h)
∧ (a 6= null) ∧ h[a.created]
∧ 0 ≤ n ∧ n < a. length

wd(anon(h, l, g)) , wd(h) ∧ wd(l) ∧ wd(g) ∧ wellFormed(h)
∧ wellFormed(g)
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wd(store(h, o.f , t)) , wd(h) ∧ wd(o) ∧ wd(f) ∧ wd(t) ∧ wellFormed(h)
∧ (o 6= null) ∧ h[o.created]

WD(wellFormed(h)) , wd(h)
WD(\fresh(h, t)) , wd(l) ∧ wd(h) ∧ wellFormed(h)

3.1.6. Reach Predicates
The \reach-predicate in JML? slightly differs from its counterpart in JML [Lea+11]. In
the following, let h be a heap, l a location set, o and p objects and n an expression of
exact numerical type. In JML?, it is of type boolean and expresses that from object o,
object p can be reached through a location in l in exactly n steps. The \acc-predicate
expresses that p is a field in object o belonging to the location set l. Here, we basically
only propagate the well-definedness. Non-null checks for the objects o and p or any
conditions for potentially ambiguous values of n are not needed as in these cases, the
predicates evaluate unambiguously to false.

WD(\acc(h, l, o, p)) , wd(h) ∧ wd(l) ∧ wd(o) ∧ wd(p) ∧ wellFormed(h)
WD(\reach(h, l, o, p, n)) , wd(h) ∧ wd(l) ∧ wd(o) ∧ wd(p) ∧ wd(n) ∧ wellFormed(h)

3.1.7. Sequences
Another extension to original JML as defined in [Lea+11] is the sequence data type,
representing finite mathematical sequences. This data type is formulated in a natural
way by using basic mathematical concepts such as sets and relations, and subsequently
facilitates the specification process in KeY.
Its elementary constructor is \seq_singleton taking an object as argument. However,
a sequence can also be instantiated by using the quantified constructor \seq_def. The
function s.length denotes the length of a sequence s, \seq_reverse reverses the order
of a given sequence, \seq_n_perm_inv inverts a given permutation, s[n] returns the
element at a given position n in the sequence s, \seq_index_of returns the (first) index
for an element in the sequence, \seq_concat concatenates two sequences, \seq_remove
removes the element at a given position in the sequence, s[m..n] denotes the sub-
sequence of s in the given boundaries, \seq_swap swaps two elements. The predicate
\seq_perm tells whether one sequence is a permutation of another and \seq_n_perm
states a sequence to be a permutation.
Although sequences cannot be part of any Java expression, we imagine them to throw
exceptions similarly to arrays or linked lists. The following rules handle the virtual cast
of exceptions as NegativeArraySizeException and IndexOutOfBoundsException, in
particular the ArrayIndexOutOfBoundsException if the sequence represents an array.
Let below r and s be sequences, m and n expressions of exact numerical types, T a type,
i an identifier and t a term. Also i does not appear freely in m and n.
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wd(s. length) , wd(s)
wd(\seq_singleton(t)) , wd(t)

wd(\seq_reverse(s)) , wd(s)
wd(\seq_n_perm_inv(s)) , wd(s)

wd(s[n]) , wd(s) ∧ wd(n) ∧ 0 ≤ n ∧ n < s. length

wd(\seq_index_of(s, t)) , wd(s) ∧ wd(t)
wd(\seq_concat(r, s)) , wd(r) ∧ wd(s)
wd(\seq_remove(s, n)) , wd(s) ∧ wd(n) ∧ 0 ≤ n ∧ n < s. length

wd(s[m. .n]) , wd(s) ∧ wd(m) ∧ wd(n) ∧ 0 ≤ m

∧m ≤ n ∧ n ≤ s. length

wd(\seq_swap(s,m, n)) , wd(s) ∧ wd(m) ∧ wd(n) ∧ 0 ≤ m ∧ 0 ≤ n

∧m < s. length ∧ n < s. length

wd(\seq_def(T i; m; n; t)) , wd(m) ∧ wd(n) ∧m ≤ n

∧ ∀ T i : (m ≤ i ∧ i < n)→ wd(t)
WD(\seq_perm(r, s)) , wd(r) ∧ wd(s)
WD(\seq_n_perm(s)) , wd(s)

3.1.8. String Expressions
Although we named and titled them to be strings, in JML? they are actually represented
as lists of characters and characters can also be represented numerically. Most of the
following functions denote the intuitively named operations and do as such not need much
further explanation. The undefinedness problems handled by the following rules are casts
of exceptions as NegativeArraySizeException and IndexOutOfBoundsException.
In the following, let s and t be strings and m and n expressions of exact numerical types.

wd(s. length) , wd(s)
wd(\translate_int(n)) , wd(n)

wd(\remove_zeros(s)) , wd(s)
wd(\hash_code(s)) , wd(s)

wd(\cat(s, t)) , wd(s) ∧ wd(t)
wd(\cons(n, s)) , wd(n) ∧ wd(s) ∧ 0 ≤ n

wd(\char_at(n, s)) , wd(n) ∧ wd(s) ∧ 0 ≤ n ∧ n < s. length

wd(\concat(s, t)) , wd(s) ∧ wd(t)
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wd(\index_of_char(m,n, s)) , wd(m) ∧ wd(n) ∧ wd(s)
∧ 0 ≤ m ∧m ≤ n ∧ n < s. length

wd(\sub(m,n, s)) , wd(m) ∧ wd(n) ∧ wd(s)
∧ 0 ≤ m ∧m < n ∧ n < s. length

wd(\index_of_cl(s, n, t)) , wd(s) ∧ wd(n) ∧ wd(t)
∧ 0 ≤ n ∧ n+ s. length < t. length

wd(\last_index_of_char(m,n, s)) , wd(m) ∧ wd(n) ∧ wd(s)
∧ 0 ≤ m ∧m ≤ n ∧ n < s. length

wd(\last_index_of_cl(s, n, t)) , wd(s) ∧ wd(n) ∧ wd(t)
∧ 0 ≤ n ∧ n+ s. length < t. length

wd(\replace(m,n, s)) , wd(m) ∧ wd(n) ∧ wd(s) ∧ 0 ≤ m ∧ 0 ≤ n

∧m < s. length ∧ n < s. length

WD(\starts_with(s, t)) , wd(s) ∧ wd(t)
WD(\ends_with(s, t)) , wd(s) ∧ wd(t)
WD(\contains(s, t)) , wd(s) ∧ wd(t)

3.1.9. Boolean Expressions
In the following, we present well-definedness rules for the three different operators L, D
and Y . As already mentioned in section 2.5, the former two are semantically equivalent
but their implementations highly differ in performance. Regarding their notation, we will
use the operator symbol WD or wd – marked by an according subscript however – for all
three1 of them as they do not interact on each other, but each stands separately as an
alternative to the other two, possibly having a different result if they differ semantically.
Most of the covered boolean operators also exist in JML, except for the \ifEx operator,
which is specific to JML?. On the one hand, it is used to specify statements using the
quantifiers \max or \min and on the other hand, it allows us to make even more expansive
statements. As for the generalised quantifiers \min and \max, an expression of the form
“(\max T i; a; n)” translates to “\ifEx T i; (a ∧ ∀ T i′; a′ → n ≤ i′) \then(n)
\else(u)”, wherein T is a type, i an identifier, a an expression of type boolean, n an
expression of numerical type and u a constant numerical function denoting undefMin,
which stands for an undefined value similar to ⊥. The primed expressions denote their
unprimed counterparts, wherein i is substituted to i′. For the quantifier \max, the same
applies, except that “≤” becomes “≥”.
As for more expansive statements and the general semantics of the \ifEx operator,
let i be an identifier, T a type, ϕ a boolean function, and ν a function of compatible
type to the constant function u. Furthermore, i does not appear freely in u. Then an

1However, the Y-operator additionally uses two further operators T and F , which only act on an
interim basis though.
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expression of the form “\ifEx T i; ϕ(i) \then(ν(i)) \else(u)” can be axiomatised by
the following statement, where the binary relation “x � y” denotes the total well-order
relation “(y ≤ x ∧ y < 0) ∨ (0 ≤ x ∧ x ≤ y)”:(

(∃x : ϕ(x))→
(
∀x : ϕ(x) ∧ (∀y : ϕ(y)→ x � y)→[

(\ifEx T i; ϕ(i) \then(ν(i)) \else(u)) = ν(x)
]))

∧
(
(∀x : ¬ϕ(x))→

[
(\ifEx T i;ϕ(i) \then(ν(i)) \else(u)) = u

])
.

In the following rules, we mostly only propagate well-definedness, but depending on
which operator we choose, this propagation is done in a different way and hence may
interpret specifications to be undefined in the L-operator semantics, which would be
well-defined in the D- and Y-operator semantics. The exception is the \ifEx operator,
for which we additionally need to check that there is only one minimal x, for which the
guard holds.

3.1.9.1. L-Operator

This operator represents a semantics similar to the expression semantics of most modern
programming languages such as Java and is the strictest of them all as it also considers
the order of expressions where short-circuit operators are (implicitly or explicitly) used.
In the following, let a, b and c be expressions of type boolean and d and e terms of
compatible types.

WDL(!a) ,WDL(a)
WDL(a & b) ,WDL(a) ∧WDL(b)
WDL(a && b) ,WDL(a) ∧ (a→WDL(b))
WDL(a | b) ,WDL(a) ∧WDL(b)
WDL(a || b) ,WDL(a) ∧ (¬a→WDL(b))
WDL(a ==> b) ,WDL(a) ∧ (a→WDL(b))
WDL(a <== b) ,WDL(b) ∧ (b→WDL(a))
WDL(a <==> b) ,WDL(a) ∧WDL(b)
WDL(a <=!=> b) ,WDL(a) ∧WDL(b)

WDL(a ˆ b) ,WDL(a) ∧WDL(b)
wdL(a ? d : e) ,WDL(a) ∧ (a→ wdL(d)) ∧ (¬a→ wdL(e))
WDL(a ? b : c) ,WDL(a) ∧ (a→WDL(b)) ∧ (¬a→WDL(c))
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Let furthermore below T be a type and i an identifier, not appearing freely in c and e.

wdL(\ifEx T i;(a) \then(d) \else(e)) , (∀ T i : WDL(a))
∧ (∀ T i : (a→ wdL(d)))
∧ ((∀ T i : ¬a)→ wdL(e))

WDL(\ifEx T i;(a) \then(b) \else(c)) , (∀ T i : WDL(a))
∧ (∀ T i : (a→WDL(b)))
∧ ((∀ T i : ¬a)→WDL(c))

WDL(\forall T i; a; b) , ∀ T i : WDL(a ==> b)
WDL(\exists T i; a; b) , ∀ T i : WDL(a && b)

3.1.9.2. D-Operator

This operator represents a semantics based on Kleene logic in a more mathematical sense
than the L-operator and is hence less strict (i.e. the expressions which are well-defined
under the D-operator are a superset of the ones well-defined under the L-operator) as
the order of the expressions does not matter. Additionally to the original definitions
given in [BBM98], we formulated rules for the ternary and the \ifEx operator. In the
following, let a, b and c be expressions of type boolean and d and e terms of compatible
types.

