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ABSTRACT 

 

Optimization of on-demand transportation systems and ride-sharing services involves 

solving a class of complex vehicle routing problems with pickup and delivery with time 

windows (VRPPDTW). Previous research has made a number of important contributions 

to the challenging pickup and delivery problem along different formulation or solution 

approaches. However, there are a number of modeling and algorithmic challenges for a 

large-scale deployment of a vehicle routing and scheduling algorithm, especially for 

regional networks with various road capacity and traffic delay constraints on freeway 

bottlenecks and signal timing on urban streets. The main thrust of this research is 

constructing hyper-networks to implicitly impose complicated constraints of a vehicle 

routing problem (VRP) into the model within the network construction. This research 

introduces a new methodology based on hyper-networks to solve the very important 

vehicle routing problem for the case of generic ride-sharing problem. Then, the idea of 

hyper-networks is applied for (1) solving the pickup and delivery problem with 

synchronized transfers, (2) computing resource hyper-prisms for sustainable 

transportation planning in the field of time-geography, and (3) providing an integrated 

framework that fully captures the interactions between supply and demand dimensions of 

travel to model the implications of advanced technologies and mobility services on 

traveler behavior. 
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CHAPTER 1 

INTRODUCTION 

 

1.1. Motivations 

As population and personal travel activities continue to increase, traffic congestion 

has remained as one of the major concerns for transportation system agencies with tight 

resource constraints. The next generation of transportation system initiatives aims to 

integrate various demand management strategies and traffic control measures to actively 

achieve mobility, environment, and sustainability goals. Various approaches hold 

promises of reducing the undesirable effects of traffic congestion due to driving-alone 

trips. In this research, we mainly focus on one of these approaches which is coordinated 

transportation and demand-responsive transit services.  

In general, coordinated transportation services consist of three different levels of 

service: ride-hailing, ride-sharing without transfer, and ride-sharing with one or more 

than one synchronized transfer. Ride-hailing is a level of coordinated service in which a 

passenger hires a driver to get a transportation service for a fee, and the driver is 

supposed to deliver the passenger to exactly where he needs to go. Traditional taxi 

companies offer this form of transport. The way by which a passenger hails a car can be 

listed as follows: a passenger can hail a taxi from the street, call up a transport service on 

the phone, or hail a car from an app by his cellphone.  
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Ride-sharing without transfer is another level of coordinated transportation service 

which is slightly different from ride-hailing. In this mode of transportation, similar to the 

ride-hailing, a passenger hires a driver to take him exactly where he needs to go, but the 

passenger may share his ride with one or more than one passenger. A broad range of 

transportation network companies like Uber, Lyft, and Sidecar offers this type of 

transport service by the aid of three recent technological advances: (1) Global Positioning 

System (GPS) navigation devices, (2) smartphones, and (3) social networks.  

The third level of coordinated transportation service is ride-sharing with synchronized 

transfers. In general, transfers are used to provide more efficient transportation networks 

by reducing the operational costs, as well as making more flexible routes available for 

passengers. A large number of daily trips is classified in this category. For instance, in 

multi-modal transit, a passenger may use two or more transport modes for his trip (e.g. 

train and bus). Multi-modal transit provides convenient and economical connection of 

various modes to make a complete journey from origin to destination. Another example 

of this type of transportation service can be the first mile/last mile transport of the 

commuters who need to go from an origin to a transit station and then from the station at 

the other end of the trip to a final destination. Ride-sharing between households or fellow 

workers is another example of ride-sharing with synchronized transfers. In this case, 

members of a family or any other social group arrange their trips informally and share 

their travel information such as departure time, stops, and transfer points among 

themselves. 
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In Fig. 1.1, different levels of coordinated transportation service have been shown by 

an example in which six passengers with different origins, destinations, and departure 

time windows have called for service. As shown in Fig. 1.1, in the case of ride-sharing 

with synchronized transfers, the vehicles’ capacity can be utilized more in comparison to 

other types of coordinated transportation service.  

Number of required vehicles

Ride-hailing

Ride-sharing 

without transfer

Ride-sharing with 

synchronized transfers

T

Origin

Destination

Transfer point

T T

 
Fig. 1.1. Different levels of coordinated transportation service. 

 

The ride-sharing problem can be mathematically modeled by one of the well-known 

optimization problems which is the vehicle routing problem with pickup and delivery 

(VRPPD). Previous research has made a number of important contributions to this 

challenging problem along different formulation or solution approaches. However, there 

are a number of modeling and algorithmic challenges for a large-scale deployment of a 

vehicle routing and scheduling algorithm, especially for regional networks with various 
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road capacity and traffic delay constraints on freeway bottlenecks and signal timing on 

urban streets.  

In the field of operations research, a few previous research directly considers the 

underlying transportation network with time of day traffic congestion; however, other 

studies defines the pickup and delivery problem with time-windows (PDPTW) on a 

directed graph containing customers’ origin and destination locations only which are 

connected by some links that are representative of the shortest distance or least travel 

time routes between origin–destination pairs. That is, with each link, there are associated 

fixed routing cost and travel time between the two service nodes. Moreover, despite its 

great practicality, due to the existence of various linear and non-linear constraints in this 

problem, this problem is hard to solve such that the largest instances that can be solved 

by the most effective exact algorithms proposed so far contains about 500 customers.  

This problem has been also studied in the field of transportation engineering. The 

existing research in this field aims to study this problem on physical transportation-based 

networks in which travel time on each transportation link may vary over the time of a day 

(due to the traffic congestion in different times of day) or over the occupied seats of a 

vehicle (e.g. high-occupancy vehicles (HOV) or high-occupancy toll (HOT) lanes). 

However, most solution methods for solving this problem are heuristic-based and lack a 

sound optimization-based foundation. 

In the first phase of this research, in order to improve the solution quality and 

computational efficiency of on-demand transportation systems and dynamic ride-sharing 

services, especially for large-scale real-world transportation networks, we propose a new 
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mathematical programming model for the vehicle routing problem with pickup and 

delivery with time windows (VRPPDTW) that can fully recognize time-dependent link 

travel time caused by traffic congestion at different times of day.  

The main idea of our solution approach is that we dynamically generate multi-

dimensional networks in which the corresponding constraints are implicitly considered 

into the model. In the first phase of this research, we introduce a new methodology based 

on hyper-networks to solve the very important vehicle routing problem (VRP) for the 

case of generic ride-sharing problem. We apply the idea of hyper-networks for solving 

the ride-sharing problem with synchronized transfers in the second phase, computing 

hyper-prisms for sustainable transportation planning in the third phase, and presenting an 

activity-travel based vehicle scheduling framework in the fourth phase of this 

dissertation. Fig. 1.2 illustrates a summary of what we intend to present in this research. 

Vehicle Routing Problem

Methodology: High-dimensional Network  

Application 1: 

Pickup and Delivery with 

Synchronized Transfers

Application 2:

Resource Hyperprisms

Application 3:

Activity-travel Based Vehicle 

Scheduling

 
Fig. 1.2. Our proposed high-dimensional network representation as the new methodology for solving the 

VRP and corresponding three applications in the field of operations research, time-geography, and travelers’ 

behavior analysis. 
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The second phase of this research is dedicated to the more complicated version of 

pickup and delivery problem which is pickup and delivery with synchronized transfers. 

What motivated us to study the pickup and delivery problem with transfers was the fast-

growing ride-sharing mode of transportation. In the last decade, ride-sharing companies 

have introduced a new mode of transportation which is much more convenient than 

public transit and less expensive than taxi. By introducing connected and autonomous 

vehicles to this mode of transportation and eliminating the cost of hiring drivers, it is 

expected that in the near future, ride-sharing becomes a good substitution of public transit 

for daily trips of middle-class families. Knowing passengers’ trip itinerary in advance and 

offering incentives to those passengers who are flexible about their departure/arrival time 

and number of stops during their trip will help service providers to schedule more 

efficient trips for serving their customers.  

The third phase of this study focuses on resource constrained space-time prims and 

their functionality on multi-modal accessibility analysis. Accessibility is the ease of 

obtaining desired destinations, activities, or services in an environment. A common 

accessibility measure in basic and applied transportation science is the space-time prism 

(STP) and the network-time prisms (NTPs): these are the envelopes of all possible paths 

between two locations and times in planar space and transportation networks, 

respectively. STPs and NTPs focus on time as the scarce resource limiting accessibility. 

However, other resource constraints can constrain space-time accessibility, such as limits 

or “budgets” for energy, emissions, or monetary expenses. This phase of this research 
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extends NTPs to include other resource constraints in addition to time. Network-based 

resource hyper-prisms (RHPs) incorporate other resource constraints into NTP, capturing 

the trade-offs between time and other resources in determining space-time accessibility. 

We also apply our proposed high-dimensional network representation for the fourth 

and last phase of this research to propose an activity-travel based vehicle scheduling 

framework. The rapidly growing popularity of transportation network companies coupled 

with autonomous vehicle technologies, could potentially redefine the way in which 

individuals schedule and execute their activities and also the way in which travel demand 

is managed by network operators. For the traveler, the freedom from having to drive 

could lead to more flexible activity schedules and increased productivity while travelling. 

On the other hand, network operators could handle demand by incentivizing/dis-

incentivizing travel during a certain portion of the day (similar to surge pricing by Uber), 

or along a specific route. There is growing interest in the field to study incentive-based 

demand management strategies. It is therefore of critical importance to understand and 

accurately depict these transformative technologies and their implications for activity-

travel patterns in travel demand model systems. 

While the integrated models developed so far address modeling needs for the current 

array of travel options (modes, demand management strategies, etc.), they do not 

adequately handle emerging transportation technologies (ride-sharing services, 

autonomous vehicle technologies) that are increasingly penetrating the marketplace. 

Moreover, activity-based models (ABMs) still operate based on zonal level information 

(such as skims, by time-of-day) provided by dynamic traffic assignment models. The 
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activity-based models are oblivious to network logistics such as availability of ride-

sourcing options and incentives/disincentives customized to specific trips/travelers. On 

the other hand, vehicle routing problems, used to depict ride-sharing services in dynamic 

traffic assignment (DTA) models, view travel as disjoint trips that are independent of 

each other. The solutions to VRP are typically optimization-based and lack a sound 

behavioral foundation. Solutions to VRP in the standard dynamic traffic assignment 

models are often aimed at serving the maximum number of trip requests without taking 

into consideration the precedence constraints (or linkages) between the trips. This vital 

behavioral constraint is ignored in the VRP optimization techniques incorporated in 

dynamic traffic assignment models. The last phase of this research suggests an integrated 

framework that fully captures the interactions between supply and demand dimensions of 

travel to model the implications of advanced technologies and mobility services on 

traveler behavior. 

 

1.2. Objectives 

The main thrust of this research is constructing hyper-networks to implicitly impose 

complicated constraints of a VRP into the model within the network construction. The 

main objectives of this dissertation are listed as follows. 

1. We introduce a new methodology based on hyper-networks to solve the very 

important vehicle routing problem for the case of generic ride-sharing problem.  
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2. We apply the idea of hyper-networks for solving the pickup and delivery problem 

with synchronized transfers on real-world data sets. 

3. We apply the idea of hyper-networks for computing hyper-prisms for sustainable 

transportation planning in the field of time-geography. 

4. We apply the idea of hyper-networks to provide an integrated framework that 

fully captures the interactions between supply and demand dimensions of travel to 

model the implications of advanced technologies and mobility services on traveler 

behavior. 

 

1.3. Overview of Our Proposed Methods 

We construct hyper-networks by adding ‘time’ and ‘state’ as new dimensions to the 

physical transportation networks. In the ride-sharing problem, presented in Chapter 3, the 

state is the carrying status of passengers in the vehicles, enabling us to track the service 

status of passengers at any time of day. In the ride-sharing problem with synchronized 

transfers, presented in Chapter 4, the state is the cumulative service status of passengers 

in the vehicles by which the service status of passengers are tracked cumulatively at any 

location and time of day.  

In Chapter 5, we apply the concept of hyper-networks in the field of time-geography 

by adding the resource as a new dimension to the space-time networks. In this case, the 

level of resource is interpreted as the state which can be monitored for any agent (i.e. a 

gasoline passenger car or an electric vehicle) at any time of day. Fuel, money, carbon 
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emission, and transportation mode are a few out of many types of resources in the real–

world transportation systems. 

We also introduce a new state dimension, called the ‘under-service trip request’ state, 

to the vehicle scheduling model in order to track the execution status of the trip requests 

at any time and transportation node. We also construct activity-travel graphs for 

passengers to detect the execution of the passenger’s activities. Having this, not only we 

can guarantee that each activity request is systematically evaluated within its time 

window (depending on whether it is mandatory or optional), but also ensure that the road 

as well as vehicle capacity constraints are not violated. 

Bu introducing hyper-networks to the aforementioned problems, the problems are 

converted to time-dependent state-dependent least cost problems which can be solved by 

computationally efficient algorithms proposed in the literature (e.g. label correcting, label 

setting, etc.). 

 

1.4. Organization of the Dissertation 

Chapter 2 provides a comprehensive literature review for the pickup and delivery 

problem. In this chapter, we focus on the applications of this problem, as well as solution 

methods used to solve this optimization problem.  

Chapter 3 contains a precise mathematical description of the PDPTW in the state-

space-time (SST) networks. We present our new integer programming model for the 

PDPTW. Then, we will show how the main problem is decomposed to an easy-to-solve 

problem by the Lagrangian relaxation (LR) algorithm. Finally we provide computational 
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results of the six-node transportation network, followed by the Chicago sketch and 

Phoenix regional networks to demonstrate the computational efficiency and solution 

optimality of our developed algorithm coded by C++. After large-scale network 

experiments, we conclude this chapter with discussions on possible extensions. 

Chapter 4 contains the problem statement and assumptions for the pickup and 

delivery problem with transfers (PDPT). In this chapter, we initially explain the 

clustering phase and present our proposed multi-commodity network flow programming 

model for the PDPT. We will further explain how to improve vehicles’ performance by 

finding optimal chains of work pieces. We also explain our motives for applying the 

hyper-network structure in this section. Computational results over the instances applied 

by Ropke and Pisinger (2006) and the real-world data set proposed by Cainiao Network 

(logistics service provider to Alibaba Group) are provided to demonstrate the 

computational efficiency of our developed algorithm coded in C++. We summarize this 

chapter with discussions on possible extensions. 

Chapter 5 provides a brief literature review on existing time geography frameworks. 

This chapter describes in detail, the construction of a space-time-resource (STR) hyper-

network as the foundation of our method and presents a mathematical formulation to 

specify the borders of a RHP, followed by a dynamic programming solution approach. 

We also provide results from the application of the proposed algorithm to the large–scale 

Chicago sketch transportation network. Discussion, concluding remarks, and directions 

for future research form the final section of this chapter.  
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Chapter 6 describes in detail, the construction of the activity-travel graphs for 

passengers and SST networks for vehicles, and presents the mathematical formulation of 

the time-discretized multi-commodity network flow model, as well as the solution 

approach. We also provide results from the application of the proposed algorithm to the 

Phoenix subarea transportation network. Discussion, concluding remarks, and directions 

for future research form the last section of this chapter. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1. Background 

The Vehicle Routing Problem is one of the most well-studied combinatorial 

optimization problems in which we are looking for the optimal set of routes to be traveled 

by a fleet of vehicles to serve a given set of passengers. This problem was introduced by 

Dantzig and Ramser in 1959 for the first time. A few years later, in 1964, a heuristic was 

proposed by Clarke and Wright to improve the Dantzig-Ramser approach. Following 

these two seminal papers, thousands of mathematical models and algorithms were 

proposed for the optimal and approximate solution of the different versions of the VRP. 

We also know that hundreds of software packages for solving the various real-world 

VRPs are now available on the market. To name a few out of many, WorkWave Route 

Manager, Drivewyze PreClear, DIRECTOR Fleet Software, Route4Me, MyRouteOnline, 

Routific, Omnitracs Roadnet Routing, Speedy Route, GetSwift, Abivin vRoute, 

TourSolver, Route Optimizer, RouteSavvy, Road Warrior, RouteXL, Mapotempo Web, 

and mobi.Route. Despite its great practicality, the VRP is hard to solve such that the 

largest VRP instances that can be solved by the most effective exact algorithms proposed 

so far contains about 500 customers (Baldacci et al., 2011), while larger instances may be 

solved to optimality only in particular cases. 

In this research, we mostly focus on the VRPPDTW or simply say, the PDPTW, 

which is a generalized version of the VRP with time windows (VRPTW). In the PDTW, 
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each transportation request is a combination of pickup at the origin node and drop-off at 

the destination node. The PDPTW contains all constraints in the VRPTW plus added 

constraints in which either pickup or delivery has given time windows, and the service 

for each request must be performed by a single vehicle. These impose visiting each 

pickup and drop-off location exactly once during their given departure and arrival time 

windows, coupling the pickup and corresponding delivery stops on the same vehicle 

routes, and visit precedence among each pickup stop and its associated drop-off stop. 

Other constraints which are common between the PDPTW and VRPTW are as follows: 

not exceeding the capacity of vehicles, depot constraints that ensure vehicles start their 

route from their starting depot and end it to their ending depot, and resource constraints 

on the number of drivers and vehicle types.  

 

2.2. Applications of the PDPTW 

Several applications of the PDPTW have been reported in road, maritime, and air 

transportation environments, to name a few out of many, Fisher et al. (1982), Bell et al. 

(1983), Savelsbergh and Sol (1998), Wang and Regan (2002), and Zachariadis et al. 

(2015), Shiri and Huynh (2016), and Shiri and Huynh (2017) in road cargo routing and 

scheduling; Psaraftis et al. (1985), Fisher and Rosenwein (1989), Christiansen (1999), 

Christiansen et al. (2004), Christiansen et al. (2007), and Rodrigues et al. (2016) in sea 

cargo routing and scheduling; and Solanki and Southworth (1991), Solomon et al. (1992), 

Rappoport et al. (1992), Rappoport et al. (1994), Azadian et al. (2012) in air cargo 

routing and scheduling. Further applications of the VRPPDTW can be found in door-to-
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door transportation services for elderly or handicapped people (Jaw et al., 1986; Alfa, 

1986; Madsen et al. 1995; Ioachim et al., 1995; and Toth and Vigo, 1997; Borndörfer et 

al. 1997; Colorni and Righini 2001; Diana and Dessouky 2004; Rekiek et al. 2006; 

Melachrinoudis et al. 2007), school bus routing and scheduling (Swersey and Ballard, 

1983; and Bramel and Simchi-Levi, 1995), and ride-sharing (Hosni et al., 2014; and 

Wang et al., 2015, Mahmoudi and Zhou, 2016).  Recently, Furuhata et al. (2013) offers 

an excellent review and provides a systematic classification of emerging ride-sharing 

systems. 

What makes the application of the PDPTW in transporting people different from 

other routing problems is the human perspective. When passengers are transported, 

improving user convenience and quality of service must be balanced against minimizing 

operating costs. Quality of service can be measured by the time duration passengers wait 

until their service start (passengers waiting time), the time duration passengers spend in 

vehicles during their ride (passengers ride time), or difference between actual and desired 

delivery times. Moreover, vehicle capacity becomes an important constraint when 

transporting passengers, while it is often ignored in other applications of the PDPTW, 

particularly those related to the collection and delivery of letters and small parcels. In this 

research, we mainly focus on the PDPTW for people transportation and more 

specifically, the application of the PDPTW in ride-sharing mode of transportation. 

The PDPTW can operate based on a static or a dynamic mode. In the static mode 

(off-line requests), all transportation requests are known in advance, whereas in the 

dynamic mode (on-line requests), transportation requests gradually call for service during 
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the day and vehicle routes must be adjusted in the real-time manner to satisfy the 

demand. In practice, we may have a combination of on-line and off-line transportation 

requests.  

 

2.3. Assumptions 

In order to simplify the PDPTW, several assumptions on the attributes of vehicles 

serving passengers have been considered which can be found in the literature. For 

example, some primary research assume there is only one vehicle available to serve 

customers (e.g. Psaraftis, 1980; Psaraftis, 1983; Sexton and Bodin, 1985a and 1985b; 

Desrosiers et al. 1986 and Van Der Bruggen et al. 1993). Some studies assume the main 

consideration of the problem is minimizing the total number of vehicles subject to 

satisfying all demands; thus, total number of vehicles available for serving is unknown 

(e.g. Dumas et al. 1989; Desrosiers et al. 1991; Ioachim et al. 1995; Rekiek et al. 2006; 

Lou and Schonfeld, 2007 and 2011). Some assume vehicles serving passengers are 

homogeneous (e.g. Nanry and Barnes, 2000; Angelelli and Mansini, 2002; Männel and 

Bortfeldt, 2016; Veenstra et al. 2017). Homogeneous vehicles are those with the same 

capacity, type, origin and destination depots, and work shift. Speaking of vehicles type, 

vehicles may be designed to carry wheelchairs only, serve off-line transportation requests 

only, or serve both off-line and on-line requests. Back to the assumptions on the 

characteristics of vehicles, one can assume there are multiple vehicles (either 

homogeneous or non-homogeneous) available for service, but based at a single depot 
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(e.g. Bodin and Sexton, 1986; Desrosiers et al. 1988; Ioachim et al. 1995; Cordeau and 

Laporte 2003; Diana and Dessouky, 2004; Parrah et al. 2009).  

We can also consider several assumptions on passengers’ preferences. For example, 

one can assume passengers have choice to determine either their departure or arrival time 

window not both. Another can assume that there is no restriction on passengers’ ride and 

waiting times as long as passengers’ departure/arrival time window constraints are not 

violated. The other assumption can be the one in which passengers have no preference 

about vehicles type and/or drivers serving them. Finally, one can assume passengers do 

not put any restriction on the number of passengers sharing their ride with them. 

The PDPTW can be approached as soft or hard time windows. In the PDPTW with 

soft time windows, vehicles are allowed to arrive early/late at passengers’ pickup/drop-

off locations, but time window violations (earliness and tardiness) are penalized in the 

objective function. In contrast, in the PDPTW with hard time windows, earliness and 

tardiness are generally forbidden. From the practical point of view, for situations in 

which vehicles may not have any available place at customer locations to wait, the soft 

variant prevails.  

The objective function of the PDPTW may also vary from one study to another based 

on what main consideration of the problem is. For example, some studies aim to satisfy 

all demands with less number of vehicles, while others target to maximize the number of 

requests that can be served by a fixed number of vehicles. Therefore, the former problem 

is minimizing costs subject to full demand satisfaction, while the latter one is maximizing 

satisfied demand subject to vehicles availability. In fact, the latter case is more practical. 
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One of the ways by which lack of vehicles can be handled is surge pricing. Surge pricing 

is how rideshare companies aim to control supply and demand and happens when there is 

a high demand for vehicles (i.e. lots of passengers are looking for a ride in the same area), 

while there are not enough vehicles to satisfy all the passengers. The goal of surge pricing 

is to incentive vehicles to perform trips during the busiest hours of the day. Surge pricing 

fixes this excess demand by applying a multiplier on every fare, therefore raising prices 

by certain percentages. As a result, some passenger will opt to not pay the higher fare, 

making more vehicles available for those passengers who are willing to pay the surge. 

Surge pricing can happen at any time of the day, but it is most common during rush hour, 

bad weather, holidays, and weekends - all times when there is a sense of urgency to get a 

ride. Another way to handle deficit in supply is serving some of the demand with the 

available vehicles and then using extra vehicles (e.g. virtual vehicles (taxis) with higher 

operating cost) if necessary. Note that operating costs may include fuel, maintenance, 

depreciation, insurance costs, and more importantly, cost of hiring full-time or part-time 

drivers. Other objective functions observed in the literature include but not limited to: 

minimization of difference between actual and desired delivery times (e.g. Bodin and 

Sexton, 1986), minimization of differences between actual and shortest possible ride 

times (e.g. Bodin and Sexton, 1986), minimization of total route duration (e.g. e.g. 

Dumas et al. 1989; Desrosiers et al. 1991; Ioachim et al. 1995), minimization of total 

route length (e.g. Cordeau and Laporte, 2003), minimization of vehicles idle time (e.g. 

