327 research outputs found

    Service Migration from Cloud to Multi-tier Fog Nodes for Multimedia Dissemination with QoE Support.

    Get PDF
    A wide range of multimedia services is expected to be offered for mobile users via various wireless access networks. Even the integration of Cloud Computing in such networks does not support an adequate Quality of Experience (QoE) in areas with high demands for multimedia contents. Fog computing has been conceptualized to facilitate the deployment of new services that cloud computing cannot provide, particularly those demanding QoE guarantees. These services are provided using fog nodes located at the network edge, which is capable of virtualizing their functions/applications. Service migration from the cloud to fog nodes can be actuated by request patterns and the timing issues. To the best of our knowledge, existing works on fog computing focus on architecture and fog node deployment issues. In this article, we describe the operational impacts and benefits associated with service migration from the cloud to multi-tier fog computing for video distribution with QoE support. Besides that, we perform the evaluation of such service migration of video services. Finally, we present potential research challenges and trends

    QoE-Centric Control and Management of Multimedia Services in Software Defined and Virtualized Networks

    Get PDF
    Multimedia services consumption has increased tremendously since the deployment of 4G/LTE networks. Mobile video services (e.g., YouTube and Mobile TV) on smart devices are expected to continue to grow with the emergence and evolution of future networks such as 5G. The end user’s demand for services with better quality from service providers has triggered a trend towards Quality of Experience (QoE) - centric network management through efficient utilization of network resources. However, existing network technologies are either unable to adapt to diverse changing network conditions or limited in available resources. This has posed challenges to service providers for provisioning of QoE-centric multimedia services. New networking solutions such as Software Defined Networking (SDN) and Network Function Virtualization (NFV) can provide better solutions in terms of QoE control and management of multimedia services in emerging and future networks. The features of SDN, such as adaptability, programmability and cost-effectiveness make it suitable for bandwidth-intensive multimedia applications such as live video streaming, 3D/HD video and video gaming. However, the delivery of multimedia services over SDN/NFV networks to achieve optimized QoE, and the overall QoE-centric network resource management remain an open question especially in the advent development of future softwarized networks. The work in this thesis intends to investigate, design and develop novel approaches for QoE-centric control and management of multimedia services (with a focus on video streaming services) over software defined and virtualized networks. First, a video quality management scheme based on the traffic intensity under Dynamic Adaptive Video Streaming over HTTP (DASH) using SDN is developed. The proposed scheme can mitigate virtual port queue congestion which may cause buffering or stalling events during video streaming, thus, reducing the video quality. A QoE-driven resource allocation mechanism is designed and developed for improving the end user’s QoE for video streaming services. The aim of this approach is to find the best combination of network node functions that can provide an optimized QoE level to end-users through network node cooperation. Furthermore, a novel QoE-centric management scheme is proposed and developed, which utilizes Multipath TCP (MPTCP) and Segment Routing (SR) to enhance QoE for video streaming services over SDN/NFV-based networks. The goal of this strategy is to enable service providers to route network traffic through multiple disjointed bandwidth-satisfying paths and meet specific service QoE guarantees to the end-users. Extensive experiments demonstrated that the proposed schemes in this work improve the video quality significantly compared with the state-of-the- art approaches. The thesis further proposes the path protections and link failure-free MPTCP/SR-based architecture that increases survivability, resilience, availability and robustness of future networks. The proposed path protection and dynamic link recovery scheme achieves a minimum time to recover from a failed link and avoids link congestion in softwarized networks

    Improving Content Delivery Efficiency through Multi-Layer Mobile Edge Adaptation

    Get PDF
    This paper presents a novel architecture for optimizing the HTTP-based multimedia delivery in multi-user mobile networks. This proposal combines the usual client-driven dynamic adaptation scheme DASH-3GPP with network-assisted adaptation capabilities, in order to maximize the overall Quality of Experience. The foundation of this combined adaptation scheme is based on two state of the art technologies. On one hand, adaptive HTTP streaming with multi-layer encoding allows efficient media delivery and improves the experienced media quality in highly dynamic channels. Additionally, it enables the possibility to implement network-level adaptations for better coping with multi-user scenarios. On the other hand, mobile edge computing facilitates the deployment of mobile services close to the user. This approach brings new possibilities in modern and future mobile networks, such as close to zero delays and awareness of the radio status. The proposal in this paper introduces a novel element, denoted as Mobile Edge-DASH Adaptation Function, which combines all these advantages to support efficient media delivery in mobile multi-user scenarios. Furthermore, we evaluate the performance enhancements of this content- and user context-aware scheme through simulations of a mobile multimedia scenario.European Union H2020 programme: Grant Agreement H2020-ICT-671596. Spanish Ministerio de Economia y Competitividad (MINECO): grant TEC2013-46766-R