WDD(!a) ,WDD(a)
WDD(a & b) , (WDD(a) ∧ ¬a) ∨ (WDD(b) ∧ ¬b) ∨ (WDD(a) ∧WDD(b))
WDD(a && b) , (WDD(a) ∧ ¬a) ∨ (WDD(b) ∧ ¬b) ∨ (WDD(a) ∧WDD(b))
WDD(a | b) , (WDD(a) ∧ a) ∨ (WDD(b) ∧ b) ∨ (WDD(a) ∧WDD(b))
WDD(a || b) , (WDD(a) ∧ a) ∨ (WDD(b) ∧ b) ∨ (WDD(a) ∧WDD(b))
WDD(a ==> b) , (WDD(a) ∧ ¬a) ∨ (WDD(b) ∧ b) ∨ (WDD(a) ∧WDD(b))
WDD(a <== b) , (WDD(b) ∧ ¬b) ∨ (WDD(a) ∧ a) ∨ (WDD(a) ∧WDD(b))
WDD(a <==> b) ,WDD(a) ∧WDD(b)
WDD(a <=!=> b) ,WDD(a) ∧WDD(b)

WDD(a ˆ b) ,WDD(a) ∧WDD(b)
wdD(a ? d : e) , (WDD(a) ∧ wdD(d) ∧ a) ∨ (WDD(a) ∧ wdD(e) ∧ ¬a)

∨ (wdD(d) ∧ wdD(e) ∧ (d = e))
WDD(a ? b : c) , (WDD(a) ∧WDD(b) ∧ a) ∨ (WDD(a) ∧WDD(c) ∧ ¬a)

∨ (WDD(b) ∧WDD(c) ∧ (b↔ c))

Let furthermore below T be a type, i an identifier, which does not appear freely in c
and e, i′ a fresh identifier, in which i does not appear freely, and a′ the counterpart to a,
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wherein i is substituted to i′.

wdD(\ifEx T i;(a) \then(d) \else(e)) ,
(
∃ T i : WDD(a) ∧ wdD(d) ∧ a
∧ ∀ T i′ :

(
(i′ ≺ i)→ (WDD(a′) ∧ ¬a′)

))
∨
(
∀ T i : (WDD(a) ∧ wdD(e) ∧ ¬a)

)
∨
(
∀ T i : (wdD(d) ∧ wdD(e) ∧ (d = e))

)
WDD(\ifEx T i;(a) \then(b) \else(c)) ,

(
∃ T i : WDD(a) ∧WDD(b) ∧ a
∧ ∀ T i′ :

(
(i′ ≺ i)→ (WDD(a′) ∧ ¬a′)

))
∨
(
∀ T i : (WDD(a) ∧WDD(c) ∧ ¬a)

)
∨
(
∀ T i : (WDD(b) ∧WDD(c) ∧ (b↔ c))

)
WDD(\forall T i; a; b) , (∃ T i : (WDD(a ==> b) ∧ a ∧ ¬b))

∨ (∀ T i : WDD(a ==> b))
WDD(\exists T i; a; b) , (∃ T i : (WDD(a && b) ∧ (¬a ∨ b)))

∨ (∀ T i : ;WDD(a && b))

3.1.9.3. Y-Operator

This operator represents the same semantics as the D-operator, based on Kleene logic,
but is defined in a much more efficient way (the size of the well-definedness conditions
grows linearly with respect to the input formula), because it postpones the distinction
of cases to the end of the evaluation. In addition to the original definitions given in
[DMR08], we formulated rules for the ternary and the \ifEx operator based on the
according rules formulated for the D-operator.
In the following, let f be a predicate symbol with further formulas as arguments, g a
predicate symbol with no further formulas as arguments (i.e. either no arguments or
only terms as arguments) and T and F term transformers taking a formula as argument,
operating similarly to WD.

WDY(f) , T (f) ∨ F(f)
T (g) ,WDY(g) ∧ g
F(g) ,WDY(g) ∧ ¬g
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Let below a, b and c be boolean expressions and d and e terms of compatible types.

T (!a) , F(a)
F(!a) , T (a)
T (a & b) , T (a) ∧ T (b)
F(a & b) , F(a) ∨ F(b)
T (a && b) , T (a) ∧ T (b)
F(a && b) , F(a) ∨ F(b)
T (a | b) , T (a) ∨ T (b)
F(a | b) , F(a) ∧ F(b)
T (a || b) , T (a) ∨ T (b)
F(a || b) , F(a) ∧ F(b)
T (a ==> b) , F(a) ∨ T (b)
F(a ==> b) , T (a) ∧ F(b)
T (a <== b) , F(b) ∨ T (a)
F(a <== b) , T (b) ∧ F(a)
T (a <==> b) , (T (a) ∧ T (b)) ∨ (F(a) ∧ F(b))
F(a <==> b) , (T (a) ∧ F(b)) ∨ (F(a) ∧ T (b))
T (a <=!=> b) , (T (a) ∧ F(b)) ∨ (F(a) ∧ T (b))
F(a <=!=> b) , (T (a) ∧ T (b)) ∨ (F(a) ∧ F(b))

T (a ˆ b) , (T (a) ∧ F(b)) ∨ (F(a) ∧ T (b))
F(a ˆ b) , (T (a) ∧ T (b)) ∨ (F(a) ∧ F(b))

wdY(a ? d : e) , (T (a) ∧ wdY(d)) ∨ (F(a) ∧ wdY(e))
∨ (wdY(d) ∧ wdY(e) ∧ (d = e))

T (a ? b : c) , (T (a) ∧ T (b)) ∨ (F(a) ∧ T (c))
∨ (T (b) ∧ T (c))

F(a ? b : c) , (T (a) ∧ F(b)) ∨ (F(a) ∧ F(c))
∨ (F(b) ∧ F(c))

In the following, let furthermore T be a type, i an identifier, which does not appear freely
in c and e, i′ a fresh identifier, in which i does not appear freely, and a′ the counterpart
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to a, wherein i is substituted to i′.

wdY(\ifEx T i;(a) \then(d) \else(e)) ,
(
∃ T i : T (a) ∧ wdY(d)
∧ ∀ T i′ : ((i′ ≺ i)→ F(a′))

)
∨
(
∀ T i : (F(a) ∧ wdY(e))

)
∨
(
∀ T i : (wdY(d) ∧ wdY(e) ∧ (d = e))

)
T (\ifEx T i;(a) \then(b) \else(c)) ,

(
∃ T i : T (a) ∧ T (b)
∧ ∀ T i′ : ((i′ ≺ i)→ F(a′))

)
∨ (∀ T i : (F(a) ∧ T (c)))
∨ (∀ T i : (T (b) ∧ T (c)))

F(\ifEx T i;(a) \then(b) \else(c)) ,
(
∃ T i : T (a) ∧ F(b)
∧ ∀ T i′ : ((i′ ≺ i)→ F(a′))

)
∨ (∀ T i : (F(a) ∧ F(c)))
∨ (∀ T i : (F(b) ∧ F(c)))

T (\forall T i; a; b) , ∀ T i : T (a ==> b)
F(\forall T i; a; b) , ∃ T i : F(a ==> b)
T (\exists T i; a; b) , ∃ T i : T (a && b)
F(\exists T i; a; b) , ∀ T i : F(a && b)

Proofs In addition to the original definition, we defined rules for implications, the
ternary and the \ifEx operator. Whereas implications can be easily deduced by simply
taking the equivalent of “¬a∨ b”, well-definedness of the ternary and the \ifEx operator
may not be as obvious. Hence, we give proofs to show the deduction of the rules for the
T - and the F-operator (in order to supplement the rules in Y-operator semantics) for
the ternary and \ifEx operator from the well-definedness rules for the D-operator.
In the following, for a, b and c expressions of type boolean, we start with the definitions
for the D-operator (equivalent semantics as for the Y-operator):

WDY(a ? b : c)⇔WDD(a ? b : c)
⇔ (WDD(a) ∧ a ∧WDD(b))
∨ (WDD(a) ∧ ¬a ∧WDD(c))
∨ (WDD(b) ∧WDD(c) ∧ (b↔ c))

(3.1)

WDY(\ifEx T i;(a) \then(b) \else(c))⇔WDD(\ifEx T i;(a) \then(b) \else(c))
⇔ (∃ T i : WDD(a) ∧WDD(b) ∧ a

∧ ∀ T i′ : ((i′ ≺ i)→ (WDD(a′) ∧ ¬a)))
∨ (∀ T i : (WDD(a) ∧WDD(c) ∧ ¬a))
∨ (∀ T i : (WDD(b) ∧WDD(c) ∧ (b↔ c)))

(3.2)



3.1. Predicates and Specification Expressions 27

We will also use the following rules from above:

T (a)⇔WDY(a) ∧ a (3.3)
F(a)⇔WDY(a) ∧ ¬a (3.4)

As well as the definition for \ifEx as outlined in the preamble of section 3.1.9:

\ifEx T i;(a) \then(b) \else(c)⇔ (∃ T i : a)
? (∀ T i : (a ∧ (∀ T i′ : a′ → (i � i′)))→ b)
: c

(3.5)

Proof Hence, we can prove “T (a ? b : c)⇔ (T (a)∧T (b))∨(F(a)∧T (c))∨(T (b)∧T (c))”.

T (a ? b : c)⇔WDY(a ? b : c) ∧ (a ? b : c) T -operator rule (3.3).
⇔ ((WDY(a) ∧ a ∧WDY(b))
∨ (WDY(a) ∧ ¬a ∧WDY(c)) D-operator rule (3.1).
∨ (WDY(b) ∧WDY(c) ∧ (b↔ c)))
∧ (a ? b : c)

⇔ (WDY(a) ∧ a ∧WDY(b) ∧ (a ? b : c)) Expand formula.
∨ (WDY(a) ∧ ¬a ∧WDY(c) ∧ (a ? b : c))
∨ (WDY(b) ∧WDY(c) ∧ (b↔ c) ∧ (a ? b : c))

⇔ (WDY(a) ∧ a ∧WDY(b) ∧ b) Evaluate expressions
∨ (WDY(a) ∧ ¬a ∧WDY(c) ∧ c) with tern. operator, e.g.
∨ (WDY(b) ∧ b ∧WDY(c) ∧ c) “(a ∧ (a ? b : c))⇔ b”.

⇔ (T (a) ∧ T (b)) ∨ (F(a) ∧ T (c)) ∨ (T (b) ∧ T (c)) Rules (3.3) and (3.4). �

Analogously, we deduce “F(a ? b : c)⇔ (T (a) ∧ F(b)) ∨ (F(a) ∧ F(c)) ∨ (F(b) ∧ F(c))”.
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Proof We now prove the following equivalence: T (\ifEx T i;(a) \then(b) \else(c))
⇔
(
∃ T i : T (a) ∧ T (b) ∧ ∀ T i′ : ((i′ ≺ i)→ F(a′))

)
∨
(
∀ T i : (F(a) ∧ T (c))

)
∨
(
∀ T i : (T (b) ∧ T (c))

)
T (\ifEx T i;(a) \then(b) \else(c))
⇔WDY(\ifEx T i;(a) \then(b) \else(c)) T -op. rule (3.3).
∧ (\ifEx T i;(a) \then(b) \else(c))

⇔
((
∃ T i : WDD(a) ∧WDD(b) ∧ a D-op. rule (3.2)
∧ ∀ T i′ : ((i′ ≺ i)→ (WDD(a′) ∧ ¬a′))

)
and def. for

∨
(
∀ T i : (WDD(a) ∧WDD(c) ∧ ¬a)

)
\ifEx op. (3.5).

∨
(
∀ T i : (WDD(b) ∧WDD(c) ∧ (b↔ c))

))
∧
(
(∃ T i : a) ? (∀ T i : (a ∧ (∀ T i′ : a′ → (i � i′)))→ b) : c

)
⇔
(
∃ T i : WDD(a) ∧WDD(b) ∧ a Expand formula.
∧ ∀ T i′ : ((i′ ≺ i)→ (WDD(a′) ∧ ¬a′))
∧
(
(∃ T i : a) ? (∀ T i : (a ∧ (∀ T i′ : a′ → (i � i′)))→ b) : c

))
∨
(
∀ T i : (WDD(a) ∧WDD(c) ∧ ¬a)
∧
(
(∃ T i : a) ? (∀ T i : (a ∧ (∀ T i′ : a′ → (i � i′)))→ b) : c

))
∨
(
∀ T i : (WDD(b) ∧WDD(c) ∧ (b↔ c))
∧
(
(∃ T i : a) ? (∀ T i : (a ∧ (∀ T i′ : a′ → (i � i′)))→ b) : c

))
⇔
(
∃ T i : WDD(a) ∧ a ∧WDD(b) ∧ b Evaluation of
∧ ∀ T i′ : ((i′ ≺ i)→ (WDD(a′) ∧ ¬a′))

)
ternary op.

∨
(
∀ T i : (WDD(a) ∧ ¬a ∧WDD(c) ∧ c)

)
∨
(
∀ T i : (WDD(b) ∧ b ∧WDD(c) ∧ c ∧ (b↔ c))

)
⇔
(
∃ T i : T (a) ∧ T (b) ∧ ∀ T i′ : ((i′ ≺ i)→ F(a′))

)
Rules (3.3)

∨
(
∀ T i : (F(a) ∧ T (c))

)
∨
(
∀ T i : (T (b) ∧ T (c))

)
and (3.4). �

Analogously, we deduce the according F -operator rule for the \ifEx operator.