Diana and Dessouky, 2004), minimization of user inconvenience/dissatisfaction (e.g. 
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Coslovich et al. 2006; Melachrinoudis et al. 2007), or a weighted combination of those 

mentioned above. 

 

2.4. Solution Methods 

Several solution methods for the PDPTW have been conducted before. There are two 

categories of solution approach: heuristics and optimization-based solutions. In this 

section, we start with the heuristic methods and then we will go through the details of 

optimization-based methods which provides exact solutions for the PDPTW. 

 

2.4.1. Heuristics 

2.4.1.1. Insertion Heuristic 

Insertion heuristic starts with a route on small subsets of requests, and then extends 

this route by inserting the remaining requests one after the other until all requests have 

been inserted. Wilson et al. (1971), Wilson and Weissberg (1976), and Wilson and 

Colvin (1977) proposed an insertion heuristic in which the concept of building tours is 

introduced through sequential insertion of passengers. Roy et al. (1984a, 1984b) applied 

similar insertion heuristic for the problem of transporting disabled persons. In their 

project, majority of passengers call for service in advance. Knowing the information 

related to passengers’ origin and destination locations as well as their desired pickup and 

delivery time beforehand, their algorithm generates initial routes for vehicles starting at 

the beginning of the day, then the algorithm inserts new requests in the existing routes or 

generates new routes if necessary. Jaw et al. (1986) developed an insertion heuristic, 
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where transportation requests are sorted based on their earliest pickup time, and then 

requests are inserted in vehicles timetable considering a weighted combination of least 

operational costs and users’ inconvenience. Feasible insertion is obtained by the aid of 

schedule blocks (continuous periods of time for active vehicles) between two successive 

periods of idle vehicle slack time. Madsen et al. (1995) developed a generalized version 

of the insertion heuristic proposed by Jaw et al. (1986) in which the algorithm can be 

applied on-line in a dynamic environment. Dethloff (2002), Diana and Dessouky (2004), 

Lu and Dessouky (2006), Quadrifoglio et al. (2007), Sungur et al. (2008), Caris and 

Janssens (2009), Masson et al. 2013, Coltin and Veloso (2014), and Wang et al. (2016) 

are a few out of many research applied insertion heuristic for the PDPTW.    

 

2.4.1.2. Local Search Heuristic 

Local search is an iterative algorithm that moves from one solution to another in the 

search space by applying local changes, until a near optimal solution is found or a time 

bound is elapsed. Local search heuristic initially introduced by Lin (1965) and Lin and 

Kernighan (1973) for the Traveling Salesman Problem. A few years later, Psaraftis 

(1983) applied a local search heuristic for solving the PDPTW. Van der Bruggen et al. 

(1993) developed a local search heuristic based on a variable-depth search. The algorithm 

consists of two phases: construction phase in which the algorithm searches for feasible 

routes and improvement phase in which the algorithm considers feasible solutions only to 

improve the final solution. Gendreau et al. (2006), Pisinger and Ropke (2010), 

Subramanian et al. (2010), Ribeiro and Laporte (2012), Masson et al. (2013), and 
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Grangier et al. (2016) are a few out of many research applied local search heuristic for 

the PDPTW.   

 

2.4.1.3. Clustering Algorithm 

Clustering passengers based on their geographical proximity is broadly used either a 

priori or in parallel with the routing process. Cullen et al. (1981) proposed a cluster-first, 

route-second heuristic in which the clustering and routing sub-problems are solved by 

column generation (CG) technique. A few years later, Bodin and Sexton (1986) also 

developed another cluster-first, route-second heuristic for the PDPTW. Passengers are 

first partitioned into clusters, and then, by using the algorithm proposed by Sexton and 

Bodin (1985a, 1985b), the algorithm constructs a tour on each cluster. Finally, the 

algorithm swaps passengers between routes and performs route re-optimizations. 

In fact, finding high-quality clusters without having some levels of routing 

information is a difficult task. That is why Dumas et al. (1989) introduced the concept of 

mini-clusters, where passengers with the spatio-temporal closeness are clustered together. 

In their algorithm, a heuristic provides a set of mini-clusters. Then, a CG algorithm is 

used to optimally combine mini-clusters into vehicle routes. Finally, the algorithm 

performs route re-optimizations in order to obtain optimal routing and scheduling for 

each vehicle. Desrosiers et al. (1991) also proposed another way of constructing mini-

clusters by a parallel insertion method based on spatio-temporal proximity of the 

requests. Ioachim et al. (1995) later applied an optimization-based technique instead of a 

heuristic for constructing mini-clusters. Pankratz (2005), Bard and Jarrah (2009), Qu and 
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Bard (2012), and Masson et al. (2013) are a few out of many examples of studies applied 

clustering algorithm for the PDPTW. 

 

2.4.2. Metaheuristics 

2.4.2.1. Tabu Search 

One of the metaheuristics used for solving the PDPTW is tabu search (TS). Tabu 

search is a local search technique in which a potential solution to a problem is taken, and 

its immediate neighbors are scanned in the hope of finding an improved solution. If a 

potential solution has been previously visited within a certain short-term period, or if it 

has violated a rule, it is marked as “tabu” (forbidden) so that the algorithm does not 

consider that possibility repeatedly. Gendreau et al. (1998) proposed an adaptive 

memory-based tabu search for the dynamic PDPTW in which a neighborhood structure 

based on the concept of ejection chains is used. The concept of ejection chains is defined 

as follows: a transportation request is chosen, ejected from its route, and inserted to 

another route, where another request is pushed to move to another route. Toth and Vigo 

(1997) obtained further improvements by applying a tabu thresholding post-optimization 

phase after the parallel insertion step. Cordeau and Laporte (2003) proposed a tabu search 

heuristic for the static PDPTW. They developed a procedure for neighborhood evaluation 

to minimize route duration and ride time by adjusting the visit time of the nodes on the 

routes. Attanasio et al. (2004) suggested a number of parallel implementations of a tabu 

search heuristic previously developed by Cordeau and Laporte (2003) for the static 

PDPTW in order to solve this problem for the dynamic mode. Chen and Wu (2005), 
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Crispim and Brandão (2005), Montané and Galvão (2006), Bianchessi and Righini 

(2007), Melachrinoudis et al. (2007), and Kirchler and Calvo (2013) are a few out of 

many examples of studies applied TS for solving the PDPTW. 

 

2.4.2.2. Genetic Algorithm 

The other metaheuristic used for solving the PDPTW is genetic algorithm (GA). 

Genetic algorithm is a technique based on a natural selection process that mimics 

biological evolution. The algorithm repeatedly modifies a population of individual 

solutions. At each step, the genetic algorithm randomly selects individuals from the 

current population and uses them as parents to produce the children for the next 

generation. Over successive generations, the population “evolves” toward an optimal 

solution. Rekiek et al. (2006) proposed a genetic algorithm for the clustering phase and 

an insertion algorithm for the routing phase. Jorgensen et al. (2007) developed a genetic 

algorithm heuristic to construct clusters and spatio-temporal nearest neighbor procedure 

to generate routes. Jung and Haghani (2000), Zhao et al. (2009), Tasan and Gen (2012), 

Wang and Chen (2012), Lin et al. (2014), and Cherkesly et al. (2015) are a few out of 

many examples of studies applied GA for the PDPTW. 

 

2.4.2.3. Simulated Annealing 

Simulated annealing (SA) is another metaheuristic used for solving the PDPTW. The 

simulated annealing algorithm was originally inspired from the process of annealing in 

metal work. Annealing is a procedure involves heating and cooling a material to alter its 
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physical properties due to the changes in its internal structure. As the metal cools down, 

its new structure becomes fixed, consequently causing the metal to keep its newly 

obtained properties. In simulated annealing, we consider a temperature variable to 

simulate this heating process. We initially set the temperature variable high and then 

allow it to slowly ‘cool’ as the algorithm runs. While the temperature variable is high, the 

algorithm will be allowed, with more frequency, to accept solutions that are worse than 

our current solution. This gives the algorithm the ability to jump out of any local 

optimums it finds itself in early on in execution. As the temperature is reduced, so is the 

chance of accepting worse solutions, therefore allowing the algorithm to gradually focus 

in on an area of the search space in which hopefully, a close to optimum solution can be 

found. This gradual ‘cooling’ process is what makes the simulated annealing algorithm 

remarkably effective at finding a close to optimum solution when dealing with large 

problems which contain numerous local optimums. Van der Bruggen et al. (1993) 

developed a local search heuristic based on a variable-depth search, in which a simulated 

annealing algorithm is applied to avoid local optimums. Baugh et al. (1998) proposed 

cluster-first, route-second heuristic, where the clustering phase is solved by a simulated 

annealing heuristic and routing phase by a modified space-time nearest neighbor 

heuristic. Li and Lim (2001), Bent and Hentenryck (2006), Deng et al. (2009), Yu and 

Lin (2014), and Wang et al. (2015) are examples of research used SA for the PDPTW. 
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2.4.2.4. Particle Swarm Optimization 

Particle swarm optimization (PSO) algorithm is one of the other metaheuristics 

employed for solving the PDPTW. The algorithm inspired by social behavior of bird 

flocking or fish schooling around food sources. At first, a flock of birds circling over an 

area, where they can smell a hidden source of food. The one who is closest to the food 

chirps the loudest and the other birds swing around in his direction. If any of the other 

circling birds comes closer to the target than the first, it chirps louder and the others veer 

over toward him. This tightening pattern continues until one of the birds happens upon 

the food. In this algorithm, over a number of iterations, a group of variables have their 

own values adjusted closer to the member whose value is closest to the target at any 

given moment. Ai and Kachitvichyanukul (2009), Sombuntham and Kachitvichayanukul 

(2010), Goksal et al. (2013), and Chen et al. (2016) are examples of research used PSO 

for the PDPTW. 

 

2.4.2.5. Ant Colony 

Ant colony (AC) algorithm is another metaheuristic used for solving the PDPTW. 

The ant colony algorithm finds optimal paths that is based on the behavior of ants 

searching for food. At first, ants wander randomly. When an ant finds food, it walks back 

to the colony leaving “markers”, called pheromones, showing that the path has food. 

When other ants come across the pheromones, they are likely to follow the path with a 

certain probability, and return and reinforce it if they eventually find food. As more ants 

find the path, it gets stronger until there are a couple streams of ants traveling to various 
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food sources near the colony. Since the ants drop pheromones every time they bring food, 

shorter paths gets marched over more frequently, and thus the pheromone density 

becomes higher on shorter paths than longer ones. Over time, however, the pheromone 

trail starts to evaporate, thus reducing its attractive strength. Pheromone evaporation has 

the advantage of avoiding the convergence to a locally optimal solution. If there were no 

evaporation at all, the paths chosen by the first ants would tend to be excessively 

attractive to the following ones. In that case, the exploration of the solution space would 

be constrained. Gajpal and Abad (2009), Huang and Ting (2010), and Lu et al. (2016) are 

examples of research applied AC for solving the PDPTW. 

Several other metaheuristic techniques can also be observed in the literature for 

solving the PDPTW. For instance, Shen et al. (1995) developed an expert consulting 

system using a neural network as a learning module, and Kikuchi and Donnelly (1992) 

and Teodorovic and Radivojevic (2000) applied fuzzy logic approach for solving the 

PDPTW. In the next section, we will discuss about the exact solution approaches used for 

solving the PDPTW to optimality. 

 

2.4.3. Exact Solution Methods 

2.4.3.1. Benders’ Decomposition  

The Benders' decomposition technique is named after Jacques F. Benders. The 

strategy behind this technique can be summarized as follows: the variables of the original 

problem are divided into two subsets. A master problem is solved over the first set of 

variables, and then for a given master problem solution, the values of the second set of 



 

27 
 

variables are determined in a sub-problem. If the sub-problem determines that the value 

of decision variables for master problem are infeasible, then Benders cuts are generated 

and added to the master problem, which is then re-solved until no cuts can be generated. 

Since Benders decomposition adds new constraints as it progresses towards a solution, 

the approach is called “row generation”. Sexton and Bodin (1985a, 1985b) and Sexton 

and Choi (1986) decomposed the single vehicle PDPTW to a routing problem and a 

scheduling sub-problem, and then they applied Benders’ decomposition for both master 

problem and sub-problem, independently. Cortés et al. (2010) studied a problem where 

passengers can be transferred from one vehicle to another at specific transfer locations. 

Benders decomposition was their solution approach for solving the PDPTW with 

transfers. Contardo et al. (2012) introduced a dynamic public bike-sharing balancing 

problem in which the service provider dispatches vehicles to move bikes from those 

stations with surplus to stations with shortages in order to balance the demand and supply 

levels. They applied Dantzig-Wolfe decomposition and Benders’ decomposition to obtain 

lower bounds and feasible solutions in short computation times. Erdogan et al. (2014) 

studied the one-commodity pickup and delivery traveling salesman problem, and 

developed a branch-and-cut algorithm as well as a Benders’ decomposition scheme for 

solving this problem. Salazar-González and Santos-Hernández (2015) presented a flow-

commodity formulation and also a Benders’ decomposition approach to solve the split-

demand one-commodity pickup-and-delivery travelling salesman problem. Gendreau et 

al. 2015 addressed the one-commodity full truckload pickup and delivery Problem and 

presented three model formulations (one traveling salesman problem (TSP) formulation 
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and two integrated formulation) for this problem. The integrated formulations were fitted 

for decomposition algorithms; that is why they applied the classical and the generalized 

Benders decomposition to these models to capture the routing and assignment 

composition of this problem.  

 

2.4.3.2. Dantizg-Wolfe Decomposition  

In opposition to Benders’ decomposition, in Dantizg-Wolfe decomposition by using 

CG approach, we begin by solving the integer programming problem with a subset of 

columns and continue to introduce additional columns until a termination criterion proves 

optimality of the entire problem. Dumas et al. (1991) presented an exact algorithm for 

solving the PDPTW with multiple depots and different types of vehicles. Their algorithm 

uses a CG scheme with a constrained shortest path as a sub-problem. Sol (1994) 

dedicated his doctoral dissertation to the CG techniques for pickup and delivery 

problems. Christiansen and Nygreen (1998) proposed a mathematical formulation for the 

real ship planning problem which is a combination of a PDPTW and a multi-inventory 

model and applied a CG approach including sub-problems for ships and harbor 

inventories. Xu et al. (2003) formulated the PDPTW as a set partitioning problem and 

developed hybrid approaches that integrate CG methodology with fast heuristics for the 

sub-problems resulted in the CG procedure. Venkateshan and Mathur (2011) developed a 

specialized column-generation subroutine to reduce the combinatorial explosion in the 

number of routes generated by the standard column-generation subroutine and the 

number of nodes scanned in the branch-and-bound tree. Recently, Parragh and Schmid 
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(2013) proposed a hybrid CG and large neighborhood search algorithm for the PDPTW. 

Gschwind et al. (2017) also drafted a column-generation algorithm for the PDPTW 

consisting a set-partitioning master problem and an elementary shortest-path problem 

with resource constraints sub-problem. 

 

2.4.3.3. Dynamic Programming  

Dynamic programming (DP) breaks down a complex problem into a set of sub-

problems, solving each of those just once, and saving their solutions. The next time if the 

same sub-problem occurs, instead of re-computing the problem, the algorithm looks up 

the previously computed solution to save computation time and storage space. The first 

published DP method for solving the single vehicle-PDPTW was developed by Psaraftis 

(1980). Psaraftis (1983) later modified the previous backward DP algorithm to a forward 

DP. Desrosiers et al. (1986) presented a DP for the single vehicle PDPTW as well. 

Dumas et al. (1991) also proposed a forward DP to solve a constrained shortest path 

problem with pickup and delivery and time windows. Bianco et al. (1994) developed an 

improved backward DP for the TSP in general and PDPTW in particular using a lower 

bound to reduce the search space. Recently, Ritzinger et al. (2016), in order to restrict the 

search space, presented a hybrid solution framework containing a DP and a large 

neighborhood search (LNS) heuristic for solving the PDPTW to deal with the curse of 

dimensionality. Mahmoudi and Zhou (2016) also constructed a multi-dimensional 

network to impose the complex constraints of the PDPTW corresponding to the validity 

of the time and load variables implicitly during the network construction. Then, the 
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problem converted to a time-dependent state-dependent least cost path problem solved by 

a DP.     

 

2.4.3.4. Branch and Bound 

A branch-and-bound algorithm systematically enumerates candidate solutions. The 

strategy behind this technique can be summarized as follows: we assume an initial set of 

candidate solutions as the root of a tree. The algorithm explores branches of this tree 

representing subsets of the solution set. Before enumerating the candidate solutions of a 

branch, the branch is compared to upper and lower bounds on the optimal solution, and is 

discarded if it cannot generate a better solution than the best one found so far by the 

algorithm. Ruland and Rodin, 1997, Irnich (2000), Wang and Regan (2002), Hernández-

Pérez and Salazar-González (2004), Cordeau (2006), Dell’Amico et al. (2006), Ropke et 

al. (2007), Cordeau et al. (2007), Carrabs et al. (2007), Ropke and Cordeau (2009), 

Cordeau et al. (2010), Cortés et al. (2010), Gutiérrez-Jarpa et al. (2010), Dumitrescu et al. 

(2010), Baldacci et al. (2011), Côté et al. (2012), Subramanian et al. (2013), Chemla et al. 

(2013), Masson et al. (2014), and Cherkesly et al. (2016) are a few out of many examples 

of studies using branch and bound algorithm for solving the PDPTW. 

 

2.5. Summary 

This chapter provides a comprehensive literature review for the pickup and delivery 

problem. In this chapter, we focus on the applications of this problem, as well as solution 

methods used to solve this optimization problem. In this chapter, we aim to emphasize 
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that previous research has made a number of important contributions to the challenging 

pickup and delivery problem along different formulation or solution approaches. 

However, there are a number of modeling and algorithmic challenges for a large-scale 

deployment of a vehicle routing and scheduling algorithm, especially for regional 

networks with various road capacity and traffic delay constraints on freeway bottlenecks 

and signal timing on urban streets.  
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CHAPTER 3 

FINDING OPTIMAL SOLUTIONS FOR VEHICLE ROUTING PROBLEM 

WITH PICKUP AND DELIVERY SERVICES WITH TIME WINDOWS 

 

3.1. Introduction 

As population and personal travel activities continue to increase, traffic congestion 

has remained as one of the major concerns for transportation system agencies with tight 

resource constraints. The next generation of transportation system initiatives aims to 

integrate various demand management strategies and traffic control measures to actively 

achieve mobility, environment, and sustainability goals. A number of approaches hold 

promises of reducing the undesirable effects of traffic congestion due to driving-alone 

trips, to name a few, demand-responsive transit services, dynamic ride-sharing, and 

intermodal traffic corridor management. 

The optimized and coordinated ride-sharing services provided by transportation 

network companies (TNC) can efficiently utilize limited vehicle and driver resources 

while satisfying time-sensitive origin-to-destination transportation service requests. In a 

city with numerous travelers with different purposes, each traveler has his own traveling 

schedule. Instead of using his own car, the traveler can (by the aid of ride-sharing) bid 

and call a car just a few minutes before leaving his origin, or preschedule a car a day 

prior to his departure. The on-demand transportation system provides a traveler with a 

short waiting time even if he resides in a high-demand area. Currently, several real-time 

ride-sharing or, more precisely, app-based transportation network and taxi companies, 
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such as Uber and Lyft are serving passengers in many metropolitan areas. In the long run, 

a fully automated and optimized ride-sharing approach is expected to handle very 

complex transportation supply-to-demand assignment tasks and offer a long list of 

benefits for transportation road users and TNC operators. These benefits might include 

reducing driver stress and driving cost, improving mobility for non-drivers, increasing 

safety and fuel efficiency, and decreasing road congestion as well as reducing overall 

societal energy use and pollution. 

The ride-sharing problem can be mathematically modeled by one of the well-known 

optimization problems which is the vehicle routing problem with pickup and delivery. In 

this chapter, in order to improve the solution quality and computational efficiency of on-

demand transportation systems and dynamic ride-sharing services, especially for large-

scale real-world transportation networks, we propose a new mathematical programming 

model for the VRPPDTW that can fully recognize time-dependent link travel time caused 

by traffic congestion at different times of day. Based on the LR solution framework, we 

further present a holistic optimization approach for matching passengers’ requests to 

transportation service providers, synchronizing transportation vehicle routing, and 

determining request pricing (e.g. through Lagrangian multipliers) for balancing 

transportation demand satisfaction and resource needs on urban networks. 

 

3.2. Literature Review and Research Motivations  

The VRPPDTW or simply, PDPTW, is a generalized version of the vehicle routing 

problem with time windows, in which each transportation request is a combination of 
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pickup at the origin node and drop-off at the destination node (Desaulniers et al., 2002). 

The PDPTW under consideration in this chapter contains all constraints in the VRPTW 

plus added constraints in which either pickup or delivery has given time windows, and 

each request must be served by a single vehicle. The PDPTW may be observed as the 

dial-a-ride problem in the literature as well. Since the VRPTW is a non-deterministic 

polynomial-time hard (NP-hard) problem, the PDPTW is also NP-hard (Baldacci et al., 

2011). 

Several applications of the VRPPDTW have been reported in road, maritime, and air 

transportation environments, to name a few, Fisher et al. (1982), Bell et al. (1983), 

Savelsbergh and Sol (1998), Wang and Regan (2002), and Zachariadis et al. (2015) in 

road cargo routing and scheduling; Psaraftis et al. (1985), Fisher and Rosenwein (1989), 

and Christiansen (1999) in sea cargo routing and scheduling; and Solanki and Southworth 

(1991), Solomon et al. (1992), Rappoport et al. (1992), and Rappoport et al. (1994) in air 

cargo routing and scheduling. Further applications of the VRPPDTW can be found in 

transportation of elderly or handicapped people (Jaw et al., 1986; Alfa, 1986; Ioachim et 

al., 1995; and Toth and Vigo, 1997), school bus routing and scheduling (Swersey and 

Ballard, 1983; and Bramel and Simchi-Levi, 1995), and ride-sharing (Hosni et al., 2014; 

and Wang et al., 2015).  Recently, Furuhata et al. (2013) offers an excellent review and 

provides a systematic classification of emerging ride-sharing systems. 

Although clustering algorithms (Cullen et al., 1981; Bodin and Sexton, 1986; Dumas 

et al., 1989; Desrosiers et al., 1991; and Ioachim et al., 1995), meta-heuristics (Gendreau 

et al., 1998; Toth and Vigo, 1997; and Paquette et al., 2013), neural networks (Shen et al., 
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1995), and some heuristics such as double-horizon based heuristics (Mitrovic-Minic et 

al., 2004) and regret insertion heuristics (Diana and Dessouky, 2004) have been shown to 

be efficient in solving a particular size of PDPTW, in general, finding the exact solution 

via optimization approaches has still remained theoretically and computationally 

challenging. Focusing on the PDPTW for a single vehicle, Psaraftis (1980) presented an 

exact backward DP solution algorithm to minimize a weighted combination of the total 

service time and the total waiting time for all customers with 𝑂(𝑛23𝑛) complexity. 

Psaraftis (1983) further modified the algorithm to a forward DP approach. Sexton and 

Bodin (1985a, b) decomposed the single vehicle PDPTW to a routing problem and a 

scheduling sub-problem, and then they applied Benders’ decomposition for both master 

problem and sub-problem, independently. Based on a static network flow formulation, 

Desrosiers et al. (1986) proposed a forward DP algorithm for the single-vehicle PDPTW 

with the objective function of minimizing the total traveled distance to serve all 

customers. After presenting our proposed model in the later section, we will conduct a 

more systematical comparison between our proposed SST DP framework and the 

classical work by Psaraftis (1983) and Desrosiers et al. (1986).  

