4,258 research outputs found

    Pricing routines for vehicle routing with time windows on road networks

    Get PDF
    Several very effective exact algorithms have been developed for vehicle routing problems with time windows. Unfortunately, most of these algorithms cannot be applied to instances that are defined on road networks, because they implicitly assume that the cheapest path between two customers is equal to the quickest path. Garaix and coauthors proposed to tackle this issue by first storing alternative paths in an auxiliary multi-graph, and then using that multi-graph within a branch-and-price algorithm. We show that, if one works with the original road network rather than the multi-graph, then one can solve the pricing subproblem more quickly, in both theory and practice

    Pricing routines for vehicle routing with time windows on road networks

    Get PDF
    Several very effective exact algorithms have been developed for vehicle routing problems with time windows. Unfortunately, most of these algorithms cannot be applied to instances that are defined on road networks, because they implicitly assume that the cheapest path between two customers is equal to the quickest path. Garaix and coauthors proposed to tackle this issue by first storing alternative paths in an auxiliary multi-graph, and then using that multi-graph within a branch-and-price algorithm. We show that, if one works with the original road network rather than the multi-graph, then one can solve the pricing subproblem more quickly, in both theory and practice

    Column generation approaches to ship scheduling with flexible cargo sizes

    Get PDF
    We present a Dantzig-Wolfe procedure for the ship scheduling problem with flexible cargo sizes. This problem is similar to the well-known pickup and delivery problem with time windows, but the cargo sizes are defined by an interval instead of a fixed value. We show that the introduction of flexible cargo sizes to the column generation framework is not straightforward, and we handle the flexible cargo sizes heuristically when solving the subproblems. This leads to convergence issues in the branch-and-price search tree, and the optimal solution cannot be guaranteed. Hence we have introduced a method that generates an upper bound on the optimal objective. We have compared our method with an a priori column generation approach, and our computational experiments on real world cases show that the Dantzig-Wolfe approach is faster than the a priori generation of columns, and we are able to deal with larger or more loosely constrained instances. By using the techniques introduced in this paper, a more extensive set of real world cases can be solved either to optimality or within a small deviation from optimalityTransportation; integer programming; dynamic programming

    Shared Mobility Optimization in Large Scale Transportation Networks: Methodology and Applications

    Get PDF
    abstract: Optimization of on-demand transportation systems and ride-sharing services involves solving a class of complex vehicle routing problems with pickup and delivery with time windows (VRPPDTW). Previous research has made a number of important contributions to the challenging pickup and delivery problem along different formulation or solution approaches. However, there are a number of modeling and algorithmic challenges for a large-scale deployment of a vehicle routing and scheduling algorithm, especially for regional networks with various road capacity and traffic delay constraints on freeway bottlenecks and signal timing on urban streets. The main thrust of this research is constructing hyper-networks to implicitly impose complicated constraints of a vehicle routing problem (VRP) into the model within the network construction. This research introduces a new methodology based on hyper-networks to solve the very important vehicle routing problem for the case of generic ride-sharing problem. Then, the idea of hyper-networks is applied for (1) solving the pickup and delivery problem with synchronized transfers, (2) computing resource hyper-prisms for sustainable transportation planning in the field of time-geography, and (3) providing an integrated framework that fully captures the interactions between supply and demand dimensions of travel to model the implications of advanced technologies and mobility services on traveler behavior.Dissertation/ThesisDoctoral Dissertation Civil, Environmental and Sustainable Engineering 201

    Planning and Scheduling Transportation Vehicle Fleet in a Congested Traffic Environment

    Get PDF
    Transportation is a main component of supply chain competitiveness since it plays a major role in the inbound, inter-facility, and outbound logistics. In this context, assigning and scheduling vehicle routing is a crucial management problem. Despite numerous publications dealing with efficient scheduling methods for vehicle routing, very few addressed the inherent stochastic nature of travel times in this problem. In this paper, a vehicle routing problem with time windows and stochastic travel times due to potential traffic congestion is considered. The approach developed introduces mainly the traffic congestion component based on queueing theory. This is an innovative modeling scheme to capture the stochastic behavior of travel times. A case study is used both to illustrate the appropriateness of the approach as well as to show that time-independent solutions are often unrealistic within a congested traffic environment which is often the case on the european road networkstransportation; vehicle fleet; planning; scheduling; congested traffic

    Last-mile logistics optimization in the on-demand economy

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Vehicle routing and location routing with intermediate stops:A review

    Get PDF
    • …
    corecore