3.1.10. The \old Expression
This expression is a means to make statements in the postcondition, which refer to the
pre-state of certain expressions. Let for this matter in the following e be an expression, h
the current heap and hpre the heap of the pre-state. In KeY, the \old-expression is dealt
with by evaluating the argument in the heap of the pre-state, i.e. \old(h[e]) = hpre[e].
Thus, it suffices to update the heap of the pre-state to the current heap, as a parallel
update {hpre := h} to the anonymisation update (section 2.7.1) for the whole postcondition.
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As the anonymisation update only updates expressions in heap h, it does not apply to
expressions in heap hpre and hence in each case only the appropriate update gets applied.
This leads us to the following definition:

wd(\old(h[e])) , wd(hpre[e])1

3.1.11. Invariant References
In JML?, non-static invariant references are denoted as o. \inv for some object o, whereas
in original JML the according expression is \invariant_for(o).
They are essentially syntactic sugar defining the represents-clause of the model field \inv
(the actual invariant). In proofs, they are used as any other represents-clause. However,
there are two different versions of them, namely a static and a non-static one. As such,
their well-definedness rules basically work as they do for any other reference expression.

3.1.11.1. Non-Static

Let for the following definition a be an expression of non-static reference type and h a
heap.

wd(h[a. \inv]) , wd(a) ∧ wd(h) ∧ (a 6= null) ∧ h[a.created] ∧ wellFormed(h)

3.1.11.2. Static

Let furthermore below h be a heap and C a static class.

wd(h[C. \inv]) , wd(h) ∧ wellFormed(h)

3.1.12. Pure Method Invocations
As we do not desugar method contracts combined by also into one method contract,
one invocation might refer to several method contracts. For this matter, we understand
requires m to denote the disjunction of all the preconditions – of contracts not allowing
m to cast an exception – specified for a method m. If there are only contracts allowing
the cast of exceptions for a method m, we take the disjunction to be equal to false (i.e.
an invocation of m is hence not well-defined).

1The update {hpre := h} is applied to the whole postcondition and thus also applies to all expressions
using the \old expression (instead of the anonymisation update).
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3.1.12.1. Non-Static

Let for the following definition a be an expression of reference type, h a heap, e1, . . . , en

the parameters and m the according method identifier of a pure (non-void) non-static
method.

wd(h[a.m(e1, . . . , en)]) , wd(a) ∧ wd(h) ∧ (a 6= null) ∧ h[a.created]
∧ wellFormed(h) ∧ h[a. \inv]
∧ ∀i ∈ [1, n] : wd(ei) ∧ requires m

3.1.12.2. Static

Let furthermore below h be a heap, e1, . . . , en the parameters and m the according
method identifier of a pure (non-void and non-constructor) static method of class C.

wd(h[C.m(e1, . . . , en)]) , wd(h) ∧ wellFormed(h) ∧ h[C. \inv]
∧ ∀i ∈ [1, n] : wd(ei) ∧ requires m

3.1.12.3. Constructor

Let moreover below h be a heap, e1, . . . , en the parameters and m the according method
identifier of a pure constructor of type T .

wd(h[new Tm(e1, . . . , en)]) , wd(h) ∧ wellFormed(h) ∧ ∀i ∈ [1, n] : wd(ei) ∧ requires m

3.1.13. Array Creations
The specification of array creations as defined in JML is currently not supported by KeY.
However, an equivalent specification can be done using the sequence data type in JML?.

3.1.13.1. Initialiser

Let for the following definition e0, . . . , en−1 be expressions of comparable types.

wd({e0, . . . , en−1}) , ∀i ∈ [0, n− 1] : wd(ei)

3.1.13.2. Declaration

Let furthermore below T be a type, n1, . . . , nk expressions of type int, init an array
initialiser of type T []k (result type T [] . . . [] for a k-dimensional array).

wd(new T [n1][n2] . . . [nk] init) , wd(init) ∧ ∀i ∈ [1, k] : (wd(ni) ∧ ni ≥ 0)
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3.2. JML Specifications
JML specifications are used to annotate syntactical entities in a Java program and
describe their behaviour. These entities can be either a whole class, a method or a model
field. Whereas a class or a method1 also matters in the execution of the program, model
fields are specification-only. We give general (desugared) blueprints and definitions for
well-definedness rules for class invariants, model fields and method contracts below.

3.2.1. Class Invariants

/*@ V k invariant invariantC

@ accessible \inv: accessibleC

@ \measured_by measured-byC;
@*/

Figure 3.1.: Class Invariant Specification for a Class C

Let for this definition C be a class identifier, V a visibility, k one of the keywords
static or instance and invariant C the (with respect to some linear type hierarchy)
constructed short-circuit conjunction of all invariants defined in super-types (including
interfaces) of C (including C itself) and inherited according to Java rules. This basically
means that when taking an invariant, we also must consider the inherited invariants,
which – for the matter of well-definedness – guard invariants in subclasses.
As in the context of well-definedness the following clauses are all treated in a similar
manner, we denote the set U C := {accessible C , measured_by C} for the following
definition.

wd(C) ,WD(invariant C) ∧ (invariant C →
∧

u∈U C

wd(u ))

3.2.2. Model Fields

/*@ model T m
@ requires requiresm;
@ measured_by measured-bym;
@ accessible accessiblem;
@ represents representsm;
@*/

Figure 3.2.: Model Field Specification for a Model Field m

Let for the following definition m be the model field identifier for a model field of type T .

1Methods can also be specification-only, being specified by the keyword model_behaviour (not standard
JML), but will not be considered in this work as their semantics is still being discussed.
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As in the context of well-definedness the following clauses are all treated in a similar
manner, we denote the set U m := {accessible m, represents m, measured-by m} for
the rule below.

wd(m) ,WD(requires m) ∧ (
∧

u∈U m

wd(u ))

3.2.3. Method Contracts

/*@ V behaviour
@ requires requiresm;
@ measured_by measured-bym;
@ diverges divergesm;
@ accessible accessiblem;
@ assignable assignablem;
@ ensures ensuresm;
@ signals signalsm;
@*/

Figure 3.3.: Method Contract Specification for a Method m

Let for the following definition m be the method identifier for a method being specified
in class C and let {anonassignable m} be the update anonymising the heap in all locations
specified in the assignable-clause assignable m.
Let furthermore invariant C be the (with respect to some linear type hierarchy) con-
structed short-circuit conjunction of all invariants defined in super-types (including
interfaces) of C (including C itself) and inherited according to Java rules (as in sec-
tion 3.2.1) and initially C be constructed in a similar fashion using the initially-clauses
instead of invariants.
As in the context of well-definedness the following clauses are all treated in a sim-
ilar manner, we denote the set U m := {accessible m, assignable m, diverges m,
measured-by m} for the rule below.

wd(m) ,WD(requires m)
∧ (requires m

→ (
∧

u∈U m

wd(u )

∧ {anonassignable m}
(WD(initially C

1 && ensures m)
∧WD(initially C

1 && signals m))))

1Only for (non-helper) constructor methods.
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3.3. JML Statements
In the following, JML statements will be discussed. They are specification elements
which can appear directly in the Java code. We give general (desugared) blueprints,
reminders of the verification rules and definitions for well-definedness rules for loop
statements, which annotate loops, and block contracts, which annotate blocks. Whereas
loop statements are widely used in formal verification, blocks are a rather new feature
implemented in KeY since 2012 [Wac12].
A block is a sequence of no, one or multiple Java instructions between curly braces. It can
appear anywhere, where an instruction is legal. Block contracts are similar to method
contracts, but supplementary permit to specify further types of abrupt termination via
breaks-, continues- and returns-clauses.
Since these statements can be seen as a drawback to our black-box assumption (sec-
tion 2.6), they are dealt with “on the fly”, i.e. when appearing in the code. In fact, we
implemented their Well-Definedness Checks as part of the ordinary verification rules
for loop statements and block contracts, because these statements are always context-
dependent, meaning they are written in a specific state of the method in which they
are embedded. Thus, we define their pre-state relative to their method’s pre-state by
applying a context-update {u} on it.

3.3.1. Loop Statements

/*@ loop_invariant loop-invariantl;
@ assignable assignablel;
@ decreases decreasesl;
@*/

Figure 3.4.: Loop Statement Specification for a Loop l

The Well-Definedness Check of loop statements is embedded in the general rule for loop
invariants as a new fourth branch as shown in definition 3, where l identifies the loop
and {u} denotes a context-update embodying all changes between the pre-state of the
method and entering the loop. We hence define the new rule as follows.

Definition 3 (Loop Invariant Rule with Well-Definedness Branch)
Initially Valid

Body Preserves Invariant
Use Case

Γ⇒ {u}wd(l),∆ (Well-Definedness)
Γ⇒ {u}[π whilel(g)p ;ω]ϕ,∆
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Let {anonassignable l} be the update anonymising the heap in all locations specified in
the assignable-clause assignable l for the definition below.

wd(l) , wd(loop-invariant l)
∧ (loop-invariant l

→ (wd(assignable l) ∧ wds(decreases l)
∧ {anonassignable l}(wd(loop-invariant l) ∧ wd(decreases l))))

3.3.2. Block Contracts

/*@ requires requiresb;
@ diverges divergesb;
@ assignable assignableb;
@ ensures ensuresb;
@ signals signalsb;
@ breaks breaksb;
@ continues continuesb;
@ returns returnsb;
@*/

Figure 3.5.: Block Contract Specification for a Block b [Wac12]

The Well-Definedness Check of block contracts is embedded in the general rule for block
contracts as a new fourth branch as shown in definition 4, where b identifies the block
and {u} denotes a context-update embodying all changes between the pre-state of the
method and entering the block. We hence define the new rule as follows.

Definition 4 (Block Contract Rule with Well-Definedness Branch)
Validity

Precondition
Usage

Γ⇒ {u}wd(b),∆ (Well-Definedness)
Γ⇒ {u}[π{blockb} ;ω]ϕ,∆

Let {anonassignable b} be the update anonymising the heap in all locations specified
in the assignable-clause assignable b. For block contracts, we denote the sets U b :=
{assignable b, diverges b} and POST b := {ensures b, signals b, breaks b, continues b,
returns b} to define the following.

wd(b) , wd(requires b)
∧ (requires b → (

∧
u∈U b

wd(u ) ∧ {anonassignable b}(
∧

p∈POST b

wd(p ))))



4. Integration in the KeY System
An essential part of this work is the implementation of Well-Definedness Checks in the
KeY System. All the definitions and rules stated in this work are hereby considered to
result in fully implemented Well-Definedness Checks for the major part of the JML/JML?

specification elements supported by KeY. The implementation is taclet1-driven, which
results in a flexible, adaptable and extensible mechanism to cope with KeY’s vast
functionality and its fast and active development.

4.1. Design Decisions
As KeY’s major focus is the verification of JML?-annotated Java programs, we needed to
make some adaptations and adjustments to integrate fully functional Well-Definedness
Checks. The main reasons are certain syntactical characteristics. Firstly, expression
order does not matter in the ordinary proof process, but can be crucial for the result
of a Well-Definedness Check (only in L-operator semantics, section 2.5.2). Secondly, a
different kind of operation, a term transformer as stated in section 2.5, is needed as
the evaluation done by WD and wd highly differs from the usual evaluation rules in
KeY. For example, “a ∨ ¬a” does not necessarily have the same result as “true” in a
Well-Definedness Check.

4.1.1. Short-Circuit Operators
As verification in KeY operates in predicate logic, there is no operator for short-circuit
evaluation (e.g. && as opposed to &) and thus no implementation of it. However, the
semantics of the L-operator necessitates operators which distinguish the order of its ar-
guments. Subsequently, an implementation of short-circuit evaluation becomes necessary.
Up to now, these do only matter for Well-Definedness Checks and are irrelevant in the
ordinary verification process. As we do not want to irritate KeY users by presenting
them new operators with no apparent difference to their non-short-circuit versions, we
directly label the according terms built with short-circuit operators (e.g. “a && b”) with
a term label2 «SC» for short-circuit operators. In the KeY System, these labels can be
automatically hidden or made visible by the choice of the user. However, they can be

1Taclets are lightweight entities to logically and technically define calculus rules [Gie04].
2Term labels are a quite recent and purely syntactical feature in KeY, being a means to enhance any
term with supplementary information. Apart from Well-Definedness Checks, they are mainly used to
guide verification strategies and enhance performance.
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used for matching in rules of the sequent calculus. In terms of simplification, a formula
“a← b” thus becomes “(a ∨ ¬b)«SC»”.