There are a number of studies focusing on the multi-vehicle pickup and delivery 

problem with time windows. Dumas et al. (1991) proposed an exact algorithm to the 

multiple vehicle PDPTW with multiple depots, where the objective is to minimize the 

total travel cost with capacity, time window, precedence and coupling constraints. They 

applied a CG scheme with a shortest path sub-problem to solve the PDPTW, with tight 

vehicle capacity constraints, and a small size of requests per route. Ruland (1995) and 
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Ruland and Rodin (1997) proposed a polyhedral approach for the vehicle routing problem 

with pickup and delivery. Savelsbergh and Sol (1998) proposed an algorithm for the 

multiple vehicle PDPTW with multiple depots to minimize the number of vehicles 

needed to serve all transportation requests as the primary objective function, and 

minimizing the total distance traveled as the secondary objective function. Their 

algorithm moves toward the optimal solution after solving the pricing sub-problem using 

heuristics. They applied their algorithm for a set of randomly generated instances. In a 

two-index formulation proposed by Lu and Dessouky (2004), a branch-and-cut algorithm 

was able to solve problem instances. Cordeau (2006) proposed a branch-and-cut 

algorithm based on a three-index formulation. Ropke et al. (2007) presented a branch-

and-cut algorithm to minimize the total routing cost, based on a two-index formulation. 

Ropke and Cordeau (2009) presented a new branch-and-cut-and-price algorithm in which 

the lower bounds are computed by the CG algorithm and improved by introducing 

different valid inequalities to the problem. Based on a set-partitioning formulation 

improved by additional cuts, Baldacci et al. (2011) proposed a new exact algorithm for 

the PDPTW with two different objective functions: the primary is minimizing the route 

costs, whereas the secondary is to minimize the total vehicle fixed costs first, and then 

minimize the total route costs.  

Previous research has made a number of important contributions to this challenging 

problem along different formulation or solution approaches. On the other hand, there are 

a number of modeling and algorithmic challenges for a large-scale deployment of a 

vehicle routing and scheduling algorithm, especially for regional networks with various 
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road capacity and traffic delay constraints on freeway bottlenecks and signal timing on 

urban streets. A few previous research directly considers the underlying transportation 

network with time of day traffic congestion (Kok et al. 2012, Gromicho et al. 2012) and 

has defined the PDPTW on a directed graph containing customers’ origin and destination 

locations connected by some links which are representative of the shortest distance or 

least travel time routes between origin-destination (OD) pairs. That is, with each link, 

there are associated routing cost and travel time between the two service nodes. Unlike 

the existing offline network for the PDPTW in which each link has a fixed routing cost 

(travel time), our research particularly examines the PDPTW on real-world transportation 

networks containing a transportation node-link structure in which routing cost (travel 

time) along each link may vary over the time. 

In order to consider many relevant practical aspects, such as waiting costs at different 

locations, we utilize space-time scheme (Hägerstrand, 1970; Miller, 1991, Ziliaskopoulos 

and Mahmassani, 1993) to formulate the PDPTW on SST transportation networks. The 

constructed networks are able to conveniently represent the complex pickup and delivery 

time windows without adding the extra constraints typically needed for the classical 

PDPTW formulation (e.g. Cordeau, 2006). The introduced SST networks also enable us 

to embed computationally efficient DP algorithms for solving the PDPTW without 

relying on off-the-shelf optimization solvers. Even though the solution space created by 

our formulation has multiple dimensions and accordingly large in its sizes, the readily 

available large amount of computer memory in modern workstations can easily 

accommodate the multi-dimensional solution vectors utilized in our application. Our fully 
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customized solution algorithms, implemented in an advanced programming language 

such as C++, hold the promise of tackling large-sized regional transportation network 

instances. To address the multi-vehicle assignment requirement, we relax the 

transportation request satisfaction constraints into the objective function and utilize the 

related LR solution framework to decompose the primal problem to a sequence of time-

dependent least-cost-path sub-problems.  

In our proposed solution approach, we aim to incorporate several lines of pioneering 

efforts in different directions. Specifically, we (1) reformulate the VRPPDTW as a time-

discretized, multi-dimensional, multi-commodity flow model with linear objective 

function and constraints, (2) extend the static DP formulation to a fully time-dependent 

DP framework for single-vehicle VRPPDTW problems, and (3) develop a LR solution 

procedure to decompose the multi-vehicle scheduling problem to a sequence of single-

vehicle problems and further nicely integrate the demand satisfaction multipliers within 

the proposed SST network.   

Based on the LR solution framework, we further present a holistic optimization 

approach for matching passengers’ requests to transportation service providers, 

synchronizing transportation vehicle routing, and determining request pricing (e.g. 

through Lagrangian multipliers) for balancing transportation demand satisfaction and 

resource needs on urban networks. 
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3.3. Problem Statement Based on SST Network Representation 

In this section, we first introduce our new mathematical model for the PDPTW. This 

is followed by a comprehensive comparison between our proposed model and the three-

index formulation of Cordeau (2006) for the PDPTW, presented in Appendix A, for the 

demand node-oriented network. 

 

3.3.1. Description of the PDPTW in SST Networks 

We formulate the PDPTW on a transportation network, represented by a directed 

graph and denoted as 𝐺(𝑁, 𝐴), where 𝑁 is the set of nodes (e.g. intersections or freeway 

merge points) and 𝐴 is the set of links with different link types such as freeway segments, 

arterial streets, and ramps. As shown in Table 3.1, each directed link (𝑖, 𝑗) has time-

dependent travel time 𝑇𝑇(𝑖, 𝑗, 𝑡) from node i to node j starting at time t.  Every passenger 

𝑝 has a preferred time window for departure from his origin, [𝑎𝑝, 𝑏𝑝], and a desired time 

window for arrival at his destination, [𝑎𝑝
′ , 𝑏𝑝

′ ], where 𝑎𝑝, 𝑏𝑝, 𝑎𝑝
′ , and 𝑏𝑝

′  are passenger 𝑝’s 

earliest preferred departure time from his origin, latest preferred departure time from his 

origin, earliest preferred arrival time at his destination, and latest preferred arrival time at 

his destination, respectively.  Each vehicle 𝑣 also has the earliest departure time from its 

starting depot, 𝑒𝑣, and the latest arrival time at its ending depot, 𝑙𝑣. In the PDPTW, 

passengers may share their trip with each other; in other words, every vehicle v, 

considering its capacity 𝐶𝑎𝑝𝑣 and the total routing cost, may serve as many passengers as 

possible provided that passenger p is picked up and dropped-off in his preferred time 

windows, [𝑎𝑝, 𝑏𝑝] and [𝑎𝑝
′ , 𝑏𝑝

′ ], respectively. 
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Each transportation node has the potential to be the spot for picking up or dropping 

off a passenger. Likewise, a vehicle’s depot might be located at any node in the 

transportation network. To distinguish regular transportation nodes from passengers’ and 

vehicles’ origin and destination, we add a single dummy node 𝑜𝑣
′  for vehicle 𝑣’s origin 

depot and a single dummy node 𝑑𝑣
′  for vehicle 𝑣’s destination depot. Similarly, we can 

also add dummy nodes 𝑜𝑝 and 𝑑𝑝 for passenger 𝑝. Each added dummy node is only 

connected to its corresponding physical transportation node by a link. The travel time on 

this link can be interpreted as the service time if the added dummy node is related to a 

passenger’s origin or destination, and as preparation time if it is related to a vehicle’s 

starting or ending depot. Table 3.1 lists the notations for the key sets, indices and 

parameters in the PDPTW. 

Table 3.1  

Sets, indices and parameters in the PDPTW. 

Symbol Definition 

𝑽 Set of physical vehicles  

𝑽∗ Set of virtual vehicles 

𝑷 Set of passengers 

𝑵 Set of physical transportation nodes in the physical traffic network based on 

geographical location 

𝑾 Set of possible passenger carrying states 

𝒗 Vehicle index 

𝒗𝒑
∗  Index of virtual vehicle exclusively dedicated for passenger 𝑝 

𝒑 Passenger index 

𝒘 Passenger carrying state index 

(𝒊, 𝒋) Index of physical link between adjacent nodes 𝑖 and 𝑗 

𝑻𝑻(𝒊, 𝒋, 𝒕) Link travel time from node i to node j starting at time t 

𝑪𝒂𝒑𝒗 Maximum capacity of vehicle 𝑣 

𝒂𝒑 Earliest departure time from passenger 𝑝’s origin 

𝒃𝒑 Latest departure time from passenger 𝑝’s origin 

𝒂𝒑
′  Earliest arrival time at passenger 𝑝’s destination 

𝒃𝒑
′  Latest arrival time at passenger 𝑝’s destination 

[𝒂𝒑, 𝒃𝒑] Departure time window for passenger 𝑝’s origin 

[𝒂𝒑
′ , 𝒃𝒑

′ ] Arrival time window for passenger 𝑝’s destination 

𝒐𝒗
′  Dummy node for vehicle 𝑣’s origin 

𝒅𝒗
′  Dummy node for vehicle 𝑣’s destination  
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𝒆𝒗 Vehicle 𝑣’s earliest departure time from the origin depot 

𝒍𝒗 Vehicle 𝑣’s latest arrival time to the destination depot 

𝒐𝒑 Dummy node for passenger 𝑝’s origin (pickup node for passenger 𝑝) 

𝒅𝒑 Dummy node for passenger 𝑝’s destination (delivery node for passenger 𝑝) 

 

We now use an illustrative example to demonstrate key modeling features of 

constructed networks. Consider a physical transportation network consisting of six nodes 

presented in Fig. 3.1. Each link in this network is associated with time-dependent travel 

time 𝑇𝑇(𝑖, 𝑗, 𝑡). Without loss of generality, the number written on each link denotes the 

time-invariant travel time 𝑇𝑇(𝑖, 𝑗) in terms of minutes. Suppose two requests with two 

OD pairs should be served. For simplicity, it is assumed that both passengers have the 

same origin (node 2) and the same drop-off node (node 3). There is only one vehicle 

available for serving. Moreover, it is assumed that the vehicle starts its route from node 4 

and ends it at node 1. Passenger 1 should be picked up from dummy node 𝑜1 in time 

window [4,7] and dropped off at dummy node 𝑑1 in time window [11,14], while 

Passenger 2 should be picked up from dummy node 𝑜2 in time window [8,10] and 

dropped off at dummy node 𝑑2 in time window [13,16]. Vehicle 1 also has the earliest 

departure time from its starting depot, 𝑡 = 1, and the latest arrival time at its ending 

depot, 𝑡 = 20. 
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Fig. 3.1. (a) Six-node transportation network; (b) transportation network with the corresponding dummy 

nodes. 

 

Note that the shortest path with node sequence 

(𝑜1
′ , 4, 2, 𝑜1, 2, 𝑜2, 2, 5, 6, 3, 𝑑1, 3, 𝑑2, 3, 1, 𝑑1

′ ) from vehicle 1’s origin to its ending depot is 

shown by bold arrows when it serves both passenger 1 and 2. To construct a SST 

network, the time horizon is discretized into a series of time intervals with the same time 

length. Without loss of generality, we assume that a unit of time has 1 min length. 

Interested readers are referred to Yang and Zhou (2014) on details about how to construct 

a space-time network. To avoid more complexity in the vehicle’s space-time network 

illustrated in Fig. 3.2, only those arcs constituting the shortest paths from vehicle 1’s 

origin to its destination are demonstrated. Our formulation has a set of precise rules to 

allow or restrict the vehicle waiting behavior in the constructed space-time network, 

depending on the type of nodes and the associated time window. First, vehicle 𝑣 may 

wait at its own origin or destination depot or at any other physical transportation nodes. If 

a vehicle arrives at passenger 𝑝’s origin node before time 𝑎𝑝, it must wait at the related 

physical node until the service is allowed to begin. Moreover, we assume that a vehicle is 

not allowed to stop at passenger 𝑝’s dummy origin node after time 𝑏𝑝. Similarly, if a 
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vehicle arrives at passenger 𝑝’s destination node before time 𝑎𝑝
′ , it must wait until it is 

allowed to drop-off passenger 𝑝, and vehicle 𝑣 is not allowed to stop at passenger 𝑝’s 

dummy destination node after time 𝑏𝑝
′ .   
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′ , 4, 2, 𝑜1, 2, 𝑜2, 2, 5, 6, 3, 𝑑1, 3, 𝑑2, 3, 1, 𝑑1

′ ) in vehicle 1’s space-

time network. 
 

In the problem under consideration, we assume all passengers’ desired departure and 

arrival time windows are feasible. However, it is quite possible that some passenger 

transporting requests could not be satisfied at all since the total number of physically 

available vehicles in the ride-sharing company or organization is not enough to satisfy all 

the demands. To avoid infeasibility for the constructed optimization problem, we define a 

virtual vehicle for each passenger exclusively. We assume that both starting and ending 

depots of virtual vehicle 𝑣𝑝
∗ are located exactly where passenger 𝑝 is going to be picked 

up. By doing so, there is no cost incurred if the virtual vehicle is not needed to carry the 

related passenger, and in this case the virtual vehicle simply waits at its own depot. On 

the other hand, if the virtual vehicle is needed to perform the service to ensure there is a 
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feasible solution, then virtual vehicle 𝑣𝑝
∗ starts its route from its starting depot, picks up 

passenger 𝑝, delivers him to his destination, and then comes back to its ending depot.  

Fig. 3.3 shows the shortest paths with node sequence (𝑜1∗
′ , 2, 𝑜1, 2, 5, 6, 3, 𝑑1, 3, 1, 2, 𝑑1∗

′ ) 

in vehicle 𝑣1
∗’s space-time network. 
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network. 
 

3.3.2. Representing the State of System and Calculating the Number of States 

In the context of DP, we need to decompose the complex VRP structure into a 

sequence of overlapping stage-by-stage sub-problems in a recursive manner. For each 

stage of the optimization problem, we need to define the state of the process so that the 

state of the system with 𝑛 stages to go can fully summarize all relevant information of the 

system for future decision-making purposes no matter how the process has reached the 

current stage 𝑛. In our pickup and delivery problem, in each vehicle’s network, the given 

time index 𝑡 acts as the stage, and the state of the system is jointly defined by two 

indexes: node index 𝑖 and the passenger carrying state index 𝑤. The latter passenger 

carrying state 𝑤 can be also represented as a vector with |𝑃| number of elements 
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[𝜋1, 𝜋2, … , 𝜋𝑝, … , 𝜋𝑃], where 𝜋𝑝 equals 1 or 0 and denotes the status of passenger 

𝑝 whether he is riding the vehicle or not. To facilitate the descriptions of the state 

transition, we introduce the following equivalent notation system for passenger carrying 

states: if a vehicle carries passenger 𝑝, the 𝑝th element of the state 𝑤 is filled with 

passenger 𝑝’s id; otherwise, it is filled with a dash sign, as illustrated in Table 3.2.  

Table 3.2  

Binary representation and equivalent character-based representation for passenger carrying states. 

Binary representation  Equivalent character-based representation   

[𝟎, 𝟎, 𝟎] [_ _ _] 
[𝟏, 𝟎, 𝟎] [𝑝1 _ _] 
[𝟎, 𝟏, 𝟏] [_ 𝑝2 𝑝3] 

 

Without loss of generality, for a typical off-line vehicle routing problem, the initial 

and ending states of the vehicles are assumed to be empty, corresponding to the state 

[_ _ _]. For an on-line dynamic vehicle dispatching application, one can define the starting 

passenger carrying state to indicate the existing passengers riding the vehicle, for 

example,  [𝑝1 _ _] if passenger 1 is being served currently. We use an illustrative example 

to demonstrate the concept of a passenger’s carrying state clearly. Suppose three requests 

with three different OD pairs should be served. There is only one vehicle available for 

serving and let’s assume that the vehicle can carry up to two passengers at the same time. 

We can enumerate all different carrying states for the vehicle. The first state is the state in 

which the vehicle does not carry any passenger[_ _ _]. There are 𝐶1
3 number of possible 

carrying states in which the vehicle only carries one passenger at time 𝑡:[𝑝1 _ _], [_ 𝑝2 _], 

and [_ _ 𝑝3]. Similarly, there are 𝐶2
3 number of possible carrying states in which the 

vehicle carries two passengers at time 𝑡 which are [𝑝1 𝑝2 _], [𝑝1 _ 𝑝3], and [_ 𝑝2 𝑝3]. Since 
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the vehicle can carry up to two passengers at the same time, the state of [𝑝1 𝑝2 𝑝3] is 

infeasible. Fig. 3.4(a) and Fig. 3.4(b) show shared ride state [𝑝1 𝑝2 _] and single-

passenger-serving state [_ 𝑝2 _].  

(a) Shared ride (b) Serving single passenger once a time

Depot

Passenger p s origin

Passenger p s destination

o2

o1

d2

d1

o3 d3

o2

o1

d2

d1

o3 d3

o 1o 1 d 1 d 1

[p1 p2 _ ]

[ _ p2 _ ]

Fig. 3.4. State transition path (a) Passenger carrying state [𝑝1 𝑝2 _]; (b) Passenger carrying state [_ 𝑝2 _]. 
 

We are further interested in the number of feasible states, which critically determines 

the computational efforts of the DP-based solution algorithm. First, there is a unique state 

in which vehicle 𝑣 does not carry any passenger, which is a combinatory of 𝐶0
𝑃 for 

selecting 0 passengers from the collection of 𝑃 passengers.  Similarly, there are 𝐶1
𝑃 

number of possible carrying states in which vehicle 𝑣 only carries one passenger at a 

time. Likewise, there are 𝐶𝑘
𝑃 number of possible carrying states in which vehicle 𝑣 carries 

𝑘 passengers at a time. Note that 𝑘 ≤ 𝐶𝑎𝑝𝑣. Therefore, the total number of possible 

passenger carrying states is equal to ∑ 𝐶𝑘
𝑃𝐶𝑎𝑝𝑣

𝑘=0 .  It should be remarked that, according to 

the earliest departure time from the origin and the latest arrival time to the destination of 

different passengers, some of the possible carrying states, say [_ 𝑝2 𝑝3], might be 

infeasible as there is insufficient transportation time to pick up those two passengers 

together while satisfying their time window constraints.  

Consider the following example, where passenger 1 should be picked up in time 

window [4,7] and delivered in time window [9,12], whereas passenger 3’s preferred time 
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windows for being picked up and delivered are [20,24] and [25,29], respectively. So, it is 

obvious that passenger 1 and 3 cannot share their ride with each other and be transported 

at the same time by the same vehicle. Therefore, state [𝑝1 _ 𝑝3] is definitely infeasible in 

this example. We will further explain how to reduce the search region by defining some 

rational rules and simple heuristics in section 3.5.3. 

  

3.3.3. State Transition Associated with Pickup and Delivery Links 

Each vehicle starts its trip from the empty state in which the vehicle does not carry 

any passengers. We call this state as the initial state (𝑤0). Each vertex in the constructed 

SST network is recognized by a triplet of three different indexes: node index 𝑖, time 

interval index 𝑡, and passenger carrying state index 𝑤. In the space-time transportation 

network construct, we can identify a traveling arc (𝑖, 𝑗, 𝑡, 𝑠) starting from node i at time t 

arriving at node j at time s. Accordingly, in the SST network, each vertex (𝑖, 𝑡, 𝑤) is 

connected to vertex (𝑗, 𝑠, 𝑤′) through arc (𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′). To find all feasible 

combinations of passenger carrying state transition (𝑤, 𝑤′) on an arc, it is sufficient to 

follow these rules: 

Rule 1. On a pickup link (with the passenger origin dummy node as the downstream 

node), vehicle 𝑣 picks up passenger 𝑝, so 𝜋𝑝   is changed from 0 to 1, or equivalently, 

the 𝑝th element of the corresponding states should be changed from a dash sign to 

passenger 𝑝 id.   

Rule 2. On a drop-off link (with the passenger destination dummy node as the 

upstream node), vehicle 𝑣 drops off passenger 𝑝, so 𝜋𝑝   is changed from 1 to 0,  and the 
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𝑝th element of the corresponding states should be changed from passenger 𝑝 id to a dash 

sign.   

Rule 3. On a transportation link or links connected to vehicle dummy nodes, vehicle 

𝑣 neither picks up nor drops off any passenger, and all elements of 𝑤 and 𝑤′ should be 

the same. 

To find all feasible passengers state transition (𝑤, 𝑤′), we need to examine all 

possible combinations of 𝑤 and 𝑤′. Consider a three-passenger case, in which Table 3.3 

identifies all possible combinations of these state transitions. Note that the vehicle can 

carry up to two passengers at the same time in this example. The empty cells indicate 

impossible state transitions in the constructed space-time network with dedicated dummy 

nodes. The corresponding possible passenger carrying state transitions (pickup or drop-

off) are illustrated in one graph in Fig. 3.5. Fig. 3.6 represents the projection on state-

space network for the example presented in section 3.3.1. 

Table 3.3  

All possible combinations of passenger carrying states. 

𝒘            𝒘′ [_ _ _] [𝒑𝟏 _ _] [_ 𝒑𝟐 _] [_ _ 𝒑𝟑] [𝒑𝟏 𝒑𝟐 _] [𝒑𝟏 _ 𝒑𝟑] [_ 𝒑𝟐 𝒑𝟑] 

[_ _ _] 
no 

change 
pickup Pickup pickup    

[𝒑𝟏 _ _] drop-off 
no 

change 
  Pickup pickup  

[_ 𝒑𝟐 _] drop-off  
no 

change 
 Pickup  pickup 

[_ _ 𝒑𝟑] drop-off   
no 

change 
 pickup pickup 

[𝒑𝟏 𝒑𝟐 _]  drop-off drop-off  
no 

change 
  

[𝒑𝟏 _ 𝒑𝟑]  drop-off  drop-off  
no 

change 
 

[_ 𝒑𝟐 𝒑𝟑]   drop-off drop-off   
no 

change 
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[ _ _ _ ]

[ p1 _ _ ]

[ _ p2 _ ]

[ _ _ p3 ]

[ p1 p2 _ ]

[ p1 _ p3 ]

[ _ p2 p3 ]

Pickup

Drop-off

 
Fig. 3.5. Finite states graph showing all possible passenger carrying state transition (pickup or drop-off). 
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Fig. 3.6. Projection on state-space network representation for ride-sharing path (pick up passenger 𝑝1 and 

then 𝑝2). 

  

3.4. Time-discretized Multi-commodity Network Flow Programming Model 

Based on the constructed SST networks that can capture essential pickup and delivery 

time window constraints, we now start constructing a multi-commodity network flow 

programing model for the VRPPDTW. In this multi-dimensional network, the challenge 

is to systematically describe the related flow balance constraints for vehicles and request 

satisfaction constraints for passengers. As shown in Table 3.4, we use (𝑖, 𝑡, 𝑤)  to 

represent the indices of SST vertexes, and the corresponding arc index which is 
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(𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′). Let 𝐵𝑣 denote the set of SST arcs in vehicle 𝑣’s network, which has three 

different types of arcs, namely, service arcs, transportation arcs and waiting arcs.  

i. All passenger carrying state transitions (i.e., pickup or drop-off) occurs only on 

service arcs. In other words, all incoming arcs to passengers’ origin nodes (pickup arcs 

shown by green lines in Fig. 3.5 and Fig. 3.6) and all outgoing arcs from their destination 

nodes (drop-off arcs shown by blue lines in Fig. 3.5 and Fig. 3.6) are considered service 

arcs.  

ii. A link with both ends as physical nodes or vehicle dummy nodes are considered 

transportation arcs. 

iii. Vehicles (both physical and virtual) may wait at their own origin or destination depot 

or at any other physical transportation nodes through waiting arcs (𝑖, 𝑖, 𝑡, 𝑡 + 1, 𝑤, 𝑤) 

from time t to time 𝑡 + 1 with the same passenger carrying state 𝑤.    

Table 3.4  

Indexes and variables used in the time-discretized network flow model. 

