35 research outputs found

    Multi-frequency PolSAR Image Fusion Classification Based on Semantic Interactive Information and Topological Structure

    Full text link
    Compared with the rapid development of single-frequency multi-polarization SAR image classification technology, there is less research on the land cover classification of multifrequency polarimetric SAR (MF-PolSAR) images. In addition, the current deep learning methods for MF-PolSAR classification are mainly based on convolutional neural networks (CNNs), only local spatiality is considered but the nonlocal relationship is ignored. Therefore, based on semantic interaction and nonlocal topological structure, this paper proposes the MF semantics and topology fusion network (MF-STFnet) to improve MF-PolSAR classification performance. In MF-STFnet, two kinds of classification are implemented for each band, semantic information-based (SIC) and topological property-based (TPC). They work collaboratively during MF-STFnet training, which can not only fully leverage the complementarity of bands, but also combine local and nonlocal spatial information to improve the discrimination between different categories. For SIC, the designed crossband interactive feature extraction module (CIFEM) is embedded to explicitly model the deep semantic correlation among bands, thereby leveraging the complementarity of bands to make ground objects more separable. For TPC, the graph sample and aggregate network (GraphSAGE) is employed to dynamically capture the representation of nonlocal topological relations between land cover categories. In this way, the robustness of classification can be further improved by combining nonlocal spatial information. Finally, an adaptive weighting fusion (AWF) strategy is proposed to merge inference from different bands, so as to make the MF joint classification decisions of SIC and TPC. The comparative experiments show that MF-STFnet can achieve more competitive classification performance than some state-of-the-art methods

    Advanced machine learning algorithms for Canadian wetland mapping using polarimetric synthetic aperture radar (PolSAR) and optical imagery

    Get PDF
    Wetlands are complex land cover ecosystems that represent a wide range of biophysical conditions. They are one of the most productive ecosystems and provide several important environmental functionalities. As such, wetland mapping and monitoring using cost- and time-efficient approaches are of great interest for sustainable management and resource assessment. In this regard, satellite remote sensing data are greatly beneficial, as they capture a synoptic and multi-temporal view of landscapes. The ability to extract useful information from satellite imagery greatly affects the accuracy and reliability of the final products. This is of particular concern for mapping complex land cover ecosystems, such as wetlands, where complex, heterogeneous, and fragmented landscape results in similar backscatter/spectral signatures of land cover classes in satellite images. Accordingly, the overarching purpose of this thesis is to contribute to existing methodologies of wetland classification by proposing and developing several new techniques based on advanced remote sensing tools and optical and Synthetic Aperture Radar (SAR) imagery. Specifically, the importance of employing an efficient speckle reduction method for polarimetric SAR (PolSAR) image processing is discussed and a new speckle reduction technique is proposed. Two novel techniques are also introduced for improving the accuracy of wetland classification. In particular, a new hierarchical classification algorithm using multi-frequency SAR data is proposed that discriminates wetland classes in three steps depending on their complexity and similarity. The experimental results reveal that the proposed method is advantageous for mapping complex land cover ecosystems compared to single stream classification approaches, which have been extensively used in the literature. Furthermore, a new feature weighting approach is proposed based on the statistical and physical characteristics of PolSAR data to improve the discrimination capability of input features prior to incorporating them into the classification scheme. This study also demonstrates the transferability of existing classification algorithms, which have been developed based on RADARSAT-2 imagery, to compact polarimetry SAR data that will be collected by the upcoming RADARSAT Constellation Mission (RCM). The capability of several well-known deep Convolutional Neural Network (CNN) architectures currently employed in computer vision is first introduced in this thesis for classification of wetland complexes using multispectral remote sensing data. Finally, this research results in the first provincial-scale wetland inventory maps of Newfoundland and Labrador using the Google Earth Engine (GEE) cloud computing resources and open access Earth Observation (EO) collected by the Copernicus Sentinel missions. Overall, the methodologies proposed in this thesis address fundamental limitations/challenges of wetland mapping using remote sensing data, which have been ignored in the literature. These challenges include the backscattering/spectrally similar signature of wetland classes, insufficient classification accuracy of wetland classes, and limitations of wetland mapping on large scales. In addition to the capabilities of the proposed methods for mapping wetland complexes, the use of these developed techniques for classifying other complex land cover types beyond wetlands, such as sea ice and crop ecosystems, offers a potential avenue for further research

    A review of technical factors to consider when designing neural networks for semantic segmentation of Earth Observation imagery