4.1.2. Order in Specification Clauses
Now having short-circuit operators, the order of formulas in con- and disjunctions hence
becomes important. This might be obvious for the explicit parts of the specification,
but certain characteristics of JML also call for implicit specification elements. One
characteristic being for example that all elements are non-null by default, including array
elements. As this property also must be expressed by formulas, this has to be added
to the specification in the process of desugaring. Up to now, formula order was not an
issue in KeY and since different characteristics of the specified target necessitate different
formulas to be added, a consistent ordering from the beginning might perturb the rest of
KeY. Again, we use the means of term labels, which can be searched for fast and easily,
for ordering the specification clauses prior to checking the specification’s well-definedness.
The label «impl» thus denotes implicit specification elements.

4.1.3. Term Transformers
Our notion of well-definedness also creates the need for new operators, which leave
the expression uninterpreted, as in the rest of the KeY System the semantics differs
(section 2.5). This cannot be considered a usual function and thus needs some adjustments
to fit in the KeY System. To cope with this deficiency, we introduced a new kind of
operation named term transformer in KeY, which suffices our needs. The concept of
this operator is based on Dijkstra’s predicate transformer semantics [Dij75]. A more
conceptual description of term transformers is given in section 2.5.

4.2. Rule Implementation
As the majority of rules in the KeY System is implemented as so-called taclets [Rüm07],
we implemented the well-definedness calculus likewise. This is except for “complex”
JML specifications (at present class invariants, model fields, method contracts, loop
statements and block contracts) as these form the embedding proof obligations for our
Well-Definedness Checks. The majority of these taclets can be implemented in a target-
and proof-independent way, leaving us only with the rules for invariant references and
pure method invocations to be generated based on the annotated java code. Regarding
the taclets for method invocations, this is based on the need of the specific preconditions,
whereas for the taclets for invariant references, this is actually independent of any given
annotated java code, but as the type java.lang.Object is not available before loading
the KeY System, this taclet also has to be generated upon initialisation.
For the taclet mechanism in KeY being already quite powerful, only four variable
conditions [Rüm07] needed to be implemented. Firstly, this is an “atomic condition”
to identify expressions with no further sub-arguments, as these are always well-defined.
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Secondly, this is a “static field condition” to check if a field is static or an instance, as
only for non-static fields a real receiver object exists and can be checked for equality
to null. Thirdly, this is a “sub-formula condition” checking whether a formula has
any sub-arguments which are formulas (as opposed to being a term). This condition
is important for the implementation of the Y-operator, having different transformer
predicates, which needs a condition to descend into T and F or not, as the majority of
the well-definedness rules, which take a term as argument, stays the same and hence does
not have to be defined again for the Y-operator. Fourthly and finally, this is a “term
label condition” to check whether a matched expression contains a specific term label or
not. For the matter of this implementation, we need it only to distinguish && (||) and &
(|) respectively (section 4.1.1).

4.3. Short Examples
In the following, we will perform the implemented Well-Definedness Check on two short
examples to demonstrate its usage and behaviour in the KeY System. Furthermore, these
examples illustrate the differences of well-definedness in JML/JML? to well-definedness
in Java, thereby introducing two new exception types which do only relate to expressions
in JML/JML?, but not in Java.

4.3.1. Example for Missing Invariant

class A {
/*@ normal_behaviour

@ requires
@ this.\inv;
@*/

/*@pure@*/ int id() {
return 0;

}

/*@ ensures
@ \result.id() == 0;
@*/

A m() {
return new A();

}
}

Listing 4.1: Example Specification One
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Let us for example take the specification in listing 4.1 for a class A with the two methods
id() and m() for an arbitrary invariant as a simple example for performing a Well-
Definedness Check for the method m(). The method id() is specified to be pure,
terminate normally and not throw any exceptions. As in JML/JML?, declarations are
non-null by default, a null-check for the result of m() is not necessary, being already
implicitly specified. In JML/JML?, only pure methods should be invoked in specifications.
This does not matter for well-definedness, but invocations of non-pure methods can still
lead to unexpected results. But what does matter to well-definedness is that invoked
methods are specified to terminate normally and not throw any exceptions, as this is one
of the main goals of the Well-Definedness Check.

==>
WD( wellFormed(heap)

&& !self = null
&& self.<created > = TRUE
&& A::exactInstance(self) = TRUE
&& self.<inv >)

& ( ( wellFormed(heap)
& !self = null
& self.<created > = TRUE
& A::exactInstance(self) = TRUE
& self.<inv >
& wellFormed(anon_heap))

-> ( wd(allLocs)
& wd(allLocs)
& {heapAtPre:=heap

|| heap:=anon(heap , allLocs , anon_heap)}
WD( (result = null

|| result.<created > = TRUE)
&& (exc = null

-> (self.<inv >
&& !result = null
&& result.id() = 0))

&& ( !exc = null
-> ((java.lang.Exception

::instance(exc) = TRUE
-> self.<inv >)

&& java.lang.RuntimeException
::instance(exc) = TRUE)))))

Listing 4.2: Example Proof Obligation One

Performing the Well-Definedness Check in KeY for the method m(), we obtain the proof
obligation in listing 4.2 (to facilitate reading it, we substituted the label “«SC»” by the
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operator “&&” or “||” accordingly). The update “{heapAtPre:=heap}” is for dealing
with the JML operator “\old” (section 3.1.10) (which plays no role in this example
specification though) and the update “{heap:=anon(heap, allLocs, anon_heap}” is
the anonymisation update as discussed in section 2.7.1. The remaining proof obligation is
as defined in section 3.2.3, also including implicit assumptions and specifications such as
the invariant reference in the pre- and postcondition, the non-null and created statements,
the signals-clause for run-time exceptions and the assumption of well-formed heaps. We
will now apply well-definedness rules as well as various simplification rules in the KeY
System.

exc = null ,
result.<created > = TRUE

| anon_heap[result.<created >] = TRUE ,
wellFormed(heap),
wellFormed(anon_heap),
A::exactInstance(self) = TRUE ,
self.<created > = TRUE ,
anon(heap , allLocs , anon_heap)[self.<inv >],
self.<inv >

==>
result = null ,
self = null ,
anon(heap , allLocs , anon_heap)[result.<inv >]

Listing 4.3: Open Goal of Example Proof Obligation One

This evaluates in the open goal illustrated in listing 4.3 and thus we investigate for a
counterexample, for which the specification of method m() is not well-defined. To make its
specification well-defined, we need to prepend “\result.\inv &&” to its postcondition.
By looking at the open goal from listing 4.3, this can be easily deduced upon spotting
“anon(heap, allLocs, anon_heap)[result.<inv>]” in the succedent.
The reason is that before invoking a method, its class invariant (in this case the instance
invariant for its receiver) has to be valid. Without this being the case, the method
contract is not defined and thus cannot be applied. In this work, we call this problem
an UndefinedMethodInvocation. This is something that cannot happen in usual Java
programs as there are no specifications and the Java code is taken instead.
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4.3.2. Example for Uncreated Object

class B {
/*@ normal_behaviour

@ ensures (\forall Object o; o != null;
@ \old(f(o)) == f(o));
@*/

/*@pure@*/ void n() {
Object o1 = new Object ();
Object o2 = new Object ();

}

/*@ normal_behaviour
@ ensures true;*/

/*@pure@*/ int f(Object o) {
if (o == null) {

return 0;
} else {

return 1;
}

}
}

Listing 4.4: Example Specification Two

Let us now take the specification in listing 4.4 for a class B with the two methods n()
and f(Object) for an arbitrary invariant as another simple example for performing a
Well-Definedness Check. The two methods are both specified to be pure, terminate
normally and not throw any exceptions. In the postcondition for n(), a quantification
over objects which are not equal to null is used as well as the \old expression and an
invocation of method f(Object), which has a trivial method contract. We will now
perform a Well-Definedness Check for the method n().
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==>
WD( wellFormed(heap)

&& !self = null
&& self.<created > = TRUE
&& B::exactInstance(self) = TRUE
&& self.<inv >)

& ( wellFormed(heap)
&& !self = null
&& self.<created > = TRUE
&& B::exactInstance(self) = TRUE
&& self.<inv >
& wellFormed(anon_heap)

-> wd(allLocs)
& wd(allLocs)
& {heapAtPre:=heap

|| heap:=anon(heap , allLocs , anon_heap)}
WD( exc = null

& ( self.<inv >
&& \forall java.lang.Object o;

( !o = null
& (o = null || o.<created > = TRUE)

-> heapAtPre[self.f(o)] = self.f(o)))))

Listing 4.5: Example Proof Obligation Two

Performing the Well-Definedness Check in KeY for the method n(), we obtain the proof
obligation in listing 4.5 (to facilitate reading it, we substituted the label “«SC»” by the
operator “&&” or “||” accordingly). The update “{heapAtPre:=heap}” is for dealing with
the JML operator “\old” (section 3.1.10) and the update “{heap:=anon(heap, allLocs,
anon_heap}” is the anonymisation update as discussed in section 2.7.1. The remaining
proof obligation is as defined in section 3.2.3, also including implicit assumptions and
specifications such as the invariant reference in the pre- and postcondition, the non-null
and created statements and the assumption of well-formed heaps. In this example, the
update for dealing with the \old expression is actually needed as this expression occurs
in n()’s postcondition. We will now apply well-definedness rules as well as various
simplification rules in the KeY System.
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anon_heap[o_0.<created >] = TRUE ,
wellFormed(heap),
wellFormed(anon_heap),
B::exactInstance(self) = TRUE ,
self.<created > = TRUE ,
self.<inv >,
anon(heap , allLocs , anon_heap)[self.<inv >]

==>
self = null ,
o_0.<created > = TRUE ,
o_0 = null

Listing 4.6: Open Goal of Example Proof Obligation Two

This evaluates in the open goal illustrated in listing 4.6 and thus we investigate for
a counterexample, for which the specification of method n() is not well-defined. To
make its specification well-defined, we need to conjunct “!\fresh(o)”, specifying that o
was already created in the pre-state, to the range predicate of the universal quantifier
in its postcondition. By looking at the open goal from listing 4.6, this can be easily
deduced upon spotting “anon_heap[o_0.<created>] = TRUE” in the antecedent, but
“o_0.<created> = TRUE” in the succedent.
The reason is that when making any statement about an object, the element needs to
be declared first. This means it either needs to be created or equal to null. As in the
postcondition, we quantify over a set of objects and also refer to them in the pre-state
(by using the \old expression) and include all those in a statement as argument for
f(Object), this results in an ObjectNotCreatedException, as we call it in this work.
This is again something that cannot happen in usual Java programs as there, only
statements about reachable (i.e. objects which are either equal to null or are already
created) objects can be made. But due to JML/JML?’s state semantics, this can lead to
statements about the undefined.



5. Case Study
Within this work, we perform a case study on the JML specification elements for the
main part of the KeY examples, which are included in the KeY System. Therein, we
checked the well-definedness of more than 70 different Java files, many of them containing
an invariant, multiple different method contracts, model fields, loop statements and
block contracts. Most of them turned out to be well-defined. In terms of performing
Well-Definedness Checks on those specification elements, we will mention some found to
be ill-defined under the L-operator1 and discuss their problems. Subsequently, we will
conclude this chapter by discussing the performance of the implemented Well-Definedness
Check for a subset of the checked method specifications.

5.1. Ill-Defined Specification Elements
Based on the types of Java Unchecked RuntimeException, we classified the ill-defined
specification elements to the according exception type. JML? is indeed very similar
to Java, but also differs in some points and thus we detected some definedness prob-
lems for JML? specification elements, which are not covered by the Java exception
types. Consequently, we introduced two new exception types to tackle these issues. For
the matter of pure method invocations, we introduced a new exception type named
UndefinedMethodInvocation, meaning some parts of the invoked method’s precondition
(including the receiver’s class invariant) are not guaranteed to hold upon invoking it.
Furthermore, we defined a new exception type named ObjectNotCreatedException,
meaning that a statement is made about an object that is not created yet. We will now
discuss the specification elements found to be ill-defined under the L-operator.