Symbol Definition 

(𝒊, 𝒕, 𝒘), (𝒋, 𝒔, 𝒘′) Indexes of SST vertexes 

(𝒊, 𝒋, 𝒕, 𝒔, 𝒘, 𝒘′) Index of a space-time-state arc indicating that one can travel from node 𝑖 at 

time 𝑡 with passenger carrying state 𝑤 to the node 𝑗 at time 𝑠 with passenger 

carrying state 𝑤’ 
𝑩𝒗 Set of SST arcs in vehicle 𝑣’s network 

𝒄(𝒗, 𝒊, 𝒋, 𝒕, 𝒔, 𝒘, 𝒘′) Routing cost of arc (𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) traveled by vehicle 𝑣 

𝑻𝑻(𝒗, 𝒊, 𝒋, 𝒕, 𝒔, 𝒘, 𝒘′) Travel time of arc (𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) traveled by vehicle 𝑣 

𝜳𝒑,𝒗 Set of pickup service arcs of passenger 𝑝 in vehicle 𝑣’s networks 

𝒚(𝒗, 𝒊, 𝒋, 𝒕, 𝒔, 𝒘, 𝒘′) = 1 if arc (𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) is used by vehicle 𝑣; = 0 otherwise 

 

In general, the travel time 𝑇𝑇(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) is the travel time of traversing from 

node 𝑖 at time 𝑡 with passenger carrying state 𝑤 to node 𝑗 at time 𝑠 with passenger 

carrying state 𝑤′ by vehicle 𝑣. Travel time for service arcs can be interpreted as the 

service time needed to pick up or drop-off a passenger, and as the preparation time if the 
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arc is related to a vehicle’s starting or ending depot. In addition, the travel time of the 

waiting arcs is assumed to be a unit of time.  

The routing cost 𝑐(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) for an arc can be defined as follows. The routing 

cost of a transportation arc is defined as a ratio of its travel time. For the physical vehicle, 

this ratio is basically the total transportation cost per hour when the vehicle is traveling, 

which may include the fuel, maintenance, depreciation, insurance costs, and more 

importantly, the cost of hiring a full-time or part-time driver. Let’s assume that, in total, 

the transportation by a physical vehicle costs 𝑥 dollars per hour. Since passengers should 

be served by physical vehicles by default and virtual vehicles serve passengers only if 

there is no available physical vehicle to satisfy their demand, we impose a quite 

expensive transportation cost per hour for virtual vehicles, let’s say 2𝑥 dollars per hour. 

The routing cost of the service arcs are defined similarly to the routing cost of the 

transportation arcs. The routing cost of a waiting arc is also defined as a ratio of its 

waiting time. However, this ratio is basically the total cost of the physical vehicle 𝑣 per 

hour when the driver has turned off the vehicle and is waiting at a node, which may only 

include the cost of hiring a full-time or part-time driver. Let’s assume that, in total, 

waiting at a node by a physical vehicle costs 𝑦 dollars per hour, with a typical 

relationship of waiting cost < transportation cost per hour, i.e., 𝑦 < 𝑥. We assume that 

waiting at the origin and destination depot for a physical vehicle has no charge for the 

service provider in order to encourage a vehicle to reduce the total transportation time, if 

possible. Moreover, for virtual vehicles, the waiting cost is always equal to zero to allow 

a virtual vehicle be totally idle at its own depot.  
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The model uses binary variables 𝑦(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) equal to 1 if and only if SST arc 

(𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) is used by vehicle 𝑣. Without loss of generality, we assume that a vehicle 

does not carry any passenger when it departs from its origin depot or arrives to its 

destination depot, which correspond to the passenger carrying state at node (𝑖 = 𝑜𝑣
′ , 𝑡 =

𝑒𝑣) and (𝑗 = 𝑑𝑣
′ , 𝑠 = 𝑙𝑣) as an empty state denoted by 𝑤0. Note that, since passenger 

carrying state transitions only occur through service arcs, 𝑤 = 𝑤′ = 𝑤0 for 

𝑦(𝑣, 𝑜𝑣
′ , 𝑗, 𝑒𝑣, 𝑠, 𝑤, 𝑤′) and 𝑦(𝑣, 𝑖, 𝑑𝑣

′ , 𝑡, 𝑙𝑣, 𝑤, 𝑤′).  

Note that each vehicle must end its route at the destination depot with the empty 

passenger carrying state. Therefore, if vehicle 𝑣 picks up passenger 𝑝 from his origin, to 

maintain the flow balance constraints, the vehicle must drop-off the passenger at his 

destination node so that the vehicle comes back to its ending depot with the empty 

passenger carrying state. As a result, constraints corresponding to the passengers’ drop-

off request is redundant and it does not need to enter into the following formulation. After 

constructing the SST transportation network for each vehicle, the PDPTW can be 

formulated as follows: 

𝑀𝑖𝑛 𝑍 = ∑ ∑ 𝑐(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′)𝑦(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′)(𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′)∈𝐵𝑣𝑣∈(𝑉∪𝑉∗)   (3.1) 

s.t.  

Flow balance constraints at vehicle 𝑣’s origin vertex 

∑ 𝑦(𝑣, 𝑜𝑣
′ , 𝑗, 𝑒𝑣, 𝑠, 𝑤0, 𝑤0)(𝑜𝑣

′ ,𝑗,𝑒𝑣,𝑠,𝑤0,𝑤0)∈𝐵𝑣
= 1 ∀𝑣 ∈ (𝑉 ∪ 𝑉∗)  (3.2)  

Flow balance constraint at vehicle 𝑣’s destination vertex 

∑ 𝑦(𝑣, 𝑖, 𝑑𝑣
′ , 𝑡, 𝑙𝑣, 𝑤0, 𝑤0)(𝑖,𝑑𝑣

′ ,𝑡,𝑙𝑣,𝑤0,𝑤0)∈𝐵𝑣
= 1 ∀𝑣 ∈ (𝑉 ∪ 𝑉∗)  (3.3) 
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Flow balance constraint at intermediate vertex 

∑ 𝑦(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′′)(𝑗,𝑠,𝑤′′) −  ∑ 𝑦(𝑣, 𝑗′, 𝑖, 𝑠′, 𝑡, 𝑤′, 𝑤) = 0(𝑗′,𝑠′,𝑤′)  (𝑖, 𝑡, 𝑤) ∉

{(𝑜𝑣
′ , 𝑒𝑣, 𝑤0), (𝑑𝑣

′ , 𝑙𝑣, 𝑤0)}, ∀𝑣 ∈ (𝑉 ∪ 𝑉∗)      (3.4) 

Passenger 𝑝’s pickup request constraint  

∑ ∑ 𝑦(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′)(𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′)∈Ψ𝑝,𝑣𝑣∈(𝑉∪𝑉∗) = 1  ∀𝑝 ∈ 𝑃  (3.5) 

Binary definitional constraint 

𝑦(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) ∈ {0, 1}  ∀(𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) ∈ 𝐵𝑣, ∀𝑣 ∈ (𝑉 ∪ 𝑉∗) (3.6) 

The objective function (3.1) minimizes the total routing cost. Constraints (3.2) to 

(3.4) ensure flow balance on every vertex in vehicle 𝑣’s SST transportation network. 

Constraints (3.5) express that each passenger is picked up exactly once by a vehicle 

(either physical or virtual). Constraint (3.6) defines that the decision variables are binary.  

The three-index formulation of Cordeau (2006) for the PDPTW in the OD network is 

presented in Appendix A. Table 3.5 shows that our proposed model encompasses all 

constraints used in Cordeau’s model. 

Table 3.5  

An analogy between Cordeau’s model and our model for the PDPTW. 

Cordeau (2006) Our model 

Three-index variables 𝑥𝑖𝑗
𝑣  for vehicle v 

on link (i,j) 

Seven-index variable 𝑦(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) for vehicle v on arc 

(𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′). 

(A.1) minimizes the total routing cost. (3.1) minimizes the total routing cost. 

(A.2) guarantees that each passenger is 

picked up. 
(3.5) guarantees that each passenger is picked up. 

(A.2) and (A.3) ensure that each 

passenger’s origin and destination are 

visited exactly once by the same vehicle. 

(3.2) to (3.5) ensure that the same vehicle 𝑣 transports 

passenger 𝑝 from his origin to his destination. 

(A.4) expresses that each vehicle starts 

its route from the origin depot. 

(3.2) expresses that each vehicle starts its route from the 

origin depot. 

(A.5) ensures the flow balance on each 

node. 

(3.2) to (3.4) ensure flow balance on every vertex in vehicle 

𝑣’s network. 

(A.6) expresses that each vehicle ends its 

route to the destination depot. 

(3.3) expresses that each vehicle ends its route to the 

destination depot. 
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(A.7) ensures the validity of the time 

variables. 

The essence of SST networks ensures the time variables are 

calculated correctly through arc (𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′), where 

arrival time 𝑠 =  𝑡 + 𝑇𝑇(𝑖, 𝑗, 𝑡). 

(A.8) ensures the validity of the load 

variables. 

The structure of SST networks ensures that each vehicle 

transports a number of passengers up to its capacity at a 

time, in terms of feasible states (𝑤, 𝑤′). 

(A.9) defines each passenger’s ride time. 
Employing SST networks defines each passenger’s ride 

time. 

(A.10) imposes the maximal duration of 

each route. 

Vehicle 𝑣’s network is constructed subject to time window 

[𝑒𝑣 , 𝑙𝑣]. 

(A.11) imposes time windows 

constraints. 

Passenger 𝑝’s network is constructed subject to time window 

[𝑎𝑝, 𝑏𝑝
′ ]. 

(A.12) imposes ride time of each 

passenger constraints. 

Passenger 𝑝’s network is constructed subject to time window 

[𝑎𝑝, 𝑏𝑝
′ ]. 

(A.13) imposes capacity constraints. 

The structure of SST networks ensures that each vehicle 

transports a number of passengers up to its capacity at a 

time. 

(A.14) defines that the decision variables 

are binary. 
(3.6) defines binary decision variables. 

 

3.5. LR-based Solution Approach 

Defining multi-dimensional decision variables 𝑦(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) leads to 

computational challenges for the large-scale real-world data sets, which should be 

addressed properly by specialized programs and an innovative solution framework. We 

reformulate the problem by relaxing the complicating constraints (3.5) into the objective 

function and introducing Lagrangian multipliers, 𝜆(𝑝), to construct the dualized 

Lagrangian function (3.7).  

𝐿 =  ∑ ∑ 𝑐(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′)𝑦(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′)(𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′)∈𝐵𝑣𝑣∈(𝑉∪𝑉∗) +

∑ 𝜆(𝑝) [∑ ∑ 𝑦(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′)(𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′)∈Ψ𝑝,𝑣𝑣∈(𝑉∪𝑉∗) − 1]𝑝∈𝑃    (3.7) 

Therefore, the new relaxed problem can be written as follows:  

𝑀𝑖𝑛 𝐿           (3.8) 

  s.t.                                                                                                                                                                 
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∑ 𝑦(𝑣, 𝑜𝑣
′ , 𝑗, 𝑒𝑣, 𝑠, 𝑤0, 𝑤0)(𝑜𝑣

′ ,𝑗,𝑒𝑣,𝑠,𝑤0,𝑤0)∈𝐵𝑣
= 1 ∀𝑣 ∈ (𝑉 ∪ 𝑉∗)  (3.9) 

∑ 𝑦(𝑣, 𝑖, 𝑑𝑣
′ , 𝑡, 𝑙𝑣, 𝑤0, 𝑤0)(𝑖,𝑑𝑣

′ ,𝑡,𝑙𝑣,𝑤0,𝑤0)∈𝐵𝑣
= 1 ∀𝑣 ∈ (𝑉 ∪ 𝑉∗)  (3.10) 

∑ 𝑦(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′′)(𝑗,𝑠,𝑤′′) −  ∑ 𝑦(𝑣, 𝑗′, 𝑖, 𝑠′, 𝑡, 𝑤′, 𝑤) = 0  (𝑖, 𝑡, 𝑤) ∉(𝑗′,𝑠′,𝑤′)

{(𝑜𝑣
′ , 𝑒𝑣, 𝑤0), (𝑑𝑣

′ , 𝑙𝑣, 𝑤0)}, ∀𝑣 ∈ (𝑉 ∪ 𝑉∗)      (3.11) 

𝑦(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) ∈ {0, 1}  ∀(𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) ∈ 𝐵𝑣, ∀𝑣 ∈ (𝑉 ∪ 𝑉∗) (3.12) 

 If we further simplify function 𝐿, the problem will become a time-dependent least-

cost path problem in the constructed SST network. The simplified Lagrangian function L 

can be written in the following form:  

𝐿 =  ∑ ∑ 𝜉(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′)𝑦(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′)(𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′)∈𝐵𝑣𝑣∈(𝑉∪𝑉∗) − ∑ 𝜆(𝑝)𝑝∈𝑃  (3.13) 

Where the generalized arc cost 𝜉(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) equals 𝑐(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) + 𝜆(𝑝) 

for each arc (𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) ∈ 𝛹𝑝,𝑣, and equals 𝑐(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′), otherwise. 

 

3.5.1. Time-dependent Forward DP and Computational Complexity 

Several efficient algorithms have been proposed to compute time-dependent shortest 

paths in a network with time-dependent arc costs (Ziliaskopoulos and Mahmassani, 1993; 

Chabini, 1998). In this section, we use a time-dependent DP algorithm to solve the least-

cost path problem obtained in section 3.4. The structure of the SST network ensures that 

time always advances on the arcs of the networks. In this chapter, let us consider the unit 

of time as 1 min. Let 𝒩 denote the set of nodes including both physical transportation 

and dummy nodes, 𝒜 denote the set of links, 𝒯 denote the set of time stamps covering all 

vehicles’ time horizons, 𝒲 denote the set of all feasible passenger carrying states, and 
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𝐿(𝑖, 𝑡, 𝑤) denote the label of vertex (𝑖, 𝑡, 𝑤) and term “pred” stands for the predecessor. 

Algorithm 3.1 described below uses forward DP:  

// Algorithm 3.1: Time-dependent forward DP algorithm 

for each vehicle 𝑣 ∈ (𝑉 ∪ 𝑉∗) do 

begin 

// initialization 

𝐿(. , . , . ) ∶=  +∞;   

node pred of vertex (. , . , . ) ∶=  −1;  

time pred of vertex (. , . , . ) ∶=  −1; 

state pred of vertex (. , . , . ) ∶=  −1; 

// vehicle 𝑣 starts its route from the empty state at its origin at the earliest departure time 𝐿(𝑜𝑣
′ , 𝑒𝑣 , 𝑤0) ∶

= 0;  

for each time 𝑡 ∈ [𝑒𝑣 , 𝑙𝑣] do  

begin 

for each link (𝑖, 𝑗) do 

begin 

for each state 𝑤 do 

begin 

derive downstream state 𝑤’ based on the possible state transition on link (𝑖, 𝑗); 

derive arrival time 𝑠 = 𝑡 + 𝑇𝑇(𝑖, 𝑗, 𝑡); 

if (𝐿(𝑖, 𝑡, 𝑤)  + 𝜉(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′)  < 𝐿(𝑗, 𝑠, 𝑤′)) then 

begin 

𝐿(𝑗, 𝑠, 𝑤′) ∶=  𝐿(𝑖, 𝑡, 𝑤)  +  𝜉(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) ; //label update 

node pred of vertex (𝑗, 𝑠, 𝑤′) ∶= 𝑖;  
time pred of vertex (𝑗, 𝑠, 𝑤′) ∶= 𝑡;  

state pred of vertex (𝑗, 𝑠, 𝑤′) ∶= 𝑤;  

end; 

end; 

end; 

end; 

end; 

 

Let’s define |𝒯|, |𝒜|, |𝒲| as the number of time stamps, links, and passenger 

carrying states, respectively. Therefore, the worst-case complexity of the DP algorithm is 

|𝒱||𝒯||𝒜||𝒲|, which can be interpreted as the maximum number of steps to be 

performed in this algorithm in this four-loop structure, corresponding to the sequential 

loops over vehicle, time, link, and starting carrying state dimensions. It should be 

remarked that the ending state 𝑤′ is uniquely determined by the starting state w and the 

related link (𝑖, 𝑗) depending on its service type: pickup, delivery, or pure transportation. 
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In a transportation network, the size of links is much smaller than the counterpart in a 

complete graph, that is, |𝒜| ≪ |𝒩||𝒩|; in fact, the typical out-degree of a node in 

transportation networks is about 2-4.  

Table 3.6 shows detailed comparisons between the existing DP-based approach 

(Psaraftis, 1983 and Desrosiers et al. 1986) and our proposed method. We guarantee the 

completeness of state representation. The state representation of Psaraftis (1983), 

(𝐿, 𝑘1, 𝑘2, … , 𝑘𝑛), consists of 𝐿, the location currently being visited, and 𝑘𝑖, the status of 

passenger 𝑖. In this representation, 𝐿 = 0, 𝐿 = 𝑖, and 𝐿 = 𝑖 + 𝑛 denote starting location, 

passenger 𝑖’s origin, and passenger 𝑖’s destination, respectively. In addition, the status of 

passenger 𝑖 is chosen from the set {1,2,3}, where 3 means passenger 𝑖 is still waiting to 

be picked up, 2 means passenger 𝑖 has been picked up but the service has not been 

completed, and 1 means passenger 𝑖 has been successfully delivered. This cumulative 

passenger service state representation (in terms of 𝑘1, 𝑘2, … , 𝑘𝑃) requires a space 

complexity of 𝑂(3𝑝), while our proposed (prevailing) passenger carrying state 

representation has a much smaller space requirement of  ∑ 𝐶𝑘
𝑃𝐶𝑎𝑝𝑣

𝑘=0  when the vehicle 

capacity is low (e.g. 2 or 3 for taxi). Desrosiers et al. (1986) use state representation 

(𝑆, 𝑖), where 𝑆 is the set of passengers’ origin, {1, … , 𝑛}, and destination, {𝑛 + 1, … 2𝑛}. 

State (𝑆, 𝑖) is defined if and only if there exists a feasible path that passes through all 

nodes in 𝑆 and ends at node 𝑖.  In fact, our time-dependent state (𝑤, 𝑖, 𝑡), which is jointly 

defined by three indexes: (𝑖) the status of customers, (𝑖𝑖) the current node being visited, 

and (𝑖𝑖𝑖) the current time, is more focused on the time-dependent current state at exact 

time stamp 𝑡, while (𝐿, 𝑘1, 𝑘2, … , 𝑘𝑛) and (𝑆, 𝑖) representations use a time-lagged time-
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period-based state representation to cover complete or mutually exclusive states from 

time 0 to time 𝑡. 

 

 

Table 3.6  
Comparison between existing DP based approach and the method proposed in this chapter. 

Features 

Existing DP based approach 

DP proposed in this chapter 
Psaraftis (1983) 

Desrosiers et al. 

(1986) 

Type of problem 

Single vehicle, 

Many-to-many, 

Single depot 

Single vehicle, 

Many-to-many, 

Single depot 

Multiple vehicle, Many-to-

many, Multiple depot 

Network  

Consists of 

passengers’ origin 

and destination nodes 

and the vehicle depot 

Consists of 

passengers’ origin 

and destination nodes 

and the vehicle depot 

Consists of transportation nodes, 

passengers’ origin and 

destination, and vehicles’ depots  

Time-dependent 

link travel time  
No No Yes 

Objective function   
Minimize route 

duration 

Minimize total 

distance traveled 

Minimize total routing cost 

consisting of transportation and 

waiting costs  

State 
State-space 

(𝐿, 𝑘1, 𝑘2, … , 𝑘𝑛)  
State-space (𝑆, 𝑖)  State-space-time (𝑤, 𝑖, 𝑡) 

Stage Node index Node index Time index 

States reduction 

due to the vehicle 

capacity and  time 

windows 

Yes Yes Yes 

 

We come back to the illustrative example presented in section 3.3.1. Let’s assume the 

routing cost of a transportation or service arc traversed by a physical vehicle is $22/h, 

while the routing cost of a transportation or service arc traversed by a virtual vehicle is 

$50/h. Moreover, assume that the waiting cost of a physical vehicle is $15/h, while the 

waiting cost of a virtual vehicle is assumed to be $0/h. Table 3.7 shows how the label of 

each vertex is calculated by the DP solution algorithm presented above. Note that 𝑤0, 𝑤1, 

𝑤2, and 𝑤3 are passenger carrying states [ _ _ ], [ 𝑝1 _], [𝑝1 𝑝2], and [ _ 𝑝2], respectively. 

For instance, according to Fig. 3.1, traveling from node 4 to node 2 takes 2 min. Since the 
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number written on each link denotes the time-invariant travel time 𝑇𝑇(𝑖, 𝑗), we can 

conclude that travel time for  link (4,2) starting at time stamp 𝑡 = 2 is also 2 min. To 

update the label corresponding to node 2, it is sufficient to calculate the routing cost of 

the stated arc in terms of dollars which can be obtained by 
2

60
× 22(

$

h
) = 0.73($) and add 

it to the current label of node 4 which is 0.37. Therefore, the updated label for node 2 will 

be 1.1. Similarly, we can calculate the routing cost of a waiting link (𝑜2, 𝑜2) starting at 

time stamp 𝑡 = 7 by 
1

60
× 15 (

$

h
) = 0.25 ($). 

Table 3.7 

SST trajectory for ride-sharing service trip with node sequence (𝑜1
′ , 4, 2, 𝑜1, 2, 𝑜2, 2, 5, 6, 3, 𝑑1, 3, 𝑑2, 3, 1, 𝑑1

′ ). 
Time index 1 2 4 5 6 7 8 9 10 11 12 13 14 15 16 18 19 20 

Node index 𝑜1
′  4 2 𝑜1 2 𝑜2 𝑜2 2 5 6 3 𝑑1 3 𝑑2 3 1 𝑑1

′  𝑑1
′  

State index 𝑤0 𝑤0 𝑤0 𝑤1 𝑤1 𝑤2 𝑤2 𝑤2 𝑤2 𝑤2 𝑤2 𝑤2 𝑤3 𝑤3 𝑤0 𝑤0 𝑤0 𝑤0 

Cost 0.0 .37 .73 .37 .37 .37 .25 .37 .37 .37 .37 .37 .37 .37 .37 .73 .37 0.0 

Cumulative 

cost 
0.0 .37 1.1 1.47 1.84 2.21 2.46 2.83 3.2 3.57 3.94 4.31 4.68 5.05 5.42 6.15 6.52 6.52 

 

3.5.2. LR-based Solution Procedure   

In this section, we describe the LR solution approach implemented to solve the time-

dependent least cost path problem presented in section 3.5. According to Eq. (3.13), 

𝜉(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) is only updated for ∀(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) ∈ Ψ𝑝,𝑣. Table 3.8 lists the 

notations for the sets, indices and parameters required for the LR algorithm. 

Table 3.8  

Notations used in LR algorithm. 

Symbol Definition 

𝝀𝒌(𝒑) 
LR multiplier corresponding to the passenger 𝑝’s pickup request constraint at 

iteration 𝑘 

𝝃(𝒗, 𝒊, 𝒋, 𝒕, 𝒔, 𝒘, 𝒘′) Modified routing cost of arc (𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) after introducing Lagrangian multipliers 

𝒌 Iteration number 

𝒀 Set of solution vectors 𝑦(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) 

𝑳𝑩𝒌 Global lower bound for the primal problem at iteration 𝑘  

𝑼𝑩𝒌 Global upper bound for the primal problem at iteration 𝑘  

𝒀𝑳𝑩
𝒌  Set of lower bound solution vectors 𝑌 at LR iteration 𝑘 

𝒀𝑼𝑩
𝒌  Set of upper bound solution vectors 𝑌 at LR iteration 𝑘 

𝜽𝒌 Step size at iteration 𝑘 
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𝑳𝑩∗ Best global lower bound for the primal problem 

𝑼𝑩∗ Best global upper bound for the primal problem 

𝒀∗ Best solution vectors derived from the best lower bound 

𝒃𝒂𝒔𝒆_𝒑𝒓𝒐𝒇𝒊𝒕 The amount of money (in terms of dollars) passenger 𝑝 initially offers to be served 

 

The optimal value of the Lagrangian dual problem provides a lower bound for the 

primal problem. To find the optimal solution for the Lagrangian dual problem, it is 

sufficient to compute time-dependent least cost SST path for each vehicle 𝑣 based on 

updated arc cost 𝜉’s by calling time-dependent forward DP algorithm mentioned before.  