    QoE on media deliveriy in 5G environments

    Get PDF
    231 p.5G expandirá las redes móviles con un mayor ancho de banda, menor latencia y la capacidad de proveer conectividad de forma masiva y sin fallos. Los usuarios de servicios multimedia esperan una experiencia de reproducción multimedia fluida que se adapte de forma dinámica a los intereses del usuario y a su contexto de movilidad. Sin embargo, la red, adoptando una posición neutral, no ayuda a fortalecer los parámetros que inciden en la calidad de experiencia. En consecuencia, las soluciones diseñadas para realizar un envío de tráfico multimedia de forma dinámica y eficiente cobran un especial interés. Para mejorar la calidad de la experiencia de servicios multimedia en entornos 5G la investigación llevada a cabo en esta tesis ha diseñado un sistema múltiple, basado en cuatro contribuciones.El primer mecanismo, SaW, crea una granja elástica de recursos de computación que ejecutan tareas de análisis multimedia. Los resultados confirman la competitividad de este enfoque respecto a granjas de servidores. El segundo mecanismo, LAMB-DASH, elige la calidad en el reproductor multimedia con un diseño que requiere una baja complejidad de procesamiento. Las pruebas concluyen su habilidad para mejorar la estabilidad, consistencia y uniformidad de la calidad de experiencia entre los clientes que comparten una celda de red. El tercer mecanismo, MEC4FAIR, explota las capacidades 5G de analizar métricas del envío de los diferentes flujos. Los resultados muestran cómo habilita al servicio a coordinar a los diferentes clientes en la celda para mejorar la calidad del servicio. El cuarto mecanismo, CogNet, sirve para provisionar recursos de red y configurar una topología capaz de conmutar una demanda estimada y garantizar unas cotas de calidad del servicio. En este caso, los resultados arrojan una mayor precisión cuando la demanda de un servicio es mayor

    A Survey of Machine Learning Techniques for Video Quality Prediction from Quality of Delivery Metrics

    Get PDF
    A growing number of video streaming networks are incorporating machine learning (ML) applications. The growth of video streaming services places enormous pressure on network and video content providers who need to proactively maintain high levels of video quality. ML has been applied to predict the quality of video streams. Quality of delivery (QoD) measurements, which capture the end-to-end performances of network services, have been leveraged in video quality prediction. The drive for end-to-end encryption, for privacy and digital rights management, has brought about a lack of visibility for operators who desire insights from video quality metrics. In response, numerous solutions have been proposed to tackle the challenge of video quality prediction from QoD-derived metrics. This survey provides a review of studies that focus on ML techniques for predicting the QoD metrics in video streaming services. In the context of video quality measurements, we focus on QoD metrics, which are not tied to a particular type of video streaming service. Unlike previous reviews in the area, this contribution considers papers published between 2016 and 2021. Approaches for predicting QoD for video are grouped under the following headings: (1) video quality prediction under QoD impairments, (2) prediction of video quality from encrypted video streaming traffic, (3) predicting the video quality in HAS applications, (4) predicting the video quality in SDN applications, (5) predicting the video quality in wireless settings, and (6) predicting the video quality in WebRTC applications. Throughout the survey, some research challenges and directions in this area are discussed, including (1) machine learning over deep learning; (2) adaptive deep learning for improved video delivery; (3) computational cost and interpretability; (4) self-healing networks and failure recovery. The survey findings reveal that traditional ML algorithms are the most widely adopted models for solving video quality prediction problems. This family of algorithms has a lot of potential because they are well understood, easy to deploy, and have lower computational requirements than deep learning techniques

    Quality of experience-centric management of adaptive video streaming services : status and challenges

    Get PDF
    Video streaming applications currently dominate Internet traffic. Particularly, HTTP Adaptive Streaming ( HAS) has emerged as the dominant standard for streaming videos over the best-effort Internet, thanks to its capability of matching the video quality to the available network resources. In HAS, the video client is equipped with a heuristic that dynamically decides the most suitable quality to stream the content, based on information such as the perceived network bandwidth or the video player buffer status. The goal of this heuristic is to optimize the quality as perceived by the user, the so-called Quality of Experience (QoE). Despite the many advantages brought by the adaptive streaming principle, optimizing users' QoE is far from trivial. Current heuristics are still suboptimal when sudden bandwidth drops occur, especially in wireless environments, thus leading to freezes in the video playout, the main factor influencing users' QoE. This issue is aggravated in case of live events, where the player buffer has to be kept as small as possible in order to reduce the playout delay between the user and the live signal. In light of the above, in recent years, several works have been proposed with the aim of extending the classical purely client-based structure of adaptive video streaming, in order to fully optimize users' QoE. In this article, a survey is presented of research works on this topic together with a classification based on where the optimization takes place. This classification goes beyond client-based heuristics to investigate the usage of server-and network-assisted architectures and of new application and transport layer protocols. In addition, we outline the major challenges currently arising in the field of multimedia delivery, which are going to be of extreme relevance in future years
    corecore