5.1.1. Index Out Of Bounds Exception
This exception type denotes that some type of index is out-of-bounds. It also includes
the inherited exception ArrayIndexOutOfBoundsException stating that an array index
is out-of-bounds. More specifically, this means that an indexed data structure is accessed
at an index position which lies either below the smallest or above the biggest index for
which it contains elements. For arrays and many other indexed data structures, the
smallest index for which it contains an element is zero. The biggest index can usually be
computed by using some kind of length function.

1This choice was made purely for performance reasons and we will explicitly note, when specification
elements are only not well-defined in this semantics, but are well-defined in the other semantics.
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5.1.1.1. Methods in ReverseArray

public class ReverseArray {
public int[] a;
...
/*@ public normal_behavior

@ requires a!=null && a.length >=0;
@ ensures (\forall int j; j>=0 && j<a.length;
@ a[j]==\old(a[a.length -(j+1)]));
@ diverges true;
@*/

public void reverse () { ... }

/*@ public normal_behavior
@ requires p_a!=null && p_a.length >=0;
@ ensures (\forall int j; j>=0 && j<\old(p_a.length);
@ \result[j]==\old(p_a[p_a.length -(j+1)]))
@ && \result.length == \old(p_a.length);
@ diverges true;
@*/

public int[] reverse2(int[] p_a) { ... }
}

Listing 5.1: Specifications for ReverseArray

We start with the class ReverseArray for our purpose containing the two methods
reverse() and reverse2(int[]), both specified to not throw any exceptions. The
objective of these methods is the intuitive one, each reversing an array. For reverse(),
this is the array a, a global variable in ReverseArray, and reverse2(int[]) reverses
the array p_a given as a parameter.
The specification for reverse() in listing 5.1 is not well-defined because of its postcondi-
tion. Therein, the pre-state of the array a is accessed at the position “a.length−(j+1)”,
although j is only bound relative to the post-state of a. It can very well be greater or
equal than a.length though, which would result in an undefined access to a.
The specification for reverse2() in listing 5.1 is not well-defined under the L-operator,
though under the D-operator it is. The reason is that in the quantified formula the
variable j is only bound relative to p_a.length and not \result.length. For also being
well-defined under the L-operator, the two parts of the conjunction in the postcondition
would need to be interchanged.
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5.1.1.2. Method in BinarySearch

class BinarySearch {
/*@ public normal_behaviour

@ requires (\forall int x;
@ (\forall int y; 0 <= x && x < y && y < a.length;
@ a[x] <= a[y]));
@ ensures ((\exists int x; 0 <= x && x < a.length;
@ a[x] == v) ?
@ a[\result] == v : \result == -1);
@*/

static /*@pure@*/ int search(int[] a, int v) { ... }
}

Listing 5.2: Specification for BinarySearch.search(int[],int)

The class BinarySearch contains exactly one method. This method is static and specified
to not have any side-effects and to not throw any exceptions. Its objective is to take a
sorted array a of exact numerical values and a single exact numerical value v, and to
return the index of v if it exists in a or −1 if it does not.
This specification in listing 5.2 is not well-defined because of its postcondition. The
problem lies in the expression a[\result], where \result is not guarded by any means
and thus can easily be less than zero or greater or equal to a.length.

5.1.1.3. Method in LCP

final class LCP {
/*@ normal_behavior

@ requires 0 <= x && x < a.length;
@ requires 0 <= y && y < a.length;
@ requires x != y;
@ ensures 0 <= \result;
@ ensures \result <= a.length -x
@ && \result <= a.length -y;
@ && (\forall int i; 0 <= i && i < \result;
@ a[x+i] == a[y+i]);
@ ensures a[x+\result] != a[y+\result]
@ || \result == a.length -x
@ || \result == a.length -y;
@ strictly_pure @*/

static int lcp(int[] a, int x, int y) { ... }
}

Listing 5.3: Specification for LCP.lcp(int[],int,int)
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The class LCP contains one method lcp(int[],int,int). This method is static and
specified to be strictly pure, terminate normally and not throw any exceptions. The
keyword strictly_pure is not standard JML, but part of JML?. It specifies the method
to be pure, i.e. not have any side-effects, and as well not to create any new objects on
the heap. This means that the heap in the pre-state is exactly the same as the one in
the post-state. The method’s objective is to take some array a of exact numerical values
as well as two exact numerical values x and y, which are not equal and inside the bounds
of a. Then the method searches in the elements of a for the index i up to which the
element with the index x+ i and the index y + i is equal, i.e. the length of the longest
common prefix.
This specification in listing 5.3 is not well-defined under the L-operator, though under
the D-operator it is. The reason is that in the last part of the postcondition, the array
a gets accessed in position “x + \result” and “y + \result”. At this moment, the
expression \result is only bound to be greater or equal to zero and less or equal to
“a.length−x” and “a.length−y”. However, if \result was equal to either of those,
this would result in a being accessed at position a.length, an undefined access.

5.1.1.4. Invariant for SuffixArray

public final class SuffixArray {
/*@ public invariant

@ (\forall int i; 0 <= i && i < a.length;
@ (\exists int j; 0 <= j && j < a.length;
@ suffixes[j]==i));
@ && (\forall int i; 0 <= i && i < a.length;
@ 0 <= suffixes[i] && suffixes[i] < a.length);
@ && (\forall int i; 0 < i && i < a.length;
@ suffixes[i-1] != suffixes[i]);
@ && (\forall int i; 0 < i && i < a.length;
@ compare(suffixes[i],suffixes[i-1]) > 0);
@ && a.length == suffixes.length;
@*/

...
final /*@ spec_public @*/ int[] a;
final /*@ spec_public @*/ int[] suffixes;

}

Listing 5.4: Specification for SuffixArray

The class SuffixArray implements a data structure of the two arrays a and suffixes,
both containing exact numerical values. It also offers a method compare(int, int)
which lexicographically compares two integers with respect to the result of the previously
specified function LCP.lcp(int[], int, int) for the array a. The array suffixes is
the lexicographically sorted (by using compare(int, int)) version of a.
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The specification in listing 5.4 is not well-defined under the L-operator as suffixes[j]
might throw an IndexOutOfBoundsException for i could be outside the bounds of
suffixes. However, this is not the case for the D-operator, since there the assertion
“a.length == suffixes.length” ensures its well-definedness.

5.1.1.5. Method in Saddleback

class Saddleback {
/*@ public normal_behaviour

@ requires (\forall int i; 0<=i && i<array.length;
@ array[i]. length == array [0]. length);
@ && array.length > 0 && array [0]. length > 0;
@ && (\forall int k,i,j; 0 <= k && k < i
@ && i < array.length && 0<=j
@ && j < array [0]. length;
@ array[k][j] <= array[i][j]);
@ && (\forall int k,j,i; 0 <= i && i < array.length
@ && 0<=k && k<j && j < array[i]. length;
@ array[i][k] <= array[i][j]);
@ ensures \result == null ==>
@ (\forall int i; 0<=i && i<array.length;
@ (\forall int j; 0<=j && j<array[i]. length;
@ array[i][j] != value));
@ ensures \result != null ==>
@ \result.length == 2 &&
@ array[\result [0]][\ result [1]] == value;
@ assignable \nothing;
@*/

public /*@nullable*/ int[]
search(int[][] array , int value) { ... }

}

Listing 5.5: Specification for Saddleback.search(int[][],int)

The class Saddleback contains one method search(int[][], int). It is specified to
terminate normally, not throw any exceptions and not have any side-effects (here specified
by the keyword \nothing in the assignable-clause). This method takes a two-dimensional
array of exact numerical values and a single exact numerical value. The array’s sub-arrays
need to be of equal length bigger than zero, and the values along any row or column
are non-decreasing. Then the method returns either the two indices x and y for which
array[x][y] is equal to the given value, or null if the value does not exist in the array.
The specification in listing 5.5 is not well-defined as there is nothing known about
\result[0] and \result[1] except that both do exist and hold a value of type
int. Hence, the expression “array[\result[0]][\result[1]]” is highly fragile, poten-
tially throwing an IndexOutOfBoundsException or a NullPointerException. Firstly,
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\result[0] might be less than zero or bigger than array.length, potentially throw-
ing an IndexOutOfBoundsException. Secondly, if there was no exception yet, the
result of array[\result[0]] is even less constrained. Thus, we detect the expres-
sion “array[\result[0]][\result[1]]” to not only potentially lead to a throw of an
IndexOutOfBoundsException, but even a NullPointerException.

5.1.2. Undefined Method Invocation
This exception type does not exist in Java and was defined in terms of this work as
to denote an invalid method invocation. The reason for this new exception type is
that in JML/JML?, we can also invoke methods on specification level. However, as the
ulterior motive is a modular one, such that we do not need to handle the Java code
of a certain method after proving its method contracts, we do not want to consider a
method’s code when invoking it in a specification. Instead, we use the invoked method’s
method contracts. However, it can occur that when invoking a certain method m, its
precondition is not fulfilled and thus no method contract for m can be used. In this
case, we call the invocation to be undefined and imagine it to throw the exception
UndefinedMethodInvocation.

5.1.2.1. Method in CellClient

class Cell {
private int x;
//@ accessible \inv: \nothing;
...
/*@ model \locset footprint;

@ accessible footprint: footprint;
@ represents footprint = x;
@*/

/*@ normal_behavior
@ assignable \nothing;
@ accessible footprint;
@ ensures \result == getX();
@*/

int getX() { ... }
}
class CellClient {

//@ ensures \result.getX() == 5;
Cell m() { ... }

}

Listing 5.6: Specifications for CellClient.m()
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The class CellClient contains one method m() returning an object of type Cell. Fur-
thermore, the class Cell for our purposes contains a global variable x of exact numerical
value, a model field footprint representing the variable x, and a method getX() speci-
fied to not throw any exceptions, terminate normally and not have any side-effects, but
accessing the model field footprint, returning an exact numerical value.
This specification in listing 5.6 is not well-defined for getX() is no helper method or
constructor and thus for invoking it in a valid manner, the invariant of its receiver has to
be guaranteed. As this is not the case for the specification of m(), the method invocation
is undefined.

5.1.2.2. Method in PrefixSumRec

final class PrefixSumRec {
...
/*@ normal_behavior

@ requires x >= 0;
@ ensures \result ==
@ (\product int i; 0 <= i && i < x; 2);
@ ensures \result > x;
@ accessible \nothing;
@ measured_by x;
@ strictly_pure helper
@*/

private static int pow2( int x ) { ... }

/*@ normal_behavior
@ requires k >= 0;
@ ensures 0 <= \result && \result <= k;
@ ensures pow2(\result) <= k+1;
@ ensures k % pow2(\result +1) == pow2(\result) -1;
@ ensures (\forall int z; k% pow2(z+1) == pow2(z) -1;
@ z >= \result);
@ accessible \nothing;
@ strictly_pure helper
@*/

private static int min ( int k ) { ... }
}

Listing 5.7: Specification for PrefixSumRec.min(int)

The class PrefixSumRec for our purposes contains the two static methods pow2(int)
and min(int), both specified to not throw any exceptions, terminate normally, not have
any side-effects, not create any new objects and specified as helper methods. A helper
method does not need to respect the invariant and also does not implicitly assume it
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in the method’s precondition. The method pow2(int) computes for an exact numerical
value x greater or equal to zero the result of the function f(x) = x2 and min(int)
computes for an exact numerical value k greater or equal to zero the smallest exact
numerical value n greater or equal to zero fulfilling “n2 ≤ k + 1 ∧ k % (n+ 1)2 = n2 − 1”.
The specification in listing 5.7 is not well-defined as z + 1 and z do not fulfil the
precondition of pow2(int) to be greater or equal to zero.