The optimal solution of the Lagrangian dual problem may or may not be feasible for 

the primal problem. If the optimal solution of the Lagrangian dual problem is feasible for 

the primal problem, we have definitely obtained the optimal solution of the primal 

problem. If not, we apply a heuristic to find an upper bound for the primal solution. In 

this heuristic, the physical vehicles initially leave their depots to serve unserved 

customers provided that the money obtained in return for services overweigh the cost of 

transportation. Finally, if there is any unserved customer remained in the system, in order 

to avoid infeasibility, the virtual vehicle corresponding to the unserved customer departs 

from its depot to serve the passenger. The LR algorithm can be described as follows:  

// Algorithm 3.2: LR algorithm 

// step 0. initialization 

 set iteration  𝑘 = 0; 

 initialize 𝑌𝐿𝐵
0 , 𝑌𝑈𝐵

0 , 𝑌∗, and 𝜆0(𝑝) to zero; 

 initialize 𝜃0(𝑝) to 𝑏𝑎𝑠𝑒_𝑝𝑟𝑜𝑓𝑖𝑡;  

 initialize 𝐿𝐵∗ to −∞; and 𝑈𝐵∗ to +∞; 

 define a termination condition such as if k becomes greater than a predetermined 

maximum iteration number, or if the relative gap percentage between 𝐿𝐵∗ and 𝑈𝐵∗ becomes 

less than a predefined gap (i.e. 5%); 

while termination condition is false, for each LR iteration 𝑘 do 

begin 

 reset the visit count for each arc (𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) ∈ Ψ𝑝,𝑣 to zero; // 𝑣 ∈ (𝑉 ∪ 𝑉∗) 

// step 1. generating 𝐿𝐵𝑘  

// step 1.1. least cost path calculation for each vehicle sub-problem  
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 initialize 𝐿𝐵𝑘 to 0; 

for each vehicle 𝑣 ∈ (𝑉 ∪ 𝑉∗) do 

begin 

// input: 𝜉(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′)  

 compute time-dependent least cost SST path for vehicle 𝑣 based on updated arc 

cost 𝜉’s by calling Algorithm 1;  

 update the visit count for each arc (𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) ∈ Ψ𝑝,𝑣; 

// output: 𝑌𝐿𝐵
𝑘  

end; 

// step 1.2. update 𝐿𝐵∗ 

 update 𝐿𝐵𝑘  by substituting solution vector 𝑌𝐿𝐵
𝑘  in the objective function of the 

dual problem (Eq. (13)); 

 update 𝐿𝐵∗ by 𝑚𝑎𝑥(𝐿𝐵𝑘 , 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝐿𝐵∗) and 𝑌∗ by its corresponding solution;  

// step 1.3. sub-gradient calculation  

 calculate the total number of visits of passenger 𝑝’s origin by expression (3.14);  

∑ ∑ 𝑦(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′)(𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′)∈Ψ𝑝,𝑣𝑣∈(𝑉∪𝑉∗)     (3.14) 

 compute sub-gradients by Eq. (3.15); 

∇𝐿𝜆𝑘(𝑝) = ∑ ∑ 𝑦(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′)(𝑣,𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′)∈Ψ𝑝,𝑣𝑣∈(𝑉∪𝑉∗) − 1 for∀𝑝 (3.15) 

 update arc multipliers by Eq. (3.16); 

𝜆𝑘+1(𝑝) = 𝜆𝑘(𝑝) + 𝜃𝑘(𝑝)∇𝐿𝜆𝑘(𝑝) for ∀𝑝    (3.16)                                   

 update arc cost 𝜉(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) for each arc (𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) ∈ Ψ𝑝,𝑣 by Eq. 

(3.17);  

𝜉(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) = 𝑐(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) + 𝜆𝑘+1(𝑝)   (3.17) 

 update step size by Eq. (3.18); 

𝜃𝑘+1(𝑝) =  
𝜃0(𝑝) 

𝑘+1
        (3.18) 

// Step 2. generating 𝑈𝐵𝑘    

// step 2.1. finding a feasible solution for the primal problem 

 set 𝑈𝐵𝑘 = 0;  

 adopt the passenger-to-vehicle assignment matrix from the lower bound solution 

in step 1.2; 

for each vehicle 𝑣 ∈ (𝑉 ∪ 𝑉∗) do 

begin 

// if passenger 𝑝 is served by multiple vehicles, then designate one of the vehicles 

(e.g. first in the set) to serve this passenger, which means that the other vehicles 

should not serve this passenger in the upper bound generation stage.  

if (passenger 𝑝 is assigned to physical vehicle 𝑣) do 

begin 

if passenger 𝑝 has not been already served by any other vehicle  

set arc cost on the pickup arc for passenger 𝑝 temporarily to −𝑀;  

// 𝑀 is chosen a big positive number in order to attract vehicle 𝑣 for serving 

passenger 𝑝 

else  

set arc cost on the pickup arc for passenger 𝑝 temporarily to +𝑀; 

// 𝑀 is chosen a big positive number in order to guarantee vehicle 𝑣 does 

not serve passenger 𝑝 

end; 

// if passenger 𝑝 is not served by any physical vehicle, then designate the 

corresponding virtual vehicle to serve this passenger.  

if (passenger 𝑝 is not served by any physical vehicle & vehicle 𝑣 is the 

corresponding virtual vehicle for passenger 𝑝) 
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set arc cost on the pickup arc for passenger 𝑝 temporarily to −𝑀; 

// 𝑀 is chosen a big positive number in order to attract vehicle 𝑣 for serving 

passenger 𝑝 

 compute time-dependent least cost path for vehicle 𝑣 by calling 

Algorithm 1; 

 compute the actual transportation costs (denoted as 𝑇𝐶𝑣) along the path 

solution for vehicle 𝑣 

 update upper bound objective function as 𝑈𝐵𝑘 = 𝑈𝐵𝑘 + 𝑇𝐶𝑣 . 

end; 

// The result of this passenger-to-vehicle assignment updating is that each passenger is 

served by exactly one vehicle (either physical or virtual).  

// step 2.2. update 𝑈𝐵𝑘  

 update 𝑈𝐵𝑘  by substituting solution vector 𝑌𝑈𝐵
𝑘  in the objective function of the 

primal problem;  

// step 2.3. update 𝑈𝐵∗ 

 𝑈𝐵∗  = 𝑚𝑖𝑛(𝑈𝐵𝑘 , 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑈𝐵∗); 

 find the relative gap percentage between 𝐿𝐵∗ and 𝑈𝐵∗ by 
𝑈𝐵∗−𝐿𝐵∗

𝑈𝐵∗ × 100; 

 𝑘 = 𝑘 + 1; 

end; 

 

We would like to make remarks in following two cases:  

(𝑖) In the upper bound solution, all passengers are only served by the physical 

vehicles. In this case, we can be sure that the total number of physical vehicles has been 

sufficient to serve all requests. Accordingly, the service prices in the corresponding lower 

bound solution typically have been set such that the money obtained in return for services 

overweighs the cost of transportation so that physical vehicles are dispatched to serve 

customers. 

(𝑖𝑖) In the final optimal solution, there might be some passengers who are served by 

virtual vehicles. Obviously, serving a passenger by a virtual vehicle is expensive due to 

its transportation cost. In addition, when the virtual vehicle drops off the passenger, it 

should perform a deadheading trip with significantly high cost from the passenger's 

destination to its depot (the passenger’s origin).  
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3.5.3. Search Region Reduction 

In this section, we describe how to reduce the search region by the aid of some simple 

heuristics in which some rational rules are applied. Let 𝐸𝐷𝑇, 𝐿𝐷𝑇, 𝐸𝐴𝑇, and 𝐿𝐴𝑇 denote 

the earliest departure time from origin,  latest departure time from origin, earliest arrival 

time to destination, and latest arrival time to destination, respectively. In addition, let 

𝑇𝑇𝑆𝑃𝑥→𝑦 denote the travel time corresponding to the shortest path from node 𝑥 to node 𝑦.  

Rule 1. No overlapping time windows: The first rational rule is that if 𝐿𝐴𝑇(𝑝1) <

𝐸𝐷𝑇(𝑝2), then passenger 𝑝1 and 𝑝2’s ride-sharing is impossible. Fig. 3.7 illustrates an 

example of two passengers whose ride-sharing is impossible due to no overlapping time 

windows. 
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Fig. 3.7. Illustration of the first rational rule for search region reduction. 

 

Rule 2. Travel time is insufficient: The second rational rule can be stated as follows: 

if {𝐿𝐷𝑇(𝑝2) − 𝐸𝐷𝑇(𝑝1) <  𝑇𝑇𝑆𝑃𝑜𝑝1→ 𝑜𝑝2
 & 𝐿𝐷𝑇(𝑝1) − 𝐸𝐷𝑇(𝑝2) < 𝑇𝑇𝑆𝑃𝑜𝑝2→ 𝑜𝑝1

}, then 

passenger 𝑝1 and 𝑝2 cannot share their ride with each other. It means that if the maximum 

time a vehicle can have to go from passenger 𝑝1’s origin to 𝑝2’s origin, 𝐿𝐷𝑇(𝑝2) −

𝐸𝐷𝑇(𝑝1), is less than the total travel time corresponding to the shortest path from 𝑜𝑝1
 to 

𝑜𝑝2
, and also if the maximum time a vehicle can have to go from passenger 𝑝2’s origin to 
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𝑝1’s origin, 𝐿𝐷𝑇(𝑝1) − 𝐸𝐷𝑇(𝑝2), is less than the total travel time corresponding to the 

shortest path from 𝑜𝑝2
 to 𝑜𝑝1

, then passenger 𝑝1 and 𝑝2’s ride-sharing is impossible. 

Similarly, if {𝐿𝐴𝑇(𝑝2) − 𝐸𝐴𝑇(𝑝1) <  𝑇𝑇𝑆𝑃𝑑𝑝1→𝑑𝑝2
 & 𝐿𝐴𝑇(𝑝1) − 𝐸𝐴𝑇(𝑝2) <

𝑇𝑇𝑆𝑃𝑑𝑝2→𝑑𝑝1
}, then passenger 𝑝1 and 𝑝2’s ride-sharing is impossible. The total number 

of passenger carrying states is dramatically decreased via this rule. Fig. 3.8 illustrates the 

second rule by an example. Suppose two requests with two OD pairs should be served by 

a vehicle. Fig. 3.8(a) illustrates transportation network with the corresponding dummy 

nodes and time windows. According to the Fig. 3.8(a), 𝑇𝑇𝑆𝑃𝑜𝑝1→𝑜𝑝2
 and 𝑇𝑇𝑆𝑃𝑜𝑝2→𝑜𝑝1

are 

5 and 6, respectively. Since {(6 − 4) < 5 & (5 − 4) < 6}, then passenger 𝑝1 and 𝑝2’s 

ride-sharing is impossible. 
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Fig. 3.8. Illustration of the second rational rule for search region reduction; (a) transportation network with 

the corresponding dummy nodes and time windows; (b) vehicle 1’s space-time network. 
 

Rule 3. A node is too far away from the vehicle starting or ending depot: The third 

rational rule is stated as follows: if (𝑇𝑇𝑆𝑃𝑜𝑣→𝑥  + 𝑇𝑇𝑆𝑃𝑥→𝑑𝑣
) > (𝐿𝐴𝑇(𝑣) − 𝐸𝐷𝑇(𝑣)), 

then vehicle 𝑣 does not have enough time to visit node 𝑥 in its time horizon; therefore, 
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node 𝑥 is not accessible for vehicle 𝑣 and should not be considered in vehicle 𝑣’s search 

region. Note that node 𝑥 can be any physical or dummy node. Fig. 3.9 illustrates the third 

rule by an example. Suppose a passenger with an OD pair should be served by a vehicle. 

Fig. 3.9(a) illustrates transportation network with the corresponding dummy nodes and 

time windows. Fig. 3.9(b) shows that passenger 𝑝1’s origin, 𝑜1, is not accessible for the 

vehicle. In addition to this rule, we can also say that a passenger is inaccessible for a 

vehicle if the time for a vehicle to pick up the passenger and visit his destination is longer 

than the vehicle's time window. 
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Fig. 3.9. Illustration of the third rational rule for search region reduction; (a) transportation network with the 

corresponding dummy nodes and time windows; (b) vehicle 1’s space-time network. 

 

The first three rules are hard rules at which we are able to eliminate some vertexes in 

the SST networks. The forth heuristic is the way of estimating the search region reduction 

ratio. Let path 𝛼 be the longest possible path in vehicle 𝑣’s SST networks with total 

travel time 𝜏𝛼. Let 𝑚𝑝 denote the middle point of passenger 𝑝’s departure time window. 

Therefore, 𝑚𝑝 =
𝐸𝐷𝑇(𝑝)+𝐿𝐷𝑇(𝑝)

2
. Let’s assume that 𝑀, the middle point of a passenger’s 
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departure time window, is a random variable uniformly distributed in vehicle 𝑣’s time 

horizon with 𝐿𝐴𝑇(𝑣) − 𝐸𝐷𝑇(𝑣) length. It may be reasonable to assume that if 

|𝑚𝑝1
−  𝑚𝑝2

| > 𝜏𝛼, then passenger 𝑝1 and 𝑝2 cannot be in the same vehicle at a time. We 

use an example to show that this rule can reduce the search region considerably. Assume 

vehicle 𝑣’s time window is [0, 240], and 𝑀 is a random variable uniformly distributed in 

vehicle 𝑣’s time horizon [0,240]. Let’s assume 𝜏𝛼 = 60 min. The probability of having 

two passengers who share their ride with each other can be calculated by finding the 

𝑃𝑟𝑜𝑏(|𝑚𝑝1
−  𝑚𝑝2

| ≤ 60 𝑚𝑖𝑛𝑢𝑡𝑒𝑠), where 𝑚𝑝1
 and 𝑚𝑝2

 are randomly generated from 

[0, 240]. This probability equals to 
7

16
= 43.75%. This can be shown with the following 

derivation. The shaded area in in Fig. 3.10 shows 𝑃𝑟𝑜𝑏(|𝑚𝑝1
−  𝑚𝑝2

| ≤ 60 ).  

𝑃𝑟𝑜𝑏(|𝑚𝑝1
−  𝑚𝑝2

| ≤ 60 ) =  𝑃𝑟𝑜𝑏(−60 ≤ 𝑚𝑝1
−  𝑚𝑝2

≤ 60 ) 

𝑃𝑟𝑜𝑏(−60 ≤ 𝑚𝑝1
−  𝑚𝑝2

≤ 60 )

= 1 − [𝑃𝑟𝑜𝑏(𝑚𝑝1
−  𝑚𝑝2

< −60 ) + 𝑃𝑟𝑜𝑏(𝑚𝑝1
−  𝑚𝑝2

> 60 )] 

                           = 1 − [

180 × 180
2

240 × 240
+

180 × 180
2

240 × 240
] =
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16
 

180 24012060

180

240

60

120

mp1(min)

m
p
2
(m

in
)

 
Fig. 3.10. The probability of having two passengers who share their ride with each other where 𝑚𝑝1

 and 𝑚𝑝2
 

are uniformly distributed in [0, 240]. Note that 𝜏𝛼 = 60 min. 



 

67 
 

Therefore, by considering this practical rule in this example, we can reduce the total 

number of passenger carrying states in which two passengers share their ride with each 

other by more than half. By considering this rational rule, calculating the probability of 

having more than two passengers at the same time in vehicle 𝑣 is more complicated, but 

at least we know that the probability of having 𝑘 number of passengers (𝑘 > 2) who may 

share their ride with each other is certainly less than 43.75%.  

 

3.6. Computational Results and Discussions 

The algorithms described in this chapter were coded in C++ platforms. The 

experiments were performed on an Intel Workstation running two Xeon E5-2680 

processors clocked at 2.80 GHz with 20 cores and 192 GB RAM running Windows 

Server 2008 x64 Edition. In addition, parallel computing and Open Multi-Processing 

(OpenMP) technique (Chandra et al., 2000) are implemented for generating lower bound 

and upper bound at each iteration in the LR algorithm. In this section, we initially 

examine our proposed model on a six-node transportation network followed by the 

medium-scale and large-scale transportation networks, Chicago and Phoenix, to 

demonstrate the computational efficiency and solution optimality of our developed 

algorithm. The scenarios and test cases are randomly generated in those transportation 

networks. Moreover, we test our algorithms on the modified version of instances 

proposed by Ropke and Cordeau (2009) which is publicly available at 

http://www.diku.dk/~sropke/. 

 

http://www.diku.dk/~sropke/
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3.6.1. Illustrative cases 

According to Section 3.5.1, it is assumed that the routing cost of a transportation or 

service arc traversed by a physical vehicle is $22/h, while the routing cost of a 

transportation or service arc traversed by a virtual vehicle is $50/h. Moreover, the waiting 

cost of a physical vehicle either at a transportation or at a dummy node is $15/h (waiting 

at dummy nodes corresponding starting and ending depots has $0/h cost), while the 

waiting cost of a virtual vehicle at any node is assumed to be $0/h. The value of 

𝑏𝑎𝑠𝑒_𝑝𝑟𝑜𝑓𝑖𝑡 is also assumed to be $10 for all passengers. Initially, we test our algorithm 

on the six-node transportation network illustrated in Fig. 3.1(a) for six scenarios. Table 

3.9 shows these scenarios with various number of passengers and vehicles, OD pairs, and 

passengers’ departure and arrival time windows. Then, we will examine the results 

corresponding to each scenario individually. Terms “TW” and “TH” stands for time 

window and time horizon, respectively. Table 3.10 shows the results corresponding each 

scenario.  

Scenario I. Two passengers are served by one vehicle, where passengers have 

different OD pairs with overlapping time windows. In this case, the vehicle serves both 

passengers in their preferred time windows through ride-sharing mode.  

Scenario II. Two passengers with different OD pairs are served by one vehicle; 

however, unlike in scenario I, passengers could not share their ride with each other due to 

their time windows. In this case, the vehicle may wait at any node to finally serve both 

passengers.  
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Scenario III. Two passengers with different OD pairs and one vehicle are present in 

the system; however, due to the passengers’ overlapping time windows, serving both 

passengers by one vehicle is impossible. Therefore, the driver would prefer to transport a 

passenger incurring the least cost. In this case, passenger 𝑝1 is selected to be served.  

Scenario IV. Two passengers with different OD pairs and two vehicles are present in 

the system and, due to the passengers’ and vehicles’ time windows, 𝑝1 is assigned to 𝑣1 

and 𝑝2 is assigned to 𝑣2.  

Scenario V. Three passengers are served by one vehicle, where passengers have 

different OD pairs with overlapping time windows. In this case, the vehicle serves all 

passengers in their preferred time windows through ride-sharing mode.  

Scenario VI. One passenger and two vehicles are present in the system. In this case, 

two vehicles compete for serving the passenger. Ultimately, the vehicle whose routing is 

less costly wins the competition and serves the passenger. 

 

 

 

 

Table 3.9  

Six scenarios with various numbers of passengers and vehicles, OD pairs, and passengers’ departure and 

arrival time windows. 

Scenario I II III IV V VI 

Number of 

passengers 
2 2 2 2 3 1 

Number of vehicles 1 1 1 2 1 2 

𝒐𝟏 Node 2 Node 2 Node 2 Node 2 Node 2 Node 2 

𝒅𝟏 Node 6 Node 6 Node 1 Node 1 Node 3 Node 6 

𝒐𝟐 Node 5 Node 5 Node 3 Node 3 Node 5 - 

𝒅𝟐 Node 3 Node 3 Node 6 Node 6 Node 3 - 

𝒐𝟑 - - - - Node 6 - 

𝒅𝟑 - - - - Node 1 - 

𝒐𝟏
′  Node 4  Node 4  Node 4 Node 2 Node 4 Node 4 

𝒅𝟏
′  Node 1 Node 1 Node 1 Node 1 Node 1 Node 1 

𝒐𝟐
′  - - - Node 3 - Node 6 



 

70 
 

𝒅𝟐
′  - - - Node 6 - Node 1 

𝑻𝑾𝒐𝟏
 [5, 7] [5, 7] [4, 5] [4, 5] [4, 7] [4, 7] 

𝑻𝑾𝒅𝟏
 [9, 12] [9, 12] [8, 10] [8, 10] [13, 16] [9, 12] 

𝑻𝑾𝒐𝟐
 [8, 10] [16, 19] [3, 5] [4, 6] [7, 10] - 

𝑻𝑾𝒅𝟐
 [11, 14] [21, 24] [11, 14] [11, 14] [14, 18] - 

𝑻𝑾𝒐𝟑
 - - - - [10, 13] - 

𝑻𝑾𝒅𝟑
 - - - - [19, 23] - 

𝑻𝑯𝒗𝟏
 [1, 30] [1, 30] [1, 30] [1, 30] [1, 30] [1, 30] 

𝑻𝑯𝒗𝟐
 - - - [1, 30] - [1, 30] 

 

Table 3.10  

Results obtained from testing our algorithm on the six-node transportation network for six scenarios. 

iteration 𝒌 𝑳𝑩∗ 𝑼𝑩∗ gap% 
vehicles assigned 

to 𝒑𝟏, 𝒑𝟐, and 𝒑𝟑 
𝝀𝒌(𝒑𝟏) 𝝀𝒌(𝒑𝟐) 𝝀𝒌(𝒑𝟑) 

Scenario I. Two passengers are served by one vehicle through ride-sharing mode. 

1 1.47 5.75 74.5% 𝑣1, 𝑣1, - 10 10 - 

2 1.47 5.75 74.5% 𝑣1, 𝑣1, - 5 5 - 

3 5.75 5.75 0.0% 𝑣1, 𝑣1, - 5 5 - 

Scenario II. Two passengers are served by one vehicle (not through ride-sharing mode). 

1 1.47 7.22 79.68% 𝑣1, 𝑣1, - 10 10 - 

2 5.55 7.22 23.10% 𝑣1, 𝑣1, - 5 5 - 

3 7.22 7.22 0.0% 𝑣1, 𝑣1, - 5 5 - 

Scenario III. Two passengers and one vehicle; one passenger remains unserved. 

1 1.47 10.43 85.94% 𝑣1, 𝑣2
∗, - 10 10 - 

2 7.1 10.43 31.95% 𝑣1, 𝑣2
∗, - 5 10 - 

3 10.43 10.43 0.0% 𝑣1, 𝑣2
∗, - 5 10 - 

Scenario IV. Two passengers and two vehicles; each vehicle is assigned to a passenger 

1 2.2 6.13 64.13% 𝑣1, 𝑣2, - 10 10 - 

2 2.2 6.13 64.13% 𝑣1, 𝑣2, - 5 5 - 

3 6.13 6.13 0.0% 𝑣1, 𝑣2, - 5 5 - 

Scenario V. Three passengers are served by one vehicle through ride-sharing mode 

1 1.47 6.97 78.95% 𝑣1, 𝑣1, 𝑣1 10 10 10 

2 1.47 6.97 78.95% 𝑣1, 𝑣1, 𝑣1 5 5 5 

3 6.97 6.97 0.0% 𝑣1, 𝑣1, 𝑣1 5 5 5 

Scenario VI. Two vehicles compete for serving a passenger 

1 2.57 5.13 50.0% 𝑣1, -, - 10 - - 

2 2.63 5.13 48.70% 𝑣1, -, - 10 - - 

3 5.13 5.13 0.0% 𝑣1, -, - 10 - - 

 

Fig. 3.11 also presents the vehicle routing corresponding each scenario. We increase 

the number of passengers and vehicles to show the computational efficiency and solution 

optimality of our developed algorithm. Table 3.11 shows the results for the six-node 
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transportation network when the numbers of passengers and vehicles have been 

increased. The term “CPU” stands for central processing unit. 
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Table 3.11  

Results for the six-node transportation network. 

Test 

case 

number 

Number 

of 

iterations  

Number 

of 

passengers 

Number 

of 

vehicles 
𝑳𝑩∗ 𝑼𝑩∗ 

Gap 

(%) 

Number of 

passengers not 

served 

CPU 

running 

time (s) 

1 30 6 1 15.83 15.83 0.00% 0 5.94 

2 30 12 2 33.17 33.17 0.00% 0 12.02 

3 30 24 4 61.67 65.33 5.61% 0 30.97 

 

We explain the pricing mechanism in this algorithm via test case 1 with 6 passengers 

and 1 vehicle. Fig. 3.12 shows 𝜆𝑘(𝑝𝑖), 𝑖 = 1,2, . . ,6, along 30 iterations. It is clear that 

each passenger’s Lagrangian multiplier ultimately converges to a specific value. This 

value can be literally interpreted as the passenger 𝑝’s service price. Through the pricing 

mechanism of this algorithm, the provider would be able to offer a reasonable bid to its 

customers to be served. 
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Fig. 3.12. Lagrangian multipliers along 30 iterations in test case 1 for the six-node transportation network. 

