3,244 research outputs found

    The 2016 Two-Player GVGAI Competition

    Get PDF
    This paper showcases the setting and results of the first Two-Player General Video Game AI competition, which ran in 2016 at the IEEE World Congress on Computational Intelligence and the IEEE Conference on Computational Intelligence and Games. The challenges for the general game AI agents are expanded in this track from the single-player version, looking at direct player interaction in both competitive and cooperative environments of various types and degrees of difficulty. The focus is on the agents not only handling multiple problems, but also having to account for another intelligent entity in the game, who is expected to work towards their own goals (winning the game). This other player will possibly interact with first agent in a more engaging way than the environment or any non-playing character may do. The top competition entries are analyzed in detail and the performance of all agents is compared across the four sets of games. The results validate the competition system in assessing generality, as well as showing Monte Carlo Tree Search continuing to dominate by winning the overall Championship. However, this approach is closely followed by Rolling Horizon Evolutionary Algorithms, employed by the winner of the second leg of the contest

    A Survey on Mobile Charging Techniques in Wireless Rechargeable Sensor Networks

    Get PDF
    The recent breakthrough in wireless power transfer (WPT) technology has empowered wireless rechargeable sensor networks (WRSNs) by facilitating stable and continuous energy supply to sensors through mobile chargers (MCs). A plethora of studies have been carried out over the last decade in this regard. However, no comprehensive survey exists to compile the state-of-the-art literature and provide insight into future research directions. To fill this gap, we put forward a detailed survey on mobile charging techniques (MCTs) in WRSNs. In particular, we first describe the network model, various WPT techniques with empirical models, system design issues and performance metrics concerning the MCTs. Next, we introduce an exhaustive taxonomy of the MCTs based on various design attributes and then review the literature by categorizing it into periodic and on-demand charging techniques. In addition, we compare the state-of-the-art MCTs in terms of objectives, constraints, solution approaches, charging options, design issues, performance metrics, evaluation methods, and limitations. Finally, we highlight some potential directions for future research

    Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes

    Get PDF
    The book documents 25 papers collected from the Special Issue “Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes”, highlighting recent research trends in complex industrial processes. The book aims to stimulate the research field and be of benefit to readers from both academic institutes and industrial sectors

    Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions

    Get PDF
    Welcome to ROBOTICA 2009. This is the 9th edition of the conference on Autonomous Robot Systems and Competitions, the third time with IEEE‐Robotics and Automation Society Technical Co‐Sponsorship. Previous editions were held since 2001 in Guimarães, Aveiro, Porto, Lisboa, Coimbra and Algarve. ROBOTICA 2009 is held on the 7th May, 2009, in Castelo Branco , Portugal. ROBOTICA has received 32 paper submissions, from 10 countries, in South America, Asia and Europe. To evaluate each submission, three reviews by paper were performed by the international program committee. 23 papers were published in the proceedings and presented at the conference. Of these, 14 papers were selected for oral presentation and 9 papers were selected for poster presentation. The global acceptance ratio was 72%. After the conference, eighth papers will be published in the Portuguese journal Robótica, and the best student paper will be published in IEEE Multidisciplinary Engineering Education Magazine. Three prizes will be awarded in the conference for: the best conference paper, the best student paper and the best presentation. The last two, sponsored by the IEEE Education Society ‐ Student Activities Committee. We would like to express our thanks to all participants. First of all to the authors, whose quality work is the essence of this conference. Next, to all the members of the international program committee and reviewers, who helped us with their expertise and valuable time. We would also like to deeply thank the invited speaker, Jean Paul Laumond, LAAS‐CNRS France, for their excellent contribution in the field of humanoid robots. Finally, a word of appreciation for the hard work of the secretariat and volunteers. Our deep gratitude goes to the Scientific Organisations that kindly agreed to sponsor the Conference, and made it come true. We look forward to seeing more results of R&D work on Robotics at ROBOTICA 2010, somewhere in Portugal

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    An Integrated Analysis of the Physiological Effects of Space Flight: Executive Summary

    Get PDF
    A large array of models were applied in a unified manner to solve problems in space flight physiology. Mathematical simulation was used as an alternative way of looking at physiological systems and maximizing the yield from previous space flight experiments. A medical data analysis system was created which consist of an automated data base, a computerized biostatistical and data analysis system, and a set of simulation models of physiological systems. Five basic models were employed: (1) a pulsatile cardiovascular model; (2) a respiratory model; (3) a thermoregulatory model; (4) a circulatory, fluid, and electrolyte balance model; and (5) an erythropoiesis regulatory model. Algorithms were provided to perform routine statistical tests, multivariate analysis, nonlinear regression analysis, and autocorrelation analysis. Special purpose programs were prepared for rank correlation, factor analysis, and the integration of the metabolic balance data

    Inverter PQ Control With Trajectory Tracking Capability For Microgrids Based On Physics-informed Reinforcement Learning

    Get PDF
    The increasing penetration of inverter-based resources (IBRs) calls for an advanced active and reactive power (PQ) control strategy in microgrids. To enhance the controllability and flexibility of the IBRs, this paper proposed an adaptive PQ control method with trajectory tracking capability, combining model-based analysis, physics-informed reinforcement learning (RL), and power hardware-in-the-loop (HIL) experiments. First, model-based analysis proves that there exists an adaptive proportional-integral controller with time-varying gains that can ensure any exponential PQ output trajectory of IBRs. These gains consist of a constant factor and an exponentially decaying factor, which are then obtained using a model-free deep reinforcement learning approach known as the twin delayed deeper deterministic policy gradient. With the model-based derivation, the learning space of the RL agent is narrowed down from a function space to a real space, which reduces the training complexity significantly. Finally, the proposed method is verified through numerical simulation in MATLAB-Simulink and power HIL experiments in the CURENT center.With the physics-informed learning method, exponential response time constants can be freely assigned to IBRs, and they can follow any predefined trajectory without complicated gain tuning
    • 

    corecore