5.1.2.3. Method in ExampleSubject

public abstract class Subject {
...
//@ public model \locset footprint;
//@ accessible footprint: footprint;

}
public class ExampleSubject extends Subject {

private int value;
//@ represents footprint = value;
...
/*@ normal_behaviour

@ accessible footprint;
@ ensures \result == value ();
@*/

public /*@pure helper@*/ int value() { ... }
}

Listing 5.8: Specification for ExampleSubject.value()

The class ExampleSubject for our purposes contains a global variable value of exact
numerical value, a model field footprint which represents this value and a method
value(), which is specified as a helper method, to not throw any exceptions, to terminate
normally and to not have any side-effects. Furthermore, ExampleSubject is a subclass
of the abstract class Subject, from which it inherits the model field mentioned.
The specification in listing 5.8 is not well-defined as “this.\inv” has to hold for accessing
the model field this.footprint.
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5.1.2.4. Loop in Client.listContainsMe(List)

public interface List {
//@ public instance invariant 0 <= size();
//@ public accessible \inv: footprint;
...
//@ public model instance \locset footprint;
//@ public accessible footprint: footprint;

}
interface ListIterator {

//@ accessible \inv: this.*, list.footprint;
...
//@ public model instance List list;
//@ accessible list: this.*;
//@ public model instance int pos;
//@ accessible pos: this.*;

}
public class Client {

...
/*@ normal_behaviour

@ requires list.\inv;
@ ...
@*/

boolean /*@pure@*/ listContainsMe(List list) {
ListIterator it = list.iterator ();
/*@ loop_invariant it.\inv && it.list == list

@ && 0 <= it.pos && it.pos <= list.size()
@ && (\forall int i; 0 <= i && i < it.pos;
@ list.get(i) != this);
@ assignable it.*;
@ decreases list.size() - it.pos;
@*/

while(...) { ... }
...

}
}

Listing 5.9: Specification for Client.listContainsMe(List)

The class Client for our purposes contains the method listContainsMe(List), which
is specified to not throw any exceptions, terminate normally and not have any side-effects.
This method contains one loop statement, on whose specification we will perform a Well-
Definedness Check. It takes an object of type List as argument, for which we know that its
invariant is guaranteed. The class List contains the model field footprint, on which its
invariant depends. Furthermore, in the before mentioned method listContainsMe(List)
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an object of type ListIterator is created through the element of type List. The class
ListIterator contains the two model fields list of type List and pos of type int and
its invariant depends on the model field list.footprint.
When checking the loop statement’s well-definedness as shown in listing 5.9, we detect
it to be not well-defined as it.pos in the variant (or decreases clause) might not be
defined after a loop iteration as the loop is allowed to modify “it.*” (as stated in its
assignable-clause).

5.1.2.5. Loop in MySet.addAll(List)

public class MySet {
/*@ private invariant list.\inv && ...;

@ public accessible \inv: footprint;
@*/

private List list;
//@ private represents
//@ footprint = this.*, list.footprint;
...
/*@ normal_behaviour

@ requires l.\inv;
@ requires \disjoint(l.footprint , footprint);
@ assignable footprint;
@ ensures ...;
@*/

public void addAll(List l) {
final ListIterator it = l.iterator ();
/*@ loop_invariant 0 <= it.pos && it.pos <= l.size()

@ && (\forall int x; 0 <= x
@ && x < \old(list.size());
@ list.get(x) == \old(list.get(x)));
@ assignable l.footprint;
@ decreases l.size() - it.pos;
@*/

while(...) { ... }
}

}

Listing 5.10: Specification for MySet.addAll(List)

The class MySet for our purposes consists of one element list of type List, one model field
footprint representing all fields of the class as well as the model field “list.footprint”
and a method addAll(List) containing a loop statement. In the invariant of MySet, it
is stated to depend on the model field footprint and the invariant for the element list
is guaranteed. The classes List and ListIterator are as in listing 5.9.
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When checking the well-definedness of the loop statement in listing 5.10, we detect it to
be not well-defined as “it.\inv” and “l.\inv” are not guaranteed to hold after a loop
iteration, because the loop is allowed to modify “l.footprint” (on which the invariant
for ListIterator depends).

5.1.3. Null Pointer Exception
This exception type denotes the invalid use of a null reference. In practice, this means
some field is referenced for the null object. That is perhaps one of the most common
exception types in Java and often leads to problems in the course of writing and testing
Java programs. It occurs usually, when we expect an object of a specific type, and invoke
some method or refer to a specific field for it. However, when the element is the null
object, this method or field is not defined and an exception is thrown.

5.1.3.1. Method in LRS

public class LRS {
private int s = 0;
private int t = 0;
private int l = 0;
private final SuffixArray sa;
...
/*@ normal_behavior

@ requires \invariant_for(sa) && sa.a.length >= 2;
@ ensures 0 <= s && s < sa.a.length;
@ ensures 0 <= t && t < sa.a.length;
@ ensures 0 <= l && l < sa.a.length;
@ ensures s+l <= sa.a.length && t+l <= sa.a.length;
@ ensures (\forall int j; 0 <= j && j < l;
@ sa.a[s+j] == sa.a[t+j]);
@ ensures s != t || l == 0;
@ ensures !(\exists int i,k; 0 <= i && i < k
@ && k < sa.a.length -l;
@ (\forall int j; 0 <= j && j <= l;
@ sa.a[k+j] == sa.a[i+j]));
@*/

public void doLRS() { ... }
}

Listing 5.11: Specification for LRS.doLRS()

The class LRS contains three variables of exact numerical value, one SuffixArray as
in listing 5.4 and for our purposes one method doLRS() specified to not throw any
exceptions and terminate normally, but potentially having side-effects. Its objective is to
compute the longest repeated substring, and to store its length in the variable l and the
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indices of the two suffixes with this prefix in the variables s and t. Therefore, the method
needs the SuffixArray sa to respect its invariant and its array a to have a length of at
least size two.
The specification in listing 5.11 is not well-defined as sa.a can potentially be null in
the postcondition with \everything being the implicit assignable-clause. As a solution,
we could either adjust the assignable-clause by only including the variables s, t and l, or
prepend either a null-check for sa.a or the invariant for sa similar to the precondition.

5.1.3.2. Method in ArrayList

public class ArrayList implements List {
...
/*@ private normal_behavior

@ requires l >= 0;
@ ensures \typeof(\result) == \type(Object [])
@ && \result.length == l && \fresh(\result)
@ && \result != null;
@ assignable \nothing;
@*/

private /*@helper*/ /*@nullable*/ Object []
newArray(int l) { ... }

}

Listing 5.12: Specification for ArrayList.newArray(int)

The class ArrayList for our purposes contains the private method newArray(int)
and implements the interface List (which does not matter to the well-definedness of
newArray(int) though). The specification of newArray(int) declares it to be a helper
method, not throw any exceptions, terminate normally and to not have any side-effects.
It returns an array of objects, which is specified to potentially be null though. For an
exact numerical value l greater or equal to zero, the method returns a fresh array of size
l not equal to zero (as stated in the postcondition).
The specification for newArray(int) in listing 5.12 is not well-defined as \result might
be null in the event of accessing \result.length. However, this is only the case in the
semantics of the L-operator as at the end of the postcondition, it is asserted to not be
equal to null.
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5.1.3.3. Method in Harness

public class SparseArray {
/*@ private invariant size == val.length

@ && footprint == ...;
@ public accessible \inv: size , footprint ,
@ \singleton(footprint);
@*/

//@ public ghost int size;
//@ public ghost \locset footprint;
private int[] val , idx , back;
private int n = 0;

/*@ normal_behavior
@ requires 0 <= i && i < size;
@ accessible footprint;
@ ensures \result == get(i);
@*/

public /*@pure@*/ int get(int i) { ... }
}
public class Harness {

static /*@ nullable @*/ SparseArray a, b;
...
/*@ normal_behaviour

@ ensures a.get(5) == 0 && b.get(7) == 0;
@*/

static void sparseArrayTestHarness1 () { ... }
}

Listing 5.13: Specification for Harness.sparseArrayTestHarness1()

The class Harness contains two static Objects a and b of type SparseArray specified
nullable as well as a static method sparseArrayTestHarness1(). SparseArray contains
the three arrays val, idx and back with elements of exact numerical value, one variable n
of exact numerical value, one ghost variable size of exact numerical value, one ghost field
footprint and a method get(int), specified to not have any side-effects, to terminate
normally and to not throw any exceptions. Variables and fields specified by the keyword
ghost are elements, which do not play any role in the actual Java program, but are
used to facilitate the specification. For means of specification, they can be used as if
they were ordinary Java elements. As they cannot be changed by any Java instruction,
JML/JML? offers so-called set statements, which are an equivalent to Java instructions
on specification level, which cannot change ordinary Java elements though.
Regarding the well-definedness of Harness.sparseArrayTestHarness1() in listing 5.13,
we detect an ill-definedness. This is, because a and b are nullable and not constrained
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in any way as well. Thus, we get a NullPointerException, but also the invariants
for either of them are not guaranteed to hold upon invoking get(int) as well as the
method’s precondition, requiring them to be greater or equal to zero and smaller than the
ghost variable size. In our terms that would also be an UndefinedMethodInvocation.

5.1.4. Object Not Created Exception
This exception type does not exist in Java and was defined in terms of this work as to
denote statements about objects which are potentially not created in the state of the
statement made. It is similar to a NullPointerException, but also even worse in the
sense that we might know the object is not equal to null, but we still cannot talk about
it. Thus, we lack further knowledge about the object, i.e. it is not reachable.

5.1.4.1. Method in ListOperationsNonNull

public class ListNN {
public ListNN next;
public int value;

}
public class ListOperationsNonNull {

/*@ public normal_behavior
@ requires o != null && n >= 0
@ && (\forall ListNN l; l.next != null);
@ assignable \strictly_nothing;
@ ensures (n == 0 ==> \result == o)
@ && (n > 0 ==> \result ==
@ getNextContractNN(o,n-1).next);
@ diverges true;
@*/

public ListNN getNextNN(ListNN o, int n) { ... }
...
/*@ public normal_behavior

@ requires n>=0 && o!=null;
@ assignable \strictly_nothing;
@ accessible \infinite_union(ListNN l; l.next);
@ ensures (n == 0 ==> \result == o)
@ && (n > 0 ==> \result ==
@ getNextContractNN(o,n-1).next);
@ measured_by n;
@*/

public ListNN getNextContractNN(ListNN o, int n) { ... }
}

Listing 5.14: Specification for ListOperationsNonNull.getNextNN(ListNN,int)
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The class ListOperationsNonNull for our purposes contains the two methods
getNextNN(ListNN, int) and getNextContractNN(ListNN, int), both returning an
object of type ListNN. This class ListNN contains the two fields next of type ListNN
and value of type int. The method getNextContractNN(ListNN, int) is specified to
not throw any exceptions, to terminate normally, not have any side-effects and to not
create any new objects. And getNextNN(ListNN, int) is specified to not throw any
exceptions, not have any side-effects and to not create any new objects. Both methods
return some kind of n-th next element with respect to the given one.
We check the well-definedness for getNextNN(ListNN,int)’s specification in listing 5.14
and detect it to not be well-defined as getNextContractNN(o, n-1) can potentially
be null and not created (hence throwing both a NullPointerException and an
ObjectNotCreatedException as well) and thus an access to the field next might not be
defined. A solution to this problem is to prepend the expression “(\reach(o.next, o,
getNextContractNN(o,n-1))) &&” to the problematic reference in order to guarantee
the object getNextContractNN(o,n-1) to be reachable via the Object o using its field
next.
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5.1.5. Class Cast Exception
This exception type denotes an invalid cast, usually a type cast. It means that a type
cast to a type T is tried to be performed on some object o, although o cannot be cast
to type T as it does not have a compatible type. That can occur for example when
accessing elements in a data structure such as a list or a map, since the actual type of
the contained element might not always be obvious. In this case the mentioned exception
is thrown, since the cast is invalid, i.e. not defined.

5.1.5.1. Invariant in SimplifiedLinkedList

public final class Node {
public /*@nullable@*/ Node next;
public Object data;

}
final class SimplifiedLinkedList {

/*@ private invariant
@ (\forall int i; 0<=i && i<size;
@ ((Node)nodeseq[i]) != null
@ && (\forall int j; 0<=j && j<size;
@ (Node)nodeseq[i] == (Node)nodeseq[j]
@ ==> i == j)
@ && ((Node)nodeseq[i]).next ==
@ (i==size -1 ? null : (Node)nodeseq[i+1]))
@ && size > 0 && first == (Node)nodeseq [0]
@ && size == nodeseq.length;
@*/

private /*@nullable@*/ Node first;
private int size;
/*@ private ghost \seq nodeseq; */
...