 

3.6.2. Results from Medium-scale and Large-scale Transportation Networks 

In our computational experiments for the medium-scale and large-scale networks, for 

simplicity, we assume that each passenger has a fixed departure time (the earliest and 

latest departure time are the same). In addition, we assume that no passenger has a 

preferred time window for arrival to his destination. Tables 3.12 and 3.13 show the 

results for the Chicago transportation network, shown as Fig. 3.13(a) with 933 nodes and 

2,967 links, and the Phoenix transportation network, as shown in Fig. 3.13(b) with 13,777 

nodes and 33,879 links, respectively. 

(a) Chicago sketch network (b) Phoenix metropolitan regional network  
 

Fig. 3.13. Medium and large-scale transportation networks for computational performance testing. 
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Note that we generally run the algorithm for a fixed number of iterations; however, 

the algorithm may converge in less number of iterations. Fig. 3.14 shows the gap 

percentage along 20 iterations corresponding each test case.  

Table 3.12  

Results for the Chicago network with 933 transportation nodes and 2,967 links. 

Test 

case 

number 

Number 

of 

iterations  

Number 

of 

passengers 

Number 

of 

vehicles 
𝑳𝑩∗ 𝑼𝑩∗ 

Gap 

(%) 

Number of 

passengers not 

served 

CPU 

running 

time (s) 

1 20 2 2 108.43 108.43 0.00% 0 17.43 

2 20 11 3 352.97 352.97 0.00% 0 91.87 

3 20 20 5 616.66 626.18 1.52% 1 327.51 

4 20 46 15 1586.81 1664.07 4.64% 2 4681.52 

5 20 60 15 1849.98 1878.55 1.52% 3 7096.50 

 

 
Fig. 3.14. Gap percentage along 20 iterations corresponding each test case in Chicago network. 

 

As you can see in Fig. 3.14, after 10-15 iterations, the sub-gradient algorithm is 

typically able to converge to a small gap (about 5%) for the Chicago Network. 

Table 3.13  
Results for the Phoenix network with 13,777 transportation nodes and 33,879 links. 

Test 

case 

number 

Number 

of 

iterations 

Number 

of 

passengers 

Number 

of 

vehicles 
𝑳𝑩∗ 𝑼𝑩∗ 

Gap 

(%) 

Number of 

passengers not 

served 

CPU 

running 

time (s) 

1 6 4 2 70.95 70.95 0.00% 0 110.39 

2 6 10 5 191.55 207.05 7.49% 1 398.37 

3 6 20 6 310.37 310.37 0.00% 0 1323.18 

4 6 40 12 622.23 622.23 0.00% 0 3756.51 

5 6 50 15 784.07 784.07 0.00% 0 6983.19 
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3.6.3. Handling Randomly Generated Test Instances 

To further examine the computational efficiency and solution optimality of our 

proposed algorithm, we also test our algorithms on randomly generated instances 

proposed by Ropke and Cordeau (2009) which is publicly available at 

http://www.diku.dk/~sropke/. The data set introduced by Ropke and Cordeau (2009) is 

the modified version of instances employed by Ropke et al. (2007) initially proposed by 

Savelsbergh and Sol (1998). In this data set, the coordinates of passengers’ pickup and 

drop-off locations are randomly selected and uniformly distributed over a [0,50] × [0,50] 

square. In addition, they considered a single depot located in the center of the square. The 

load 𝑞𝑖 of passenger 𝑖 is randomly selected from [5, 𝑄], where 𝑄 is the maximum 

capacity of the vehicle. A planning horizon [0,600] is considered. Feasible departure and 

arrival time windows are also randomly generated for each passenger.  

Ropke and Cordeau  (2009) formulate the PDPTW on a network that is built based on 

demand request nodes, and the links are defined as direct connections between pickup 

and delivery nodes (without explicitly considering transportation links or paths), while 

we formulate the PDPTW on transportation networks. To test our algorithms on their data 

set, we need to convert their OD network to a transportation network. Specifically, we 

treat their demand node-oriented network as a transportation network, and each 

origin/destination node acts as a transportation node. As a result, in this converted 

transportation network, each transportation node is connected to all other transportation 

nodes, and similar to what we performed before, dummy nodes are added and connected 

to their corresponding transportation nodes. Obviously, the constructed transportation 

http://www.diku.dk/~sropke/
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network is a complete digraph with a very large number of links. In this data set, the 

coordinates of passengers’ pickup and drop-off locations are randomly chosen and 

uniformly distributed over a small square, so the densely distributed passengers could 

impose a difficult problem of assigning different vehicles to different passengers. In 

comparison, in our test data set, the Chicago and Phoenix transportation networks, the 

vehicles and passengers are naturally spatially and sparsely distributed such that fewer 

vehicles compete for serving a particular passenger. Thus, in that situation, the first stage 

of the vehicle assignment problem could be easily solved using our proposed LR 

framework with a good matching between the vehicles and passengers.  

 

3.6.4. Challenges of Multi-vehicle Assignment Problems and Usefulness of Single-

vehicle Routing Algorithm 

In general, VRPPDTW even for the single vehicle cases is still categorized as one of 

the toughest tasks of combinatorial optimization (Azi et al., 2007; Hernández-Pérez and 

Salazar-González, 2009; and Häme, 2011). Several approaches have been recently 

suggested to resolve the issue mentioned above by converting multi-vehicle cases to the 

single-vehicle ones. For instance, Häme and Hakula (2015) have suggested a maximum 

cluster algorithm in which the multi-vehicle solution is based on a recursive single-

vehicle algorithm.  

To fully address the complexity of assigning different vehicles to multiple passengers, 

Fisher et al. (1997) proposed a new set of variables 𝑥(𝑝, 𝑣) and decomposed constraints 

(5) to two sets of constraints: constraints (3.19) and (3.20).   
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∑ 𝑥(𝑣, 𝑝) = 1𝑣∈(𝑉∪𝑉∗)   ∀𝑝       (3.19)      

∑ 𝑦(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) = 𝑥(𝑣, 𝑝)(𝑗,𝑠,𝑤′)  (𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) ∈ Ψ𝑝,𝑣, ∀𝑝, ∀𝑣 (3.20) 

Constraints (3.19) guarantee that each passenger is visited exactly once. Constraints 

(3.20) control vehicle 𝑣’s route and show the relations between the variables 𝑥(𝑣, 𝑝) and 

𝑦(𝑣, 𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′). By using the Lagrangian decomposition method and relaxing these 

two sets of constraints into the objective function, the main problem can be decomposed 

to two sub-problems where sub-problem (1) becomes a semi-assignment problem and 

sub-problem (2) as a time-dependent least-cost path problem. The first sub-problem can 

be easily solved by inspection. The second sub-problem also can be solved by 

computationally efficient algorithms, e.g., proposed in our research. However, due to the 

integrality of 𝑥 and 𝑦, there may be a gap between lower bounds and upper bounds of the 

primal problem. To further reduce the duality gap, Fisher et al. (1997) introduce a 

branch-and-bound method and use the variable splitting approach to control the lower 

bounds; but using a new branch-and-bound method decreases the computational 

efficiency of our algorithm dramatically.  

In our research, in order to address the similar concerns, we also apply set partitioning 

approach to enumerate all possible passengers’ service patterns. To define passengers’ 

service patterns, we utilize the path representation for the TSP suggested by Bellman 

(1962) and Held and Karp (1962). Service pattern 𝑗 is defined as a vector consists of |𝑃| 

number of elements (𝑃 is the set of passengers). Note that 𝑝th element of pattern 𝑗 is 

representative of passenger 𝑝’s service status. The service status of passenger 𝑝 is chosen 

from the set {0,1,2}, where 0 means passenger 𝑝 is still waiting to be picked up, 1 means 
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passenger 𝑝 has been picked up but the service has not been completed, and 2 means 

passenger 𝑝 has been successfully delivered. Let 𝑐𝑣𝑗 denote the travel cost of pattern 𝑗 

traversed by vehicle 𝑣. Moreover, assume that 𝛼𝑣𝑝𝑗 is a binary constant which equals 1 if 

pattern 𝑗 traversed by vehicle 𝑣 includes passenger 𝑝, and 0 otherwise.  𝑧𝑣𝑗 is also a 

binary variable equals 1 if pattern 𝑗 is used by vehicle 𝑣, and 0 otherwise. Thus, we will 

have: 

𝑚𝑖𝑛 ∑ ∑ 𝑐𝑣𝑗𝑧𝑣𝑗𝑗∈𝐽𝑣∈𝑉          (3.21) 

s.t. 

∑ ∑ 𝛼𝑣𝑝𝑗𝑧𝑣𝑗 = 1𝑗∈𝐽𝑣∈𝑉  ∀𝑝       (3.22) 

∑ 𝑧𝑣𝑗𝑗∈𝐽 = 1  ∀𝑣        (3.23) 

𝑧𝑣𝑗 ∈ {0,1}  ∀𝑣, 𝑗        (3.24) 

In this formulation, objective function (3.21) minimizes the total travel cost. 

Constraints (3.22) guarantee that each passenger is served exactly once. Constraints 

(3.23) ensure that each vehicle selects only one pattern. Constraints (3.24) define that the 

decision variables are binary. In order to assess the solution optimality of our developed 

algorithm on instances proposed by Ropke and Cordeau (2009) and avoid the 

computational challenges, two scenarios have been examined. First, we test our algorithm 

for the single-vehicle cases to avoid the complexity of assigning different vehicles to 

multiple passengers. In this case, it is obvious that we do not need to apply the set 

partitioning method mentioned above. Second, we test our algorithm on the small subsets 

of their instances for the multiple-vehicle cases with a limited number of transportation 
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requests, so that all possible combinations of passenger-to-vehicle assignment patterns 

𝛼𝑣𝑝𝑗 can be enumerated, and then solved in the set partitioning problem defined above. In 

both sets of scenarios, the exact solutions are obtained for all the restricted master 

problems in the test data sets. 

 

3.7. Conclusions 

A new generation of transportation network companies uses mobile-phone-based 

platforms to seamlessly connect drivers to passengers from different origins to different 

destinations with specific, preferred departure or arrival times. Many relevant practical 

aspects need to be carefully formulated for real-world planning/dispatching system 

deployment, such as time-dependent link travel times on large-scale regional 

transportation networks, and tight vehicle capacity and passenger service time window 

constraints.  

By reformulating the PDPTW through space-time networks to consider time window 

requirements, our proposed approach can not only solve the vehicle routing and 

scheduling problem directly in large-scale transportation networks with time-dependent 

congestion, but also avoid the complex procedure to eliminate any sub-tour possibly 

existing in the optimal solution for many existing formulations. By further introducing 

virtual vehicle constructs, the proposed approach can fully incorporate the full set of 

interacting factors between passenger demand and limited vehicle capacity in this model 

to derive feasible solutions and practically important system-wide cost-benefit estimates 

for each request through a sub-gradient-based pricing method. This joint optimization and 



 

79 
 

pricing procedure can assist transportation network service providers to quantify the 

operating costs of spatially and temporally distributed trip requests. 

On a large-scale regional network, the capacity impact of optimized passenger-to-

vehicle matching results can be further evaluated in mesoscopic dynamic traffic 

simulation packages such as an open-source Dynamic Traffic Assignment-Light weight 

(DTALite) (Zhou and Taylor, 2014). Future work will concentrate on the development of 

the model for the following cases: (𝑖) Passengers may desire different ride-sharing 

capacities (i.e. a passenger may desire to share his ride with up to only one passenger, 

whereas the other passenger may have no restriction about the number of passengers 

which share their ride with him). (𝑖𝑖) A passenger may desire to be or not to be served by 

a particular vehicle. (𝑖𝑖𝑖) A transportation request could contain a group of passengers 

who have the same origin, while they may or may not have the same destination. 

Alternatively, a transportation request could contain a group of passengers who have the 

same destination, while they may or may not have the same origin. In this case, we are 

interested in adding dummy nodes corresponding to passengers’ origins and destinations 

more wisely and efficiently. In addition, in our future research, a comprehensive branch-

and-bound algorithm should be included in our solution framework to fully address the 

complexity of assigning different vehicles to multiple passengers.    
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CHAPTER 4 

A CUMULATIVE SERVICE STATE REPRESENTATION FOR THE PICKUP 

AND DELIVERY PROBLEM WITH SYNCHRONIZED TRANSFERS 

   

4.1. Introduction 

Coordinated transportation services consist of three different levels of service: ride-

hailing, ride-sharing without transfer, and ride-sharing with one or more than one 

synchronized transfer. Ride-hailing is a level of coordinated service in which a passenger 

hires a driver to get a transportation service for a fee, and the driver is supposed to deliver 

the passenger to exactly where he needs to go. Traditional taxi companies offer this form 

of transport. The way by which a passenger hails a car can be listed as follows: a 

passenger can hail a taxi from the street, call up a transport service on the phone, or hail a 

car from an app by his cellphone.  

Ride-sharing without transfer is another level of coordinated transportation service 

which is slightly different from ride-hailing. In this mode of transportation, similar to the 

ride-hailing, a passenger hires a driver to take him exactly where he needs to go, but the 

passenger may share his ride with one or more than one passenger. Recently, a broad 

range of transportation network companies like Uber, Lyft, and Sidecar offers this type of 

transport service by the aid of three recent technological advances: (1) GPS, (2) 

smartphones, and (3) social networks.  

The third level of coordinated transportation service is ride-sharing with synchronized 

transfers. In general, transfers are used to provide more efficient transportation networks 
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by reducing the operational costs, as well as making more flexible routes available for 

passengers. A large number of daily trips is classified in this category. For instance, in 

multi-modal transit, a passenger may use two or more transport modes for his trip (e.g. 

train and bus). Multi-modal transit provides convenient and economical connection of 

various modes to make a complete journey from origin to destination. Another example 

of this type of transportation service can be the first mile/last mile transport of the 

commuters who need to go from an origin to a transit station and then from the station at 

the other end of the trip to a final destination. Ride-sharing between households or fellow 

workers is another example of ride-sharing with synchronized transfers. In this case, 

members of a family or any other social group arrange their trips informally and share 

their travel information such as departure time, stops, and transfer points among 

themselves. 

The concept of pickup and delivery with transfer(s) is not only used in passenger 

transit, but also applied frequently in freight transportation in what is called “freight 

consolidation”. Freight consolidation is when several small shipments, all being 

forwarded to the same location, are bundled and shipped together. Freight consolidation 

is a service offered by some shipping companies to lower the total shipping cost and to 

increase shipping security. It is also known as consolidation service, assembly service, 

and cargo consolidation. Different terms are used for transfer centers depending on the 

transportation mode and the type of good being transported, such as rail yards in the 

railway industry, hub airports in air cargo transportation, transshipment ports in sea cargo 

transportation, and terminals for transporting goods by trucks.        
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In Fig. 4.1, different levels of coordinated transportation service have been shown by 

an example in which six passengers with different origins, destinations, and departure 

time windows have called for service. As shown in Fig. 4.1, in the case of ride-sharing 

with synchronized transfers, the vehicles’ capacity can be utilized more in comparison to 

other types of coordinated transportation service.  

Number of required vehicles

Ride-hailing

Ride-sharing 

without transfer

Ride-sharing with 

synchronized transfers

T

Origin

Destination

Transfer point

T T

 
Fig. 4.1. Different levels of coordinated transportation service. 

 

What motivated us to study the pickup and delivery problem with transfers for 

passenger transit was the fast-growing ride-sharing mode of transportation. In the last 

decade, ride-sharing companies have introduced a new mode of transportation which is 

much more convenient than public transit and less expensive than taxi. By introducing 

connected and autonomous vehicles to this mode of transportation and eliminating the 

cost of hiring drivers, it is expected that in the near future, ride-sharing becomes a good 

substitution of public transit for daily trips of middle-class families. Knowing passengers’ 

trip itinerary in advance and offering incentives to those passengers who are flexible 
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about their departure/arrival time and number of stops during their trip will help service 

providers to schedule more efficient trips for serving their customers.  

A number of studies have focused on showing the usefulness of transfer and schedule 

coordination in the pickup and delivery problem, to name a few, Mitrovic´-Minic´and 

Laporte (2006), Qu and Bard (2012), Masson et al. (2013), Kim and Schonfeld (2014), 

Sun and Schonfeld (2016), and Ghilas et al. (2016).  In general, ride-hailing and ride-

sharing without transfers can be mathematically modeled by the VRPPDTW. The 

VRPPDTW is a combinatorial optimization problem that searches for an optimal set of 

routes for a fleet of vehicles to serve a set of transportation requests. Each request is a 

combination of pickup at the origin and drop-off at the destination within particular time 

windows.  

Several algorithms have been suggested for solving the VRPPDTW. For instance, 

Dumas et al. (1991) used a set-partitioning model to minimize the total travel cost 

considering tight vehicle capacity constraints, as well as time windows and precedence 

constraints. They proposed a CG scheme with a constrained shortest path as a sub-

problem to construct admissible routes. Savelsbergh and Sol (1998) developed a branch-

and-price algorithm to minimize the total number of vehicles needed to serve all 

transportation requests as the primary objective, and minimize the total distance traveled 

as the secondary objective. In addition, Lu and Dessouky (2004), Cordeau (2006), and 

Ropke et al. (2007) proposed branch-and-cut algorithms to minimize the total routing 

cost. Ropke and Cordeau (2009) also presented a branch-and-cut-and-price algorithm in 

which the lower bounds are controlled by a CG scheme and strengthened by introducing 
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several valid inequalities to the problem. Baldacci et al. (2011) proposed a new exact 

algorithm based on a set-partitioning formulation improved by additional cuts to 

minimize total routing costs. In a recent clustering algorithm proposed by Häme and 

Hakula (2015), the multi-vehicle routing solution is obtained by calling a recursive 

single-vehicle algorithm, based on the passenger-to-vehicle assignment from the first 

clustering stage. 

In terms of algorithmic development, a number of studies have focused on solving the 

VRPPDTW by the DP approach. For instance, the classical work by Psaraftis (1980) 

presented an exact backward DP solution algorithm for the single-vehicle routing 

problem with pickup and delivery with time windows to minimize a weighted 

combination of the total service and waiting time for passengers with 𝑂(𝑛23𝑛) 

complexity, where 𝑛 denotes the total number of passengers in the system. Psaraftis 

(1980) proposed a passengers’ service state representation that was adapted from the path 

representation for the TSP proposed by Bellman (1962) and Held and Karp (1962). 

Psaraftis (1983) further modified the algorithm to a forward DP approach with the same 

space complexity. Desrosiers et al. (1986) proposed a forward DP algorithm for the 

single-vehicle routing problem with pickup and delivery with time windows to minimize 

the total distance traveled to serve all passengers. Recently, by the aid of LR solution 

framework, Mahmoudi and Zhou (2016) have proposed a forward DP solution-based 

algorithm to minimize the total routing costs of the single vehicle sub-problems on a 

three-dimensional SST network. Their time-dependent single-vehicle state is jointly 

defined by the passengers’ carrying state, the current node being visited, and the time to 
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embed time windows and vehicles capacity constraints in a well-structured hyper-

network. Furthermore, their special three-dimensional network representation for the 

multi-vehicle routing problem with pickup and delivery with time windows reduces the 

space complexity of the DP solution algorithm from the exponential order, i.e., 3𝑛 where 

𝑛 is the total number of passengers, to the much smaller space requirement of  ∑ 𝐶𝑘
𝑛𝐶𝑎𝑝𝑣

𝑘=0 , 

where 𝐶𝑎𝑝𝑣 is vehicle 𝑣’s capacity and 𝐶𝑘
𝑛 is the number of 𝑘-combinations from 𝑛 

passengers. Note that 𝐶𝑎𝑝𝑣 is not a large number in practice (e.g. 2 or 3 for taxi). 

Despite the extensive research done before on ride-hailing and ride-sharing without 

transfers, few studies have focused on ride-sharing with transfers. Ride-sharing with 

transfers is observed as pickup and delivery problems with transshipments/transfers 

(PDPT) in the literature. A number of previous research articles have focused on solving 

PDPT by heuristic/meta-heuristic algorithms. For example, the practice in a large San 

Francisco-based courier company motivated Mitrovic´-Minic´and Laporte (2006) to 

present an empirical study on the effectiveness of transfer points in the pickup and 

delivery problem. Since the company was serving a large area covering several 

neighboring cities, they were allowing transshipment of loads between vehicles to keep 

drivers in their home area. In their study, they found circumstances under which transfers 

may be useful. They applied a two-phase heuristic (a construction phase followed by an 

improvement phase) to solve the problem. Another practice in a regional air carrier for 

finding daily route planning inspired Qu and Bard (2012) is to examine the usefulness of 

transshipment. In their study, they developed a greedy randomized adaptive search 

procedure (GRASP) to handle this complex problem. Masson et al. (2013) and Masson et 
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al. (2014) also proposed an adaptive large neighborhood search for solving the PDPT. 

They tested their algorithm on real-life instances related to the transportation of mentally 

or physically disabled people. They showed that adding the concept of transfer to the 

pickup and delivery problem can provide significant improvements to the value of the 

objective function. Recently, Ghilas et al. (2016) have proposed an adaptive large 

neighborhood search heuristic algorithm for the PDPT. They also showed the merits of 

using transfers in the pickup and delivery problem by testing their algorithm on sets of 

generated instances.  

A number of research articles also have focused on reaching exact solutions for this 

problem. For example, Mues and Pickl (2005) developed a path-based mixed integer 

programming model for the PDPT and applied a CG solution approach to solve the 

model. Cortés et al. (2010) proposed a mixed integer programming model for the PDPT 

in which passengers have different options for transfer from one vehicle to another at 

particular transfer nodes. They used a branch-and-cut algorithm based on Benders 

decomposition to solve the model. In three major papers on this topic by Drexl (2012a), 

(2012b), and (2013), different types of synchronization (i.e., task synchronization, 

operation synchronization, movement synchronization, load synchronization, and 

resource synchronization) have been extensively discussed. Recently, Rais et al. (2014) 

proposed a mixed integer programming formulation for the PDPT with and without time 

windows for services in which heterogeneous vehicles and flexible fleet size are allowed. 

They used the commercial solver GUROBI, which uses the simplex method, on linear-

programming relaxations combined with branch-and-cut and branch-and-bound 
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techniques to solve the mixed integer programming model. We present their 

mathematical model in Appendix B to better show our motives for building hyper-

networks. Dealing with several constraints, especially those related to the validity of the 

time and load variables in their model, prompted us to look at this challenging problem 

from a different angle.  

In this research, we add time dimension to the space graph to not only track the 

location of vehicles at any time, but also impose passengers’ preferred pickup and 

delivery time windows, synchronization time points, and precedence constraints to the 

problem. Defining time as an explicit dimension and physical transportation networks as 

the base of our proposed hyper-networks help us to handle networks with links whose 

travel time may vary over the time of day or over the load of vehicles (e.g. HOV or HOT 

lanes). We also add another dimension, called the “passengers’ cumulative service state,” 

to the constructed space-time graph to track the service status of requests at any time and 

impose the coupling and precedence constraints to the model. In brief, we aim to have the 

following three aspects of contributions.  

First, in terms of mathematical modeling contributions, we propose a new 

mathematical model for the pickup and delivery problem with different types of 

synchronization in which heterogeneous vehicles and flexible fleet size are allowed. 

Based on our SST network representation, we apply a DP solution algorithm to embed 

the vehicle-to-task assignment constraints and provide exact solutions for small scale 

problems (more precisely, a pseudo optimal solution due to the time discretization). Our 

SST network representation prevents sub-tours as well as infeasibility in the final 
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solutions and mitigates the solution symmetry issue that could occur in a broader class of 

LR-based solution framework (e.g., Sherali and Smith, 2001; Mahmoudi and Zhou, 

2016). 