    Full text link
    Semantic segmentation (classification) of Earth Observation imagery is a crucial task in remote sensing. This paper presents a comprehensive review of technical factors to consider when designing neural networks for this purpose. The review focuses on Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Generative Adversarial Networks (GANs), and transformer models, discussing prominent design patterns for these ANN families and their implications for semantic segmentation. Common pre-processing techniques for ensuring optimal data preparation are also covered. These include methods for image normalization and chipping, as well as strategies for addressing data imbalance in training samples, and techniques for overcoming limited data, including augmentation techniques, transfer learning, and domain adaptation. By encompassing both the technical aspects of neural network design and the data-related considerations, this review provides researchers and practitioners with a comprehensive and up-to-date understanding of the factors involved in designing effective neural networks for semantic segmentation of Earth Observation imagery.Comment: 145 pages with 32 figure

    Multi-target regressor chains with repetitive permutation scheme for characterization of built environments with remote sensing

    Get PDF
    Multi-task learning techniques allow the beneficial joint estimation of multiple target variables. Here, we propose a novel multi-task regression (MTR) method called ensemble of regressor chains with repetitive permutation scheme. It belongs to the family of problem transformation based MTR methods which foresee the creation of an individual model per target variable. Subsequently, the combination of the separate models allows obtaining an overall prediction. Our method builds upon the concept of so-called ensemble of regressor chains which align single-target models along a flexible permutation, i.e., chain. However, in order to particularly address situations with a small number of target variables, we equip ensemble of regressor chains with a repetitive permutation scheme. Thereby, estimates of the target variables are cascaded to subsequent models as additional features when learning along a chain, whereby one target variable can occupy multiple elements of the chain. We provide experimental evaluation of the method by jointly estimating built-up height and built-up density based on features derived from Sentinel-2 data for the four largest cities in Germany in a comparative setup. We also consider single-target stacking, multi-target stacking, and ensemble of regressor chains without repetitive permutation. Empirical results underline the beneficial performance properties of MTR methods. Our ensemble of regressor chain with repetitive permutation scheme approach achieved most frequently the highest accuracies compared to the other MTR methods, whereby mean improvements across the experiments of 14.5% compared to initial single-target models could be achieved

    Synthetic Aperture Radar (SAR) Meets Deep Learning

    Get PDF
    This reprint focuses on the application of the combination of synthetic aperture radars and depth learning technology. It aims to further promote the development of SAR image intelligent interpretation technology. A synthetic aperture radar (SAR) is an important active microwave imaging sensor, whose all-day and all-weather working capacity give it an important place in the remote sensing community. Since the United States launched the first SAR satellite, SAR has received much attention in the remote sensing community, e.g., in geological exploration, topographic mapping, disaster forecast, and traffic monitoring. It is valuable and meaningful, therefore, to study SAR-based remote sensing applications. In recent years, deep learning represented by convolution neural networks has promoted significant progress in the computer vision community, e.g., in face recognition, the driverless field and Internet of things (IoT). Deep learning can enable computational models with multiple processing layers to learn data representations with multiple-level abstractions. This can greatly improve the performance of various applications. This reprint provides a platform for researchers to handle the above significant challenges and present their innovative and cutting-edge research results when applying deep learning to SAR in various manuscript types, e.g., articles, letters, reviews and technical reports

    How well do deep learning-based methods for land cover classification and object detection perform on high resolution remote sensing imagery?

    Get PDF
    © 2020 by the authors. Land cover information plays an important role in mapping ecological and environmental changes in Earth's diverse landscapes for ecosystem monitoring. Remote sensing data have been widely used for the study of land cover, enabling efficient mapping of changes of the Earth surface from Space. Although the availability of high-resolution remote sensing imagery increases significantly every year, traditional land cover analysis approaches based on pixel and object levels are not optimal. Recent advancement in deep learning has achieved remarkable success on image recognition field and has shown potential in high spatial resolution remote sensing applications, including classification and object detection. In this paper, a comprehensive review on land cover classification and object detection approaches using high resolution imagery is provided. Through two case studies, we demonstrated the applications of the state-of-the-art deep learning models to high spatial resolution remote sensing data for land cover classification and object detection and evaluated their performances against traditional approaches. For a land cover classification task, the deep-learning-based methods provide an end-to-end solution by using both spatial and spectral information. They have shown better performance than the traditional pixel-based method, especially for the categories of different vegetation. For an objective detection task, the deep-learning-based object detection method achieved more than 98% accuracy in a large area; its high accuracy and efficiency could relieve the burden of the traditional, labour-intensive method. However, considering the diversity of remote sensing data, more training datasets are required in order to improve the generalisation and the robustness of deep learning-based models
    corecore