}

Listing 5.15: Invariant specification for SimplifiedLinkedList

The class SimplifiedLinkedList implements (as the name implies) a simple version of
an ordinary linked list. In order to achieve this, it contains an object first of type Node
indicating the first element in the list, a variable size of exact numerical value storing
the total amount of elements in the list, and a ghost variable nodeseq of sequence type.
The object first is specified nullable and the invariant guarantees it to contain the first
(with index 0) element of nodeseq as well as the fact that size is equal to the length of
nodeseq. Node contains one nullable object next of type Node and one (non-nullable)
object data of type Object.
The specification for the invariant in listing 5.15 is not well-defined as nodeseq[i] is
cast to the type Node without knowing whether it actually is an object of this type.
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Additionally (only for the semantics of the L-operator), it is not known whether i is
smaller than nodeseq.length or not (the guarding assertion is in the last line of the
invariant), leaving us with a potential IndexOutOfBoundsException.

5.1.5.2. Method in SimplifiedLinkedList

final class SimplifiedLinkedList {
...
/*@ normal_behaviour

@ requires n >= 0 && n < size && \invariant_for(this);
@ ensures \result == (Node)nodeseq[n];
@ assignable \strictly_nothing;
@ helper */

private Node getNext(int n) { ... }
}

Listing 5.16: Specification for SimplifiedLinkedList.getNext(int)

The before mentioned (in listing 5.15) class SimplifiedLinkedList furthermore contains
a private method getNext(int) returning an object of type Node. It is specified to be a
helper-method, to not throw any exceptions, terminate normally, not have any side-effects
and to not create any new objects. Its objective is to return the n-th element in the
sequence nodeseq for n being an exact numerical value greater or equal to zero and smaller
than size. As a further precondition, it requires the invariant of SimplifiedLinkedList
to hold.
The specification in listing 5.16 would also potentially throw a ClassCastException and
thus be not well-defined as we do not check the type of nodeseq[n] before casting it to an
object of type Node. Here, it should be noted that the assertion ((Node) nodeseq[i])
!= null in SimplifiedLinkedList’s invariant is intended to guarantee a safe cast to
Node for all elements of nodeseq and thus make the method contract for getNext(int)
well-defined. However, here the general KeY calculus lacks a rule to deduce this.
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5.1.5.3. Method in Queens

class Queens {
...
/*@ public normal_behaviour

@ requires 0 < n;
@ ensures \result != null ==>
@ \result.length == n
@ && (\forall int x; 0 <= x && x < n;
@ 0 <= \result[x] && \result[x] < n)
@ && (\forall int p, x;
@ 0 <= x && x < p && p < n;
@ \result[x] != \result[p]
@ && \result[x] - \result[p] != p - x
@ && \result[p] - \result[x] != p - x);
@ ensures \result == null ==>
@ !(\exists \seq s; s.length == n
@ && (\forall int x; 0 <= x && x < n;
@ 0 <= (int)s[x] && (int)s[x] < n)
@ && (\forall int p, x;
@ 0 <= x && x < p && p < n;
@ (int)s[x] != (int)s[p]
@ && (int)s[x] - (int)s[p]
@ != p - x
@ && (int)s[p] - (int)s[x]
@ != p - x));
@*/

public static /*@pure nullable@*/ int[] nQueens(int n) {
...

}
}

Listing 5.17: Specification for Queens.nQueens(int)

The class Queens for our purposes contains one static method nQueens(int) returning an
array of variables with exact numerical value. It is specified to not throw any exceptions,
terminate normally and not have any side-effects. Furthermore, its result is specified to
be nullable, i.e. to be potentially equal to null. Its objective is for any exact numerical
value n greater than zero to compute an array of length n containing a solution to the
popular eight queens puzzle with n instead of eight queens.
The specification in listing 5.17 is not well-defined as s[x] and s[p] are cast to variables
of type int without knowing their type beforehand. As a solution, a simple prior
type-check comes into mind.
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5.1.5.4. Method in Queens

class Queens {
...
/*@ private normal_behaviour

@ requires 0 <= pos && pos < board.length;
@ && (\forall int x; 0 <= x && x < board.length;
@ 0 <= board[x] && board[x] < board.length);
@ && (\forall int p, x; 0 <= x && x < p && p < pos;
@ board[x] != board[p]
@ && board[x] - board[p] != p - x
@ && board[p] - board[x] != p - x);
@ ensures (\forall int x; 0 <= x && x < board.length;
@ 0 <= board[x] && board[x] < board.length);
@ && \result ==> (\forall int p, x;
@ 0 <= x && x < p && p < board.length;
@ board[x] != board[p]
@ && board[x] - board[p] != p - x
@ && board[p] - board[x] != p - x);
@ && !\result ==> !(\exists \seq s;
@ s.length == board.length;
@ (\forall int x; 0 <= x && x < s.length;
@ 0 <= (int)s[x] && (int)s[x] < s.length)
@ && (\forall int p, x;
@ 0 <= x && x < p && p < s.length;
@ (int)s[x] != (int)s[p]
@ && (int)s[x] - (int)s[p] != p - x
@ && (int)s[p] - (int)s[x] != p - x)
@ && (\forall int x; 0 <= x && x < pos;
@ (int)s[x] == \old(board[x])));
@ assignable board[pos..board.length -1];
@ measured_by board.length - pos;
@*/

private static /*@nullable@*/ boolean
search(int pos , int[] board) { ... }

}

Listing 5.18: Specification for Queens.search(int,int[])

Again, we inspect the class Queens, but this time its static method search(int,int[])
returning a boolean value. The method is specified to not throw any exceptions and
terminate normally, potentially returning null. For an array board of values of exact
numerical value between zero (including) and the array length (excluding) (each occurring
once) and an exact numerical value pos inside the bounds of board with the first pos
values in boards denoting a valid configuration for the n queens puzzle, the method
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computes if there are conflicts (with respect to a valid solution to the n queens puzzle) in
the whole array board.
This specification in listing 5.18 is again not well-defined as s[x] and s[p] are cast to
int without knowing their type beforehand.

5.1.6. Negative Array Size Exception
This exception type denotes an array created with a negative size, however in our case
we do not only relate this exception type to arrays, but also to similar data structures
such as sequences, an abstract data type in JML?. A NegativeArraySizeException is
less common than the exception types mentioned before, but it still needs to be handled.
Usually, it does not occur when explicitly denoting the size of an array to be created, but
when its size is computed by a complex function, which returns unexpected (negative)
results in some cases. Arrays are only defined for a size bigger or equal to zero and thus
a creation of one with negative size is not possible and undefined.

5.1.6.1. Method in TestLists

public interface List {
//@ public instance invariant
//@ \subset(\singleton(this.seq), footprint)
//@ && \subset(\singleton(this.footprint), footprint)
//@ && (\forall int i; 0<=i && i<seq.length;
//@ seq[i] instanceof Object);
//@ public accessible \inv: footprint;
...
//@ public ghost instance \locset footprint;
//@ public ghost instance \seq seq;

}
public class TestLists {

...
/*@ public normal_behaviour

@ requires s >= 0 && s <= l.seq.length && t.\inv
@ && l.\inv && \disjoint(t.footprint , l.footprint);
@ assignable t.footprint;
@ ensures \new_elems_fresh(t.footprint);
@ ensures t.seq ==
@ \seq_concat(\old(t.seq), \seq_sub(l.seq , 0, s-1));
@ ensures t.\inv;
@*/

public static void append(List t, List l, int s) { ... }
}

Listing 5.19: Specification for TestLists.append(List,List,int)
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The class TestLists for our purposes contains a static method append(List,List,int).
It is specified to not throw any exceptions and terminate normally. Furthermore, it
gets parameters of type List, which is an interface with the two ghost fields seq of
sequence type and footprint denoting a location set, on which its invariant depends.
The location set denoted by footprint thereby contains seq and all fields in List.
Finally, the inspected method takes two objects t and l of type List, requiring them to
respect their invariants, and an exact numerical value s greater or equal to zero and less
or equal to the size of l’s sequence of l in order to concatenate the first s elements of
l’s sequence to t’s sequence, preserving t’s invariant.
The specification for the method append(List,List,int) in listing 5.19 is not well-
defined as the size (s-1) of the new sequence is not guaranteed to be at least zero or
bigger and potentially leads to a sequence creation of negative size. As such a creation is
not defined, this leads to an exception. A simple solution to this problem would be to
require s to be truly greater than zero.

5.1.6.2. Loop in TestLists

public class TestLists {
...
/*@ public normal_behaviour

@ ...
@*/

public static void append(List t, List l, int s) {
int i = 0;
/*@ loop_invariant

@ 0<=i && i<=s
@ && t.seq == \seq_concat(\old(t.seq),
@ \seq_sub(l.seq , 0, i-1))
@ && \new_elems_fresh(t.footprint)
@ && \disjoint(t.footprint , l.footprint)
@ && \invariant_for(t) && \invariant_for(l);
@ assignable t.footprint;
@ decreases s - i;
@*/

while (...) { ... }
}

}

Listing 5.20: Loop specification in TestLists.append(List,List,int)

Again, we refer to the before mentioned method append(List,List,int) from list-
ing 5.19, but now have a look at the loop statement (listing 5.20) in it. Therein, we also
use the parameters t, l and s as well as their (t’s and l’s) ghost fields footprint and
seq, but also a local variable i of exact numerical value.
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This specification in listing 5.20 is not well-defined as the size (i-1) of the new sequence
resulting from the concatenation is not guaranteed to be at least zero or bigger. As a
solution, we could either start with the value 1 instead of 0 and also adjust the loop
invariant likewise or define this special case differently in the specification.

5.1.6.3. Method in LinkedList

class LinkedList {
/*@ public invariant \subset(this.*, repr);

@ public accessible \inv: repr
@ \measured_by seq.length;
@ private invariant length == seq.length;
@ && length != 0 ==> seq [0] == head;
@ && tail == null ==> length <= 1;
@ && tail != null ==> 2 <= length
@ && \subset(tail.*, repr)
@ && \subset(tail.repr , repr)
@ && \disjoint(this.*, tail.repr)
@ && seq[1..length] == tail.seq
@ && tail.\inv;
@*/

private final int head;
private final /*@nullable@*/ LinkedList tail;
private final int length;
//@ public final ghost \seq seq;
//@ public final ghost \locset repr;
...
/*@ public normal_behaviour

@ ensures \result.\inv;
@ ensures \result.seq == seq[1..seq.length ];
@ ensures \fresh(\set_minus(\result.repr , repr));
@*/

public /*@pure@*/ LinkedList tail() { ... }
}

Listing 5.21: Specification in LinkedList.tail()

Let us now have a look at the class LinkedList denoting yet another implementation for
the well-known data structure of the same name. It contains the two variables head and
length of exact numerical value, an object tail of type LinkedList specified nullable
as well as the ghost object seq of sequence type and the ghost field repr denoting a
location set. Furthermore, the length of seq forms the measured_by-value for the class,
guaranteed by the invariant to be equal to the variable length. For our purposes, we
inspect the method tail() contained in the class mentioned. This method returns an
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object (specified non-nullable) of type LinkedList and is specified to not throw any
exceptions, terminate normally and not have any side-effects. In its postcondition, it also
guarantees the invariant for the result object to hold.
The specification for tail() in listing 5.21 turns out to be not well-defined as the new
sequence seq of \result is not guaranteed to have a size bigger than zero. This is,
because the length of seq is not necessarily truly greater than zero. If it is equal to zero,
the sub sequence created by seq[1..seq.length] would have a negative size (equal to
−1), thus making the creation undefined. Possible solutions as prior described for tail()
come to mind.

5.1.7. Arithmetic Exception
This exception type denotes an arithmetic error, such as divide-by-zero. It occurs for
basic mathematical functions such as division or modulo, which are not defined for
all possible parameters. An ArithmeticException is directly related to fundamental
mathematical concepts and can as such also occur in many other modern programming
languages. Hence, it is the most fundamental or classical exception type and needs to be
dealt with for any expression denoting numerical operations.

5.1.7.1. Method in GreatestCommonDivisor

public class GreatestCommonDivisor {
...
/*@ public normal_behavior

@ requires a != 0 || b != 0;
@ ensures (a % \result == 0 && b % \result == 0 &&
@ (\forall int x; x > 0 && a % x == 0
@ && b % x == 0; \result % x == 0));
@ assignable \nothing;
@*/

public static int ofWith(final int a, final int b) { ...
}

}

Listing 5.22: Method specification in GreatestCommonDivisor

Finally, we have a look at the class GreatestCommonDivisor for our purposes containing
the static method ofWith(in, int). The method is specified to not throw any exceptions,
terminate normally and not have any side-effects. Furthermore, it requires at least one
of their arguments a and b of exact numerical value to be non-zero and computes their
greatest common divisor.
The method’s specification in listing 5.22 is not well-defined as \result can potentially
be equal to zero and thus e.g. the expression “a % \result” would be undefined. This
would lead to an ArithmeticException as the modulo operation is undefined for the
second argument being equal to zero.
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5.2. Performance
Until now, the case study only considered one of the two semantics presented and
implemented within this thesis, namely the L-operator semantics. As we justified this
choice in the preface with a difference in performance, this claim still needs validation.
This section will catch up on this by presenting some statistics illustrating the performance
difference for Well-Definedness Checks performed within this case study. Unlike the
last section, this will only cover Well-Definedness Checks for specifications found to be
well-defined, thereof we examined the performance for a set of method specifications in
the KeY examples – a set denoted by the name firstTouch and meant to be a means
for new KeY users to get to know its main functionalities – and used the automatic proof
mechanism in KeY to check their well-definedness.
For the measurement results, whose tables can be found in appendix A, several different
measures are given and presented. They are grouped by their according example package.
Each result is denoted by the method name and (if multiple contracts are specified for it)
the specified behaviour with an index number, forming the contract name. Furthermore,
we give the size of the explicit specification (lines of specification or LoS), measures
describing the size of the proof tree (amount of nodes and branches), the total time
needed to automatically prove the well-definedness, the average time per proof step or
node of the proof tree, the amount of aggregated simplification rules (performed by the
KeY One Step Simplifier or OSS) and finally the total amount of rule applications (apps).
Each Well-Definedness Check is performed and measured for both the L- and the Y-
operator, each having a different semantics. Although we also did a direct implementation
for the D-operator, we did not perform checks with this operator in the case study at all.
This was simply, because checks with it were not feasible due to the exponential growth
of the size of the generated formulas. Even Well-Definedness Checks for very small
method contracts took very long or needed more memory than there was available on
the machine (two cores with 2.66 GHz each and 4 GB of RAM), on which we performed
the proofs. In the following, we clarify our results by correlating our measurements for
both operators with each other.
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Figure 5.1.: Relationship of proof nodes and time between L- and Y-operator semantics
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In fig. 5.1, the different performance results for the above mentioned examples with both
operators are depicted. There, it can be seen, that – although both generate conditions
which are linear in size with respect to their input formula – the L-operator clearly beats
the Y-operator in terms of the proof size as well as the time needed to perform the
automatic proof in KeY. However, these measurements are based on a rather small set,
i.e. 28, of method contracts, which are all rather small in size (11 lines of specification
at most). And moreover, compared to the actual proof obligations, the performance
difference is not very significant.
Figure 5.1 also illustrates the two operators’ performance relationship to each other. The
mean difference is not very big and the numbers for the Y-operator are about five times
bigger than the numbers for the L-operator. This is except for three method contracts.
We suspect the reason for one of them (SITA3.rearrange()) to be the occurrence of
nested universal quantifiers, which necessitate considerable more quantifier instantiations.
For the other deviations, causes are not as clearly identifiable. Supplementary to the
structure of the specification, the KeY calculus heuristics (i.e. the decision on when to
apply which rule on which expression) could also play a crucial role in the difference.





6. Conclusion
A common approach to deal with the potential undefinedness of specification expressions
is the automatic generation of well-definedness conditions. Proving these conditions
to be fulfilled guarantees that no undefined expressions in specifications influence the
evaluation process. At the very latest with the decision of the JML community of
changing their notion of validity to specifically consider undefined expressions invalid, it
became inevitable to tackle the issue of ensuring well-definedness of JML specifications.

6.1. Results
Within this work, we realised fully functional Well-Definedness Checks for JML/JML?

specifications in the KeY System. Our procedure has been implemented in the KeY
System to enforce well-definedness of class invariants, model fields, method contracts,
loop statements and block contracts. Well-Definedness Checks form a preliminary step
before the ordinary proof and reject ill-defined specifications. The thesis furthermore
includes definitions for their ruleset, incorporating rules handling JML? expressions as
well as rules handling complete specification elements (the ones mentioned above). Checks
for class invariants, model fields and method contracts are implemented as separate proof
obligations considering only the specification, whereas checks for loop statements and block
contracts are designed as “on-the-fly” checks during the ordinary program verification,
since they can only be seen in context of the state in which they are specified. Furthermore,
we employed and extended two different semantics of well-definedness, the L-operator
semantics and the D-operator semantics, and integrated efficient implementations in
the KeY System. One evaluates based on classical logic, whereas the other simulates a
run-time assertion check (RAC). Regarding the implementation, we extended the KeY
System by adding short-circuit operators, making necessary arrangements to adjust the
order in specification clauses and implementing new operators, namely term transformers,
for the Well-Definedness Operators. Subsequently, we performed an extensive case
study on the well-definedness of a major part of the KeY Examples and discussed
problematic, i.e. ill-defined, specifications. We based our discussions on the types of
Java Unchecked RuntimeException and also discovered new undefinedness problems,
for which we introduced two new exception types to cope with JML/JML?’s richer
expressiveness. Finally, we analysed the performance of the implementedWell-Definedness
Checks, compared the two different semantics mentioned above, and illustrated our
measurements.
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6.2. Outlook and Future Work
The implemented Well-Definedness Checks can be used from now on in the KeY System
and their practical gain and further benefits are yet to determine. More specifically, we
could imagine an embeddeding in a more extensive well-formedness check, which also
checks the satisfiability and well-foundedness (meaning there are no infinite descending
chains in recursive specifications).
Based on this work, we also identified two particular tasks as useful extensions to our
checks. Firstly, they could be extended to cover more JML/JML? specification elements
as e.g. history constraints and set statements. Whereas most of them are presumably
simple extensions to the implemented checks, some require more precise definitions as to
be able to talk about their well-definedness.
Secondly, well-definedness does not only apply to the specification, but also to the
verification process. Calculus rules, e.g. the cut-, forall-left- and exists-right-rule, can
introduce potentially ill-defined expressions as well. Hence, a Well-Definedness Check for
newly introduced expressions would also be a useful extension.
Finally, a further examination to evaluate the practical use of our implementation as part
of the ordinary program verification process comes to mind. This requires an exploration
over time to fully tackle the impact and implications on the KeY System and further
evolutions on the field.
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A.1. SumAndMax

Class SumAndMax

Contract LoS Operator Nodes / Branches Time / Per Step OSS Apps

sumAndMax(int[]) 8 L 841 / 6 7208 / 8.5 (ms) 125 1252

Y 1674 / 7 13843 / 8.2 (ms) 297 2459

Table A.1.: Performance Measurements for SumAndMax

A.2. LinkedList

Class Node

Contract LoS Operator Nodes / Branches Time / Per Step OSS Apps

cons(int,Node) 6 L 299 / 8 856 / 2.8 (ms) 87 593

Y 1056 / 10 4011 / 3.7 (ms) 282 2038

search() 6 L 365 / 5 1112 / 3.0 (ms) 77 659

Y 1194 / 10 3541 / 2.9 (ms) 239 1779

Table A.2.: Performance Measurements for Node
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A.3. Cell

Class Cell

Contract LoS Operator Nodes / Branches Time / Per Step OSS Apps

Cell() 4 L 88 / 1 292 / 3.3 (ms) 33 200

Y 229 / 1 683 / 2.9 (ms) 76 476

getX() 4 L 110 / 2 185 / 1.6 (ms) 30 189

Y 301 / 1 853 / 2.8 (ms) 80 491

setX(int) 4 L 162 / 2 376 / 2.3 (ms) 44 295

Y 370 / 1 1280 / 3.4 (ms) 103 705

Table A.3.: Performance Measurements for Cell

A.4. Java5

Class For

Contract LoS Operator Nodes / Branches Time / Per Step OSS Apps

infiniteLoop() 3 L 159 / 3 256 / 1.6 (ms) 38 206

Y 447 / 4 1562 / 3.4 (ms) 91 592

sum() 1 L 256 / 2 548 / 2.1 (ms) 60 460

Y 703 / 3 2198 / 3.1 (ms) 156 1208

Table A.4.: Performance Measurements for For
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A.5. Quicktour

Class CardException

Contract LoS Operator Nodes / Branches Time / Per Step OSS Apps

getCause() 2 L 127 / 2 233 / 1.8 (ms) 39 230

Y 370 / 1 987 / 2.6 (ms) 105 616

getMessage() 3 L 114 / 2 179 / 1.5 (ms) 30 143

Y 332 / 1 739 / 2.2 (ms) 83 432

initCause(Throwable) 4 L 224 / 4 503 / 2.2 (ms) 62 343

Y 843 / 1 6087 / 7.2 (ms) 189 1300

Table A.5.: Performance Measurements for CardException

Class LogFile

Contract LoS Operator Nodes / Branches Time / Per Step OSS Apps

LogFile() 6 L 571 / 4 1361 / 2.3 (ms) 102 1045

Y 1051 / 5 3792 / 3.6 (ms) 244 1805

addRecord(int) 11 L 4987 / 78 12731 / 2.5 (ms) 607 7433

Y 4367 / 30 30325 / 6.9 (ms) 705 7211

getMaximumRecord() 7 L 814 / 10 1786 / 2.1 (ms) 124 1175

Y 2491 / 22 7310 / 2.9 (ms) 435 3662

Table A.6.: Performance Measurements for LogFile

Class LogRecord

Contract LoS Operator Nodes / Branches Time / Per Step OSS Apps

getBalance() 3 L 63 / 1 73 / 1.1 (ms) 20 75

Y 175 / 1 245 / 1.4 (ms) 45 210

getTransactionId() 3 L 67 / 1 85 / 1.2 (ms) 23 102

Y 201 / 1 309 / 1.5 (ms) 57 303

setRecord(int) 7 L 225 / 2 510 / 2.2 (ms) 65 428

Y 507 / 1 1665 / 3.2 (ms) 137 897

Table A.7.: Performance Measurements for LogRecord
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Class PayCard

Contract LoS Operator Nodes / Branches Time / Per Step OSS Apps

PayCard() 6 L 218 / 2 493 / 2.2 (ms) 70 445

Y 470 / 1 1486 / 3.1 (ms) 146 881

PayCard(int) 8 L 392 / 3 1143 / 2.9 (ms) 85 692

Y 664 / 1 2730 / 4.1 (ms) 176 1193

charge(int).exceptional 3 L 121 / 2 158 / 1.3 (ms) 33 159

Y 412 / 2 951 / 2.3 (ms) 85 556

charge(int).normal.0 7 L 351 / 6 896 / 2.5 (ms) 79 553

Y 972 / 1 4945 / 5.0 (ms) 206 1522

charge(int).normal.1 7 L 346 / 6 854 / 2.4 (ms) 83 546

Y 1879 / 9 31532 / 16.7 (ms) 313 3030

chargeAndRecord(int) 5 L 258 / 3 585 / 2.2 (ms) 56 370

Y 1544 / 4 14283 / 9.2 (ms) 242 2153

createJuniorCard() 6 L 169 / 1 290 / 1.7 (ms) 72 457

Y 447 / 1 1188 / 2.6 (ms) 167 928

isValid() 5 L 113 / 2 171 / 1.5 (ms) 35 202

Y 390 / 1 1003 / 2.5 (ms) 108 687

Table A.8.: Performance Measurements for PayCard

A.6. SITA

Class SITA3

Contract LoS Operator Nodes / Branches Time / Per Step OSS Apps

commonEntry(int,int) 9 L 1103 / 19 3858 / 3.4 (ms) 134 1671

Y 2821 / 34 8846 / 3.1 (ms) 358 4227

rearrange() 6 L 694 / 6 3898 / 5.6 (ms) 135 1262

Y 6126 / 45 41586 / 6.7 (ms) 908 8397

swap(int[],int,int) 6 L 399 / 4 1306 / 3.2 (ms) 71 605

Y 976 / 1 5888 / 6.0 (ms) 166 1550

Table A.9.: Performance Measurements for SITA3
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