More importantly, to address the issues of the curse of dimensionality, we 

demonstrate a consistent transition from the microscopic cumulative service states to 

macroscopic cumulative flow count diagrams, which can be used to effectively estimate 

the overall dynamic system performance. It should be remarked that the concept of 

cumulative flow count diagram is widely applied as a representation of dynamic activities 

in traffic science literature. It generally concerns the cumulative flow count of vehicles 

passing through a transportation system, in which vehicle concentrations, queue sizes, 

travel times, and delays are the main measures of the system performance evaluation. 

Newell (1982) and Hall (1991) successively documented the corresponding 

methodologies in a systematic way. Edie and Foote (1960) first designed cumulative 

curves to describe the cumulative flow count of vehicles, and Gazis and Potts (1963) used 

a cumulative diagram as a predictive tool for the first time. Newell (1993) further 

presented a three-dimensional version of a cumulative diagram regarding space, time, and 

cumulative flow, to merge the concepts of cumulative diagrams with wave theory 

(Makigami et al. 1971). Daganzo (2001) presented a seminal study in his book for 

extending N curves to study the dynamics and stability of supply chain systems. Our 

cumulative flow count approach sheds more light on a recent development direction in 

the field of discrete-time integer programming (Boland et al., 2017a), which aims to 



 

89 
 

iteratively refine and find an optimal continuous-time solution without explicitly 

modeling the microscopic state changes along the discrete time dimension.  

Third, with the consistent microscopic and macroscopic system representation, our 

model and algorithm can effectively handle large-scale real-world instances and generate 

a good initial solution to be applied for our Lagrangian heuristic. Then, our Lagrangian 

heuristic evaluates the price of each synchronized transfer and guides a fast search for 

real-world test cases with about 10,000 delivery orders. We can also impose road 

capacity constraints to the model in order to encourage synchronized transfers and reduce 

the number of vehicles and corresponding traffic congestion impact.  

The rest of the chapter is organized into the following sections. Section 4.2 contains 

the problem statement and assumptions for the PDPT. In Section 4.3, we initially explain 

the clustering phase and present our proposed multi-commodity network flow 

programming model for the PDPT. We will further explain how to improve vehicles’ 

performance by finding optimal chains of work pieces. We also explain our motives for 

applying the hyper-network structure in this section. Section 4.4 provides computational 

results over the instances applied by Ropke and Pisinger (2006) and the real-world data 

set proposed by Cainiao Network (logistics service provider to Alibaba Group) to 

demonstrate the computational efficiency of our developed algorithm coded in C++. We 

conclude the chapter in Section 4.5 with discussions on possible extensions. 
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4.2. Problem Statement for the PDPT 

The pickup and delivery problem with time windows searches for an optimal set of 

routes for a fleet of vehicles to serve a set of transportation requests. Each request is a 

combination of pickup and drop-off within particular time windows. In the case of ride-

hailing and ride-sharing without transfer, passenger 𝑗 is picked up and dropped off only 

once. In the case of ride-sharing with synchronized transfers, passenger 𝑗 is picked up and 

dropped off more than once. In other words, passenger 𝑗’s trip request contains more than 

one OD pair. In this case, the OD pair can be a journey from the passenger’s origin to a 

transfer point, from a transfer point to another transfer point, or from a transfer point to 

its destination.  

 

4.2.1. Assumptions  

For any feasible solution in the PDPT, the following statements must hold: 

 Every vehicle must start its route from its starting depot at the time when its work 

shift starts and end the route at its ending depot at the ending time of its work shift. 

 Every request must be served exactly once. 

 For every OD pair, the origin must be visited before the destination (precedence 

constraint). 

 If a passenger reaches a transfer point by vehicle 𝑣, then he must leave the 

transfer point by vehicle 𝑣′, such that vehicle 𝑣 arrives at the transfer point before 

vehicle 𝑣′ leaves it (transfer synchronization). 
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 For every OD pair, the pickup/drop-off locations must be visited within the 

passenger’s preferred departure/arrival time windows. 

 For every OD pair, the journey from origin to destination must be done by a 

single vehicle (coupling constraint). 

 Every vehicle must not exceed its capacity. 

 Road capacity must not be violated. 

We have presented the mixed integer programming model for the PDPT proposed by 

Rais et al. (2014) in Appendix B. The existing mixed integer-programming model for the 

PDPT contains several constraints related to the validity of the time and load which make 

the problem difficult to solve for a large number of passengers. In Section 4.3.7, we 

comprehensively discuss our motives for building hyper-networks for solving this 

problem. In the next section, we show how to construct a hyper-network for the PDPT. 

 

4.3. Our Proposed Hyper-network for the PDPT 

The main thrust of this chapter is how to construct a network such that the concept of 

assignment and routing in the PDPT are seamlessly integrated. 

 

4.3.1. Space-time Network  

We define the problem on a transportation network, which includes a set of nodes 

(e.g. intersections or freeway merge points) and a set of directed links with different types 

(e.g. freeway segments, arterial streets, or ramps). Each directed link has time-dependent 

travel time.  
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In order to distinguish physical transportation nodes from passengers’ pickup and 

drop-off locations and vehicles’ origin and destination depots, dummy nodes 

corresponding to these spots should be added to the transportation network (Mahmoudi 

and Zhou, 2016). It is necessary to distinguish pickup/drop-off locations and vehicles’ 

depots from ordinary traverse points (regular transportation nodes), because pickup/drop-

off spots and vehicles’ depots have time window restrictions, while ordinary traverse 

nodes do not. Moreover, we will explain that based on our definition for OD pairs’ 

cumulative service states, pickup and drop-off actions (state transitions) must occur only 

from/at particular nodes which should be differentiated from regular transportation ones.    

In the case of ride-hailing and ride-sharing without transfer, only two dummy nodes 

corresponding to passenger 𝑗’s origin and destination should be added to the network. In 

the case of ride-sharing with synchronized transfers, for each OD pair, one dummy node 

for pickup and one for drop-off should be added to the network. These extra pickup/drop-

off jobs occurring at transfer points must be agreed upon by the passenger and 

transportation service provider. Passengers may agree to trips with one or more than one 

transfer by receiving some incentives from the service provider such as lower priced 

service or a particular bonus for their future trips. 

In this chapter, we assume that a set of ways for passenger 𝑗 has already been agreed 

upon by the passenger and the transportation service provider. A “way” is defined as a 

sequence of landmarks (i.e., his origin), predefined transfer points (if existing), and his 

destination. These ways not only should be time-feasible routes (there should be at least 

one time-feasible route starting from his origin, passing through all corresponding 
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predefined transfer points (if any), and ending at his destination) and have the potential to 

provide profit for the service provider, but also should be acceptable to the passenger. 

Suppose a passenger who does not want to share his ride with any other passenger has 

called for the service. We know that if his request is served by ride-sharing, it would be 

more profitable than when it is served by ride-hailing. However, since ride-sharing is not 

acceptable to the passenger, the set of ways by which this passenger can be served is 

limited to ride-hailing.  

Fig. 4.2(a) illustrates three ways by which passenger 𝑗 can be served. The first way, 

indicated by grey color, is a non-stop trip, the second way is a one-stop trip stopping at 

transfer point A, indicated by green color, and the last way is a two-stop trip stopping at 

transfer points B and C, indicated by red color. Each way contains passenger 𝑗’s origin, 

transfer point(s) (if any), and his destination. The price of each way is different from each 

other. We assume that the passenger has no priority in selecting his way among all 

available ways. That is why the service provider decides and assigns a way to him to be 

served. The selected way must eventually provide more profit for the service provider in 

comparison to other ways.  

In general, each passenger has at most 3 different ways to be served in our 

experiments. Note that there are several passengers in our experiments that only want to 

be served by non-stop trips. This is similar to what we observe in practice. Although any 

transportation node can be a transfer point for a passenger, we have a limited number of 

connection options for him to be transferred in reality.  
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Suppose Ω(𝑗) is the set of ways by which passenger 𝑗 makes a complete journey from 

origin to destination. Let 𝜔𝑛(𝑗) denote 𝑛th way by which passenger 𝑗’s request is fulfilled, 

and 𝑂𝐷𝜔𝑛(𝑗) denote the set of OD pairs in 𝜔𝑛(𝑗). Then, 𝑂𝐷𝜔𝑛(𝑗)
𝑚  defines the 𝑚th OD pair 

in 𝜔𝑛(𝑗). Let 𝑜𝜔𝑛(𝑗)
𝑚  and 𝑑𝜔𝑛(𝑗)

𝑚  denote dummy nodes corresponding to passenger 𝑗’s 

origin and destination in the 𝑚th OD pair of 𝜔𝑛(𝑗), respectively. Each dummy node is 

only connected to its corresponding physical transportation node by a link. The travel 

time of this link is interpreted as the service time. We call these links pickup/drop-off 

links. Fig. 4.2(b) demonstrates a network in which dummy nodes corresponding to each 

OD pair have been added to the network.  
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(a) Three ways by which 

passenger j can be served. 

(b) Dummy nodes corresponding 

each OD pair has been added.  
Fig. 4.2. (a) Three ways, i.e., 𝑂 → 𝐷, 𝑂 → 𝑇𝐴 → 𝐷, 𝑂 → 𝑇𝐵 → 𝑇𝐶 → 𝐷, by which passenger 𝑗 can be served; 

(b) dummy nodes corresponding to each OD pair have been added to the physical transportation network. 

  

Dummy nodes 𝑜𝜔𝑛(𝑗)
𝑚  and 𝑑𝜔𝑛(𝑗)

𝑚  have exclusive time windows, denoted by 

[𝑎𝑜𝜔𝑛(𝑗)
𝑚 , 𝑏𝑜𝜔𝑛(𝑗)

𝑚 ] and [𝑎𝑑𝜔𝑛(𝑗)
𝑚 , 𝑏𝑑𝜔𝑛(𝑗)

𝑚 ], respectively, where 𝑎𝑜𝜔𝑛(𝑗)
𝑚  and 𝑏𝑜𝜔𝑛(𝑗)

𝑚  are the 

earliest and latest departure times from 𝑜𝜔𝑛(𝑗)
𝑚 , and 𝑎𝑑𝜔𝑛(𝑗)

𝑚 , and 𝑎𝑑𝜔𝑛(𝑗)
𝑚  are earliest and 

latest arrival times at 𝑑𝜔𝑛(𝑗)
𝑚 , respectively.  
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In addition, let 𝑜𝑣 and 𝑑𝑣 denote dummy nodes corresponding to the origin and 

destination depots for vehicle 𝑣, respectively. Again, each dummy node is only connected 

to its corresponding physical node by a link. The travel time for this link is interpreted as 

the preparation time.  

In order to illustrate space-time networks, we initially map the two-dimensional space 

graph (physical transportation network with added dummy nodes) to a one-dimensional 

space, at which all nodes are positioned in a row. Then we add the time dimension, where 

the time horizon has been discretized into a series of time intervals with the same time 

length. In general, time discretization may affect the solution optimality; however, in this 

chapter, we have assumed one minute as the unit of time, and one minute in comparison 

with OD pairs’ departure/arrival time windows and ride time are quite small such that 

time discretization may damage optimality with a low possibility. However, in order to 

be precise about the optimality of solutions, we use the term “pseudo-optimal” for the 

solution obtained from solving the time-dependent least cost path problem.  

Thus far, we have a discretized space-time graph. Note that if vehicle 𝑣 arrives at a 

passenger’s pickup/drop-off location early, it should wait until the passenger’s 

departure/arrival time window starts, while arriving late to these nodes is not permitted 

(hard time windows). In addition, if it arrives at its ending depot earlier than the ending 

time of the work shift, it should wait until its planning horizon ends, and arriving later 

than that time is not allowed.  

In the classical study by Psaraftis (1980), he presented an exact backward DP solution 

algorithm for the single-VRPPDTW to minimize a weighted combination of the total 
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service and waiting time for passengers. Psaraftis (1983) further developed a forward 

recursion scheme in his DP solution algorithm to deal with passengers’ time windows. 

However, his approach is not easily used for the VRPPDTW. In his chapter, the state 

representation consists of the location currently being visited and the service status of 

passengers. The service status of passengers is chosen from set {1,2,3}, where 3 means 

passenger 𝑗 is still waiting to be picked up, 2 means passenger 𝑗 has been picked up, but 

the service has not been completed, and 1 means passenger 𝑗 has been successfully 

delivered. In the next section, we add another dimension, called the “passengers’ 

cumulative service state” to the constructed space-time graph to track the service status of 

OD pairs at any time. 

 

4.3.2. Cumulative Service State 

In our study, we adapt the Bellman-Held-Karp path representation scheme (Bellman 

(1962) and Held and Karp (1962)) in the TSP to define passengers’ service patterns. In 

their study, the passengers’ service patterns consist of two terms: the node currently being 

visited and the cumulative service state (only visit). We extend the first term to the node 

currently being visited at time 𝑡, and the second term to the more complicated cumulative 

service state, i.e., “pickup” and “drop-off”. Then, the status of 𝑂𝐷𝜔𝑛(𝑗)
𝑚  is an element 

chosen from set {0,1,2}. In this set, 0 means passenger 𝑗 is still waiting to be picked up, 1 

means passenger 𝑗 has been picked up but the trip has not been completed, and 2 means 

passenger 𝑗 has been successfully delivered. It should be noted that our schema is 
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different from set {1,2,3} used by Psaraftis (1980), as 0 in our case can better denote 

unserved status of an OD pair across different vehicle layers. 

After defining the cumulative service states for OD pairs, the next step is defining all 

feasible state transitions. According to our definition for the cumulative service state, 

there are a limited number of feasible state transitions from state 𝑠 to 𝑠′, since several 

transitions from state 𝑠 to 𝑠′ violate the activity precedence constraints (e.g. if drop-off 

occurs before pickup action) or vehicles’ capacity constraints.  

Suppose two passengers have called for a taxi. Fig. 4.3 illustrates a number of 

feasible and infeasible state transitions for this example. According to our definition for 

cumulative service states, state transitions illustrated in Fig. 4.3(a) and Fig. 4.3(b) are 

feasible. Fig. 4.3(a) shows that both passengers are waiting to be picked up at state 𝑠, 

while at state 𝑠′, passenger 1 has been picked up but his trip has not been completed yet. 

In Fig. 4.3(b), at state 𝑠, passenger 2 has already been served, and passenger 1 has already 

been picked up but his service has not been completed yet. At state 𝑠′, both passengers 

have been served. The state transition shown in Fig. 4.3(c) is infeasible due to the 

violation of passenger 1’s operations precedence constraint.  

(a) (b) (c)

0s 0

s' 1 0

1s 2

s' 2 2

1s 2

s' 0 2

 
Fig. 4.3. (a) Feasible state transition in which passenger 1 is picked up, while passenger 2’s service has not 

started yet; (b) feasible state transition in which passenger 1 is dropped off while passenger 2 has already 

been served; (c) infeasible state transition due to the violation of passenger 1’s operations precedence 

constraint.  
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4.3.3. Microscopic Hyper-network Construction 

A vertex in the hyper-network is an object of the form (v, i, t, s), where v is a vehicle 

index, i is a location index (it can be either a physical transportation node or a dummy 

node), 𝑡 ∈ {𝑡𝑠𝑡𝑎𝑟𝑡 , … , 𝑡𝑒𝑛𝑑} is a time, and s is the OD pairs’ cumulative service state. 

Clearly, not all (v, i, t, s)-tuples will form feasible hyper-nodes. In this section, we will 

define a set of rules determining when such a tuple is feasible. 

Fig. 4.4 illustrates a number of important network constructs in our proposed multi-

vehicle hyper-network by an example. Fig 4.4(a) presents an illustrative three-node 

transportation network with bi-directional links. Assume two OD pairs are supposed to be 

served in this example. Both OD pairs must be picked up from node 1 and delivered to 

node 3; however, their departure and arrival time windows are different from each other. 

Suppose two vehicles are available to serve these OD pairs. Both have the same origin 

depot (node 1) and destination depot (node 3). First of all, dummy nodes corresponding 

to OD pairs’ pickup and drop-off locations, as well as vehicles’ starting and ending 

depots should be added to the physical transportation network (Fig. 4.4(b)). Then, the 

two-dimensional space graph (XY plane) is mapped to a one-dimensional space network 

in which all nodes are positioned in a row (Fig. 4.4(c)). In the third step, the cumulative 

service state and vehicle-time are added as new dimensions to the one-dimensional space 

network (Fig. 4.4(c)). According to our explanation for OD pairs’ cumulative service 

state, 32 states may occur in this example, i.e., [0,0], [1,0], [0,1], [1,1], [0,2], [2,0], 

[1,2], [2,1], and [2,2].  
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In this step, a unique block is generated for each vehicle. Several interior layers 

comprising OD pairs’ cumulative service states are added along the vehicle time horizon 

within each block. Each block consists of two exterior layers, so-called opening and 

ending layers, whose task is transmitting the information related to the cumulative service 

state from the ending layer of the current block/vehicle to the opening layer of the next 

block/vehicle. In the two-passenger, two-vehicle example shown in Fig. 4.4, similar to a 

runner in a relay race, vehicle 𝑣1 transmits the information related to the cumulative 

service state from node 𝑑𝑣 on its ending layer at the end of its work shift, denoted by 

𝑡𝑒𝑛𝑑, to the next vehicle’s origin depot, 𝑜𝑣, on its opening layer at the beginning of 

vehicle 𝑣2’s time horizon, denoted by 𝑡𝑠𝑡𝑎𝑟𝑡. If a vehicle picks up an OD pair, it should 

make a complete journey from origin to destination. That is why we do not see states 

[1,0], [0,1], [1,1], [1,2], and [2,1] at the opening and ending layers of blocks. Here, we 

define a set of rules determining when (v, i, t, s)-tuples are feasible. 

Rule 1. The total number of vehicles is given. Index v should not exceed the total 

number of vehicles. 

Rule 2. Node i is considered into vehicle v’s hyper-network, if and only if it is 

accessible to nodes 𝑜𝑣 and 𝑑𝑣 during the time horizon. In this chapter, we have written a 

separate module, called a “space-time prism”, to determine the set of accessible nodes for 

each vehicle. In this module, we use a label-correcting algorithm to solve a time-

dependent minimum spanning tree problem.  

Rule 3. Node 𝑖 is only feasible within its particular time window. All nodes in the 

hyper-network have time window [𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑], except dummy nodes corresponding to 
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passengers’ origin and destination locations, at which desired departure and arrival time 

windows should be imposed, respectively. 

Rule 4. At the opening and ending layers of blocks, incomplete tasks should not be 

observed. In other words, there should not be any OD pair with cumulative service state 

“1” in state 𝑠 on the exterior layer of a block. 

Rule 5. State 𝑠 should not violate vehicle v’s capacity constraint. This means that the 

total number of “1” at any time and node must not exceed vehicle v’s capacity. 

An arc from vertex (v, i, t, s) to vertex (v′, i′, t′, s′) in a hyper-network is also feasible 

if: 

Rule 1. 𝑣′ = 𝑣 if and only if t′ ≠ 𝑡𝑠𝑡𝑎𝑟𝑡 ; 𝑣′ = 𝑣 + 1 if and only if t′ = 𝑡𝑠𝑡𝑎𝑟𝑡. Note 

that Rule 1 for feasible vehicle index 𝑣 and 𝑣′ should not be violated as well. 

Rule 2. Both vertexes (i, t, s) and (i′, t′, s′) must be feasible and reachable for vehicle 

𝑣’s hyper-network. 

Rule 3. The physical link between adjacent nodes 𝑖 and 𝑖′ must exist. 

Rule 4. t′ = t + 𝑇𝑇(𝑖, 𝑖′, 𝑡), where 𝑇𝑇(𝑖, 𝑖′, 𝑡) is the link travel time from node 𝑖 to 

node 𝑖′ starting at time t. 

Rule 5. State transition only occurs at a dummy node corresponding to pickup or 

drop-off locations within its time window (through a service arc). In other words, s = s′ 

if vehicle v is traversing a transportation arc.  

Rule 6. State transition from state s to state s′ should be feasible. We have explained 

this rule comprehensively in Section 4.3.2.    
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Fig. 4.4. (a) A three-node transportation network; (b) modified network with dummy nodes for two 

vehicles and two passengers; (c) three-dimensional service SST network. 

 

Due to the complexity of the constructed hyper-network, our model is able to solve 

the PDPT to optimality (more precisely, pseudo-optimality due to the time discretization) 

for a limited number of OD pairs and vehicles. In order to handle a large set of OD pairs, 

we suggest the traditional cluster-first, route-second approach in which the large-sized 

primary problem is broken into a number of small-sized sub-problems, where the most 

compatible OD pairs are clustered together. In the next section, we will go through the 

details of the clustering phase, and afterwards, we explain how to conduct the PDPT on 

the constructed hyper-network.  
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4.3.4. Finding Potential Matchings to Cluster Transportation Requests  

Clustering passengers based on their geographical proximity is broadly used either a 

priori or in parallel with the routing process. Cullen et al. (1981) proposed a cluster-first, 

route-second heuristic in which the clustering and routing sub-problems are solved by a 

CG technique. A few years later, Bodin and Sexton (1986) also developed another 

cluster-first, route-second heuristic for the PDPTW. Passengers are first partitioned into 

clusters, and then, by using the algorithm proposed by Sexton and Bodin (1985a, 1985b), 

the algorithm constructs a tour on each cluster. Finally, the algorithm swaps passengers 

between routes and performs route re-optimizations. 

In fact, finding high-quality clusters without having some levels of routing 

information is a difficult task. That is why Dumas et al. (1989) introduced the concept of 

mini-clusters, where passengers with spatio-temporal closeness are clustered together. In 

their algorithm, a heuristic provides a set of mini-clusters. Then, a CG algorithm is used 

to optimally combine mini-clusters into vehicle routes. Finally, the algorithm performs 

route re-optimizations in order to obtain optimal routing and scheduling for each vehicle. 

Desrosiers et al. (1991) also proposed another way of constructing mini-clusters by a 

parallel insertion method based on spatio-temporal proximity of the requests. Ioachim et 

al. (1995) later applied an optimization-based technique instead of a heuristic for 

constructing mini-clusters. Pankratz (2005), Bard and Jarrah (2009), Qu and Bard (2012), 

and Masson et al. (2013) are a few out of many examples of studies which applied a 

clustering algorithm for the PDPTW. 
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In order to find the well-matched OD pairs, thanks to the explicit definition of the 

time dimension in our network, we utilize the three-dimensional space (XY plane)-time 

network representation and further apply an effective rule to explore all potential 

matchings.  

We calculate the space-time distance between each OD pair’s pickup location to other 

OD pairs’ pickup spots. We do a similar calculation for each OD pair’s drop-off location 

to other OD pairs’ drop-off spots. In order to find these space-time distances, we initially 

consider the middle time of 𝑜𝜔𝑛(𝑗)
𝑚 ’s departure time window, i.e., 

𝑎
𝑜𝜔𝑛(𝑗)

𝑚 +𝑏
𝑜𝜔𝑛(𝑗)

𝑚

2
, as 

𝑜𝜔𝑛(𝑗)
𝑚 ’s departure time, denoted by 𝑡𝑜𝜔𝑛(𝑗)

𝑚 , and the middle time of 𝑑𝜔𝑛(𝑗)
𝑚 ’s arrival time 

window, i.e., 
𝑎

𝑑𝜔𝑛(𝑗)
𝑚 +𝑏

𝑑𝜔𝑛(𝑗)
𝑚

2
, as 𝑑𝜔𝑛(𝑗)

𝑚 ’s arrival time, denoted by 𝑡𝑑𝜔𝑛(𝑗)
𝑚 . We also set 𝛽1 

as the weight of the geographical distance ($/mile) and 𝛽2 as the weight of the temporal 

distance ($/min) to weight the time and space dissimilarities in a uniform way in the 

space-time distance calculation. Since different values of 𝛽1 and 𝛽2 result in different 

clusters, we play with these values to generate variant clusters. Suppose 

𝑓(𝑂𝐷𝜔𝑛(𝑗)
𝑚 , 𝑂𝐷𝜔

𝑛′(𝑗′)
𝑚′

) is the space-time distance between 𝑜𝜔𝑛(𝑗)
𝑚  and 𝑜𝜔

𝑛′(𝑗′)
𝑚′

, and 

ℎ(𝑂𝐷𝜔𝑛(𝑗)
𝑚 , 𝑂𝐷𝜔

𝑛′(𝑗′)
𝑚′

) is the space-time distance between 𝑑𝜔𝑛(𝑗)
𝑚  and 𝑑𝜔

𝑛′(𝑗′)
𝑚′

. Then, 

𝑓(𝑂𝐷𝜔𝑛(𝑗)
𝑚 , 𝑂𝐷𝜔

𝑛′(𝑗′)
𝑚′

) and ℎ(𝑂𝐷𝜔𝑛(𝑗)
𝑚 , 𝑂𝐷𝜔

𝑛′(𝑗′)
𝑚′

) are calculated as follows: 
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𝑓 (𝑂𝐷𝜔𝑛(𝑗)
𝑚 , 𝑂𝐷𝜔

𝑛′(𝑗′)
𝑚′

) = 𝛽1 × √(𝑥𝑜𝜔𝑛(𝑗)
𝑚 − 𝑥

𝑜
𝜔

𝑛′(𝑗′)
𝑚′ )2 + (𝑦𝑜𝜔𝑛(𝑗)

𝑚 − 𝑦
𝑜

𝜔
𝑛′(𝑗′)

𝑚′ )2 + 𝛽2 ×

|𝑡𝑜𝜔𝑛(𝑗)
𝑚 − 𝑡

𝑜
𝜔

𝑛′(𝑗′)
𝑚′ | (4.1) 

ℎ (𝑂𝐷𝜔𝑛(𝑗)
𝑚 , 𝑂𝐷𝜔

𝑛′(𝑗′)
𝑚′

) = 𝛽1 × √(𝑥𝑑𝜔𝑛(𝑗)
𝑚 − 𝑥

𝑑
𝜔

𝑛′(𝑗′)
𝑚′ )2 + (𝑦𝑑𝜔𝑛(𝑗)

𝑚 − 𝑦
𝑑

𝜔
𝑛′(𝑗′)

𝑚′ )2 + 𝛽2 ×

|𝑡𝑑𝜔𝑛(𝑗)
𝑚 − 𝑡

𝑑
𝜔

𝑛′(𝑗′)
𝑚′ | (4.2) 

where 𝑥. and 𝑦. are the x-coordinate and y-coordinate of the corresponding spot. Note 

that in the formulations mentioned above, the first term calculates the geographical 

distance, while the second term computes the temporal distance between two nodes.  

After calculating these two values, we calculate 𝑟(𝑂𝐷𝜔𝑛(𝑗)
𝑚 , 𝑂𝐷𝜔

𝑛′(𝑗′)
𝑚′

) =

𝑚𝑎𝑥 {𝑓 (𝑂𝐷𝜔𝑛(𝑗)
𝑚 , 𝑂𝐷𝜔

𝑛′(𝑗′)
𝑚′

) , ℎ (𝑂𝐷𝜔𝑛(𝑗)
𝑚 , 𝑂𝐷𝜔

𝑛′(𝑗′)
𝑚′

)} as the measure of the dissimilarity 

between 𝑂𝐷𝜔𝑛(𝑗)
𝑚  and 𝑂𝐷𝜔

𝑛′(𝑗′)
𝑚′

. Fig. 4.5 illustrates an example in which three OD pairs 

have a potential matching and may be defined in the same cluster. 
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Fig. 4.5. An example of three OD pairs with potential matching. 

 

In this step, each OD pair is considered as an individual cluster. As a result, we can 

obtain the level of dissimilarity between 𝑂𝐷𝜔𝑛(𝑗)
𝑚  and cluster 𝑞 by 𝑟(𝑂𝐷𝜔𝑛(𝑗)

𝑚 , 𝑞). It is 

clear that the dissimilarity between 𝑂𝐷𝜔𝑛(𝑗)
𝑚  and its corresponding cluster is equal to 0. 

Let 𝛼 denote the maximum number of OD pairs solvable in each cluster by our dynamic 

programing algorithm. Note that we have applied several dominance rules in our DP 

algorithm to improve the value of 𝛼. The highest value of 𝛼 solvable by our DP 

algorithm is 35 OD pairs. Variable 𝑦𝑞 equals 1 if cluster 𝑞 exists, and 0 otherwise. 

Variable 𝑧(𝑂𝐷𝜔𝑛(𝑗)
𝑚 , 𝑞) is also equal to 1 if 𝑂𝐷𝜔𝑛(𝑗)

𝑚  is assigned to cluster 𝑞, and 0 

otherwise. We intend to not only minimize the mismatches between OD pairs of each 

cluster, i.e., ∑ ∑ ∑ ∑ {𝑟(𝑂𝐷𝜔𝑛(𝑗)
𝑚 , 𝑞) × 𝑧(𝑂𝐷𝜔𝑛(𝑗)

𝑚 , 𝑞)}𝑚𝑛𝑗𝑞 , but also minimize the total 

number of clusters, i.e., (∑ 𝑦𝑞𝑞 ). Therefore, we set 𝜁1 as the weight of the former term 

and 𝜁2 as the weight of the latter to weight these two factors in a uniform way in the 
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objective function of the clustering problem. Since different values of 𝜁1 and 𝜁2 result in 

different clusters, we adjust these values to generate variant clusters.  

Constraints (4.4) express that each cluster must contain up to 𝛼 number of OD pairs. 

Moreover, each OD pair must be assigned to exactly one cluster (constraint (4.5)). 

Therefore, we will have: 

𝑀𝑖𝑛{𝜁1 × ∑ ∑ ∑ ∑ {𝑟(𝑂𝐷𝜔𝑛(𝑗)
𝑚 , 𝑞) × 𝑧(𝑂𝐷𝜔𝑛(𝑗)

𝑚 , 𝑞)}𝑚𝑛𝑗𝑞 + 𝜁2 × ∑ 𝑀𝑦𝑞𝑞 } (4.3) 

subject to:  

∑ ∑ ∑ 𝑧(𝑂𝐷𝜔𝑛(𝑗)
𝑚 , 𝑞)𝑚𝑛𝑗 ≤ 𝛼𝑦𝑞 ∀𝑞 (4.4) 

∑ 𝑧(𝑂𝐷𝜔𝑛(𝑗)
𝑚 , 𝑞)𝑞 = 1 ∀𝑂𝐷𝜔𝑛(𝑗)

𝑚  (4.5) 

𝑧(𝑂𝐷𝜔𝑛(𝑗)
𝑚 , 𝑞) ∈ {0,1};  𝑦𝑞 ∈ {0,1} ∀𝑞, 𝑂𝐷𝜔𝑛(𝑗)

𝑚  (4.6) 

The above integer programming problem can be solved by any commercial solver 

such as CPLEX, GAMS, or GUROBI. In our experiments, we use GAMS Distribution 

23.00. 

 

4.3.5. Routing Inside the Clusters 

After clustering the OD pairs, we need to set initial prices for them to encourage 

vehicles to depart from their depots to serve OD pairs and collect the profits. The initial 

price of 𝑂𝐷𝜔𝑛(𝑗)
𝑚  can be set as a ratio of its transportation cost, when 𝑂𝐷𝜔𝑛(𝑗)

𝑚  is served by 

ride-hailing (taxi). Note that in order to make this service profitable for any form of 

coordinated transportation service, we consider the cost of the ride-hailing mode of 

transportation, which is the most expensive mode of transportation for the requester. 
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Moreover, a ratio value (mentioned above) greater than 1 is ideally implemented for a 

conservative approach. 

The objective function of the PDPT may vary from one study to another based on the 

main focus of the problem. For example, some studies aim to satisfy all demands with 

fewer vehicles, while others attempt to maximize the number of requests that can be 

served by a fixed number of vehicles. Therefore, the former problem is minimizing costs 

subject to full demand satisfaction, while the latter is maximizing satisfied demand 

subject to vehicle availability. In fact, the latter case is more practical.  

One of the ways by which the lack of vehicles can be handled is surge pricing. Surge 

pricing is how rideshare companies aim to control supply and demand, and it happens 

when there is a high demand for vehicles (i.e., lots of passengers are looking for a ride in 

the same area) while there are not enough vehicles to satisfy all of the passengers. The 

goal of surge pricing is to incentivize vehicles to perform trips during the busiest hours of 

the day. Surge pricing fixes this excess demand by applying a multiplier on every fare, 

therefore raising prices by certain percentages. As a result, some passengers will opt to 

not pay the higher fare, making more vehicles available for those passengers who are 

willing to pay the added expense. Surge pricing can happen at any time of the day, but it 

is most common during rush hour, bad weather, holidays, and weekends - all times when 

there is a sense of urgency to get a ride.  

Another way to handle a deficit in supply is by serving some of the demand with the 

available vehicles and then using extra vehicles (e.g. virtual vehicles (taxis) with higher 

operating cost) if necessary. Note that operating costs may include fuel, maintenance, 
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depreciation, insurance costs, and more importantly, the cost of hiring full-time or part-

time drivers. Other objective functions observed in the literature include, but are not 

limited to: minimization of difference between actual and desired delivery times (e.g. 

Bodin and Sexton, 1986), minimization of differences between actual and shortest 

possible ride times (e.g. Bodin and Sexton, 1986), minimization of total route duration 

(e.g. Dumas et al. 1989; Desrosiers et al. 1991; Ioachim et al. 1995), minimization of 

total route length (e.g. Cordeau and Laporte, 2003), minimization of vehicles’ idle time 

(e.g. Diana and Dessouky, 2004), minimization of user inconvenience (e.g. Coslovich et 

al. 2006; Melachrinoudis et al. 2007), or a weighted combination of those mentioned 

above. 

At this stage, we assume that the total number of vehicles in each cluster is known, 

and the goal is to satisfy as many OD pairs as possible. Note that the vehicles serving OD 

pairs at this stage are not real and have been defined just for the sake of OD pairs’ routing 

inside each cluster. We assume that all these hypothetical vehicles are homogenous. Let 

𝑜̅𝑞 and 𝑑̅𝑞 denote the average point (with the average XY coordinates) of all OD pairs’ 

origins and destinations in cluster 𝑞, respectively. Then, we assume that the starting and 

ending depots of all vehicles in cluster 𝑞 are located at the nearest physical transportation 

node to points 𝑜̅𝑞 and 𝑑̅𝑞, respectively. We also need to guarantee that the hypothetical 

vehicles in cluster 𝑞 have enough time to reach all OD pairs’ origins and destinations. In 

other words, not serving an OD pair in cluster 𝑞 is not due to the OD pair’s 

inaccessibility to the depots. That is why we assume that all vehicles in cluster 𝑞 start 

their routes from “the least earliest departure time of all OD pairs in cluster 𝑞 minus a 
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sufficient tolerant time interval”, denoted by 𝑡𝑠𝑡𝑎𝑟𝑡
𝑞

, and end them at “the largest latest 

arrival time of all OD pairs in cluster 𝑞 plus a sufficient tolerant time interval”, denoted 

by 𝑡𝑒𝑛𝑑
𝑞

. The sufficient tolerant time interval has been set as 20 minutes in our 

computational experiments. 

After defining the time horizon as well as the starting and ending depots for 

hypothetical vehicles, the question may arise: how many vehicles should be assigned in 

each cluster? The answer is that for the first iteration, we set the number of vehicles in 

each cluster by the following method. We assume that the capacity of all hypothetical 

vehicles in all clusters is 4. Then, we assume that 75% of the seats are occupied. Since all 

hypothetical vehicles fleet for a one-way trip from the starting depot to the ending depot, 

we can assume that each hypothetical vehicle can serve 3 passengers during its whole 

trip. That is why, in the first iteration, the total number of hypothetical vehicles in cluster 

𝑞 is obtained by ⌈
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑂𝐷 𝑝𝑎𝑖𝑟𝑠 𝑖𝑛 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑞

3
⌉. Then, this value is tuned within our 

algorithm by dynamic system performance obtained from a cumulative flow count 

diagram which will be explained in Section 4.3.10.  

So far, we clustered OD pairs and assigned a number of hypothetical vehicles to serve 

the OD pairs inside each cluster. Then, we construct a hyper-network for each cluster, in 

which each hypothetical vehicle starts its route from 𝑜𝑣 at time 𝑡𝑠𝑡𝑎𝑟𝑡
𝑞

 and, depending on 

the price of OD pairs, serves as many OD pairs as possible. Finally, the vehicle must end 

its route to 𝑑𝑣 at time 𝑡𝑒𝑛𝑑
𝑞

, and transmit the information related to the cumulative service 
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state to the next vehicle. This is exactly a time-dependent state-dependent least cost path 

problem whose mathematical model is provided in the next section.  

Note that in our proposed hyper-network structure, all hypothetical vehicles have 

been assumed to be homogenous; therefore, there is no preference for assigning vehicles 

to OD pairs. We will discuss this point in Section 4.3.11 and explain that several hyper-

paths are similar and should not be scanned more than once. Since the hypothetical 

vehicles perform in a serial fashion (not in a parallel manner) inside each cluster, there is 

no competition among vehicles for serving OD pairs. In fact, each vehicle just tries to 

serve as many remaining and unserved OD pairs as possible.  

The serial structure for vehicle-time blocks helps us to overcome the symmetry issue 

which is common in most combinatorial optimization problems. To briefly explain this 

issue, suppose vehicles 𝑣 and 𝑣′ are identical in terms of starting and ending depots, work 

shift, and capacity. Despite the fact that, from a practical point of view, it does not matter 

whether passenger 𝑗 is served by vehicle 𝑣 or 𝑣′, the computational procedure spends 

plenty of time exploring the vertexes of these two vehicles’ network separately. As a 

result, many regions which are symmetric to the parts that have been already examined 

are unnecessarily scanned.  

One common and effective method of handling symmetries is to introduce symmetry 

breaking constraints to the main problem, which directs the system to not search within 

symmetric solutions (Walsh 2012 and Raviv et al. 2013). In addition to symmetry-

breaking constraints, CG reformulation is a widely used technique for eliminating 

symmetry. In fact, this is one of the major benefits of CG approaches in VRPTW and 
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related problems. In this chapter, by the aid of our passengers’ cumulative service 

patterns and well-structured hyper-network, we are able to implicitly impose the 

symmetry breaking constraints to the problem. To sum up, in each cluster, transmitting 

the information related to the cumulative service state of OD pairs from one block to 

another and our unique definition for feasible state transitions prevent future vehicles 

from approaching those OD pairs which have already been served in previous blocks. 

This is exactly what is needed to prevent the symmetry issue.  

 

4.3.6. Time-discretized Multi-commodity Network Flow Programming Model for 

the PDPT in Each Cluster 

Based on the constructed hyper-network that can capture vehicles’ capacity 

constraints, as well as desired departure and arrival time windows and precedence 

constraints, we now start constructing a multi-commodity network flow programing 

model for the local clusters derived from the original large scale real-world instances. 

Table 4.1 lists the notations for the sets, indices, and parameters in the pickup and 

delivery problem with time windows (with/without transfers). We use 𝑖, 𝑡, 𝑠 to represent 

the space-time-service state vertex, and the corresponding arc which is 𝑖, 𝑖′, 𝑡, 𝑡′, 𝑠, 𝑠′. The 

model uses binary variables 𝑥𝑖,𝑖′,𝑡,𝑡′,𝑠,𝑠′,𝑣,𝑣′ equal to 1 if arc (𝑖, 𝑖′, 𝑡, 𝑡′, 𝑠, 𝑠′) is used by 

vehicle (𝑣 ∈ 𝑉𝑞), and 0 otherwise. Note that in general, 𝑣 = 𝑣′ unless vehicle 𝑣 is 

involved with transmitting the information related to 𝑠 from vertex (𝑑𝑣, 𝑡𝑒𝑛𝑑
𝑞 ) on its own 

block to vertex (𝑜𝑣, 𝑡𝑠𝑡𝑎𝑟𝑡
𝑞 ) on the next block (vehicle 𝑣′). The objective is to find a set of 
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minimum-cost vehicle routes to satisfy as many OD pairs as possible. Then, the problem 

can be mathematically modeled as follows: 

Table 4.1 

Sets, indices, and parameters in our proposed model for the PDPT. 

Symbol Definition 

𝑉𝑞 Set of hypothetical vehicles in cluster 𝑞, where 𝑉𝑞 = {𝑣1
𝑞

, 𝑣2
𝑞

, … , 𝑣|𝑉𝑞|
𝑞

} 

𝑆𝑞 Set of feasible states in the exterior layers of hypothetical vehicles in cluster 𝑞 

(𝑖, 𝑖′) Index of the physical link between adjacent nodes 𝑖 and 𝑖′ 

𝑇𝑇(𝑖, 𝑖′, 𝑡) Link travel time from node 𝑖 to node 𝑖′ starting at time t 

𝑡𝑠𝑡𝑎𝑟𝑡
𝑞

 Hypothetical vehicles’ beginning time in cluster 𝑞  

𝑡𝑒𝑛𝑑
𝑞

 Hypothetical vehicles’ ending time in cluster 𝑞  

𝑠, 𝑠′ The OD pairs’ cumulative service states at vertexes (𝑖, 𝑡) and (𝑖′, 𝑡′) 

𝐶𝑎𝑝𝑣 Maximum capacity of vehicle 𝑣 

𝐶𝑎𝑝𝑖,𝑖′,𝑡 Maximum road outflow capacity on the link from node 𝑖 to node 𝑖′ starting at time t 

𝑜𝜔𝑛(𝑗)
𝑚  Dummy node corresponding to passenger 𝑗’s origin in 𝑚th OD pair of 𝜔𝑛(𝑗) 

𝑑𝜔𝑛(𝑗)
𝑚  Dummy node corresponding to passenger 𝑗’s destination in 𝑚th OD pair of 𝜔𝑛(𝑗) 

[𝑎𝑜𝜔𝑛(𝑗)
𝑚 , 𝑏𝑜𝜔𝑛(𝑗)

𝑚 ]  Departure time window for 𝑜𝜔𝑛(𝑗)
𝑚  

[𝑎𝑑𝜔𝑛(𝑗)
𝑚 , 𝑏𝑑𝜔𝑛(𝑗)

𝑚 ] Arrival time window for 𝑑𝜔𝑛(𝑗)
𝑚  

𝑜𝑣 Dummy node for the starting depot of hypothetical vehicles in cluster 𝑞  

𝑑𝑣 Dummy node for the ending depot of hypothetical vehicles in cluster 𝑞 

𝑐𝑖,𝑖′,𝑡,𝑡′,𝑠,𝑠′(𝑣) Routing cost of arc (𝑖, 𝑖′, 𝑡, 𝑡′, 𝑠, 𝑠′) traveled by hypothetical vehicle 𝑣 

 

𝑀𝑖𝑛 ∑ {𝑐𝑖,𝑖′,𝑡,𝑡′,𝑠,𝑠′(𝑣) × 𝑥𝑖,𝑖′,𝑡,𝑡′,𝑠,𝑠′,𝑣,𝑣} (𝑣,𝑖,𝑖′,𝑡,𝑡′,𝑠,𝑠′)  (4.7) 

subject to:  

∑ 𝑥𝑜𝑣,𝑖′,𝑡𝑠𝑡𝑎𝑟𝑡
𝑞

,𝑡′,𝜙,𝑠′,𝑣1
𝑞

,𝑣1
𝑞𝑖′,𝑡′,𝑠′ = 1 (4.8) 

∑ 𝑥𝑖,𝑑𝑣,𝑡,𝑡𝑒𝑛𝑑
𝑞

,𝑠,𝑠′,𝑣
|𝑉𝑞|

𝑞
,𝑣

|𝑉𝑞|

𝑞𝑖,𝑡,𝑠,𝑠′:𝑠′∈𝑆𝑞 = 1 (4.9) 

∑ 𝑥𝑖,𝑖′,𝑡,𝑡′,𝑠,𝑠′,𝑣,𝑣′𝑣′,𝑖′,𝑡′,𝑠′ − ∑ 𝑥𝑖′,𝑖,𝑡′,𝑡,𝑠′,𝑠,𝑣′,𝑣 = 0𝑣′,𝑖′,𝑡′,𝑠′  ∀𝑖, 𝑡, 𝑠, 𝑣 (4.10) 

∑ 𝑥𝑖,𝑖′,𝑡,𝑡′,𝑠,𝑠′,𝑣,𝑣𝑣,𝑡′,𝑠,𝑠′ ≤ 𝐶𝑎𝑝𝑖,𝑖′,𝑡 ∀(𝑖, 𝑖′); 𝑣 ∈ 𝑉𝑞;  𝑡 ∈ [𝑡𝑠𝑡𝑎𝑟𝑡
𝑞 , 𝑡𝑒𝑛𝑑

𝑞 ] (4.11) 

𝑥𝑖,𝑖′,𝑡,𝑡′,𝑠,𝑠′,𝑣,𝑣′ ∈ {0, 1} ∀𝑣, 𝑣′, 𝑖, 𝑡, 𝑠, 𝑖′, 𝑡′, 𝑠′ (4.12) 

The objective function (4.7) minimizes total routing costs. Constraints (4.8) to (4.10) 

ensure flow balance on every vertex in the hyper-network. Constraint (4.11) guarantees 
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that the road capacity is not violated. Constraint (4.12) defines the binary decision 

variables.  

Note that if link (𝑖, 𝑖′) is fully occupied by a queue of vehicles, the queue length on 

that link should be less than or equal to 𝐿𝑖,𝑖′ × 𝑘𝑗𝑎𝑚, where 𝐿𝑖,𝑖′  is the length of link (𝑖, 𝑖′) 

in terms of lane-miles and 𝑘𝑗𝑎𝑚 is jam density in terms of the number of vehicles per mile 

per lane. This constraint can be written as follows: 

∑ 𝑥𝑖,𝑖′,𝛿,𝛿+𝐹𝐹𝑇𝑇(𝑖,𝑖′),𝑠,𝑠′,𝑣,𝑣𝑣,𝑠,𝑠′,0≤𝛿≤𝑡 − ∑ 𝑥𝑖′,𝑖′′,𝛿,𝛿+𝐹𝐹𝑇𝑇(𝑖′,𝑖′′),𝑠′,𝑠′′,𝑣,𝑣 𝑣,𝑠′,𝑠′′,0≤𝛿≤𝑡 ≤ 𝐿𝑖,𝑖′ ×

𝑘𝑗𝑎𝑚 ∀(𝑖, 𝑖′);  𝑡 ∈ [𝑡𝑠𝑡𝑎𝑟𝑡
𝑞 , 𝑡𝑒𝑛𝑑

𝑞 ] (4.13) 

where 𝛿 is an integer time index between 0 and 𝑡, and 𝐹𝐹𝑇𝑇(𝑖, 𝑖′) is the free flow 

travel time on link (𝑖, 𝑖′). The first term of this inequality (starting from the left) is the 

cumulative vehicle arrivals at link (𝑖, 𝑖′) at time 𝑡, 𝐴(𝑖, 𝑖′, 𝑡), and the second term, is the 

cumulative vehicle departures from link (𝑖, 𝑖′) at time 𝑡, 𝐷(𝑖, 𝑖′, 𝑡). We can also 

implement a cumulative flow count diagram and simplified kinematic-wave-based 

modeling approach to handle delays caused by the propagation of backward shock waves. 

Therefore, we will have: 

𝐴(𝑖, 𝑖′, 𝑡) − 𝐷(𝑖, 𝑖′, 𝑡 − 𝐵𝑊𝑇𝑇(𝑖, 𝑖′)) ≤ 𝐿𝑖,𝑖′ × 𝑘𝑗𝑎𝑚 ∀(𝑖, 𝑖′);  𝑡 ∈ [𝑡𝑠𝑡𝑎𝑟𝑡
𝑞 , 𝑡𝑒𝑛𝑑

𝑞 ] (4.14) 

where 𝐵𝑊𝑇𝑇(𝑖, 𝑖′) is the travel time needed for a backward wave to propagate 

through link (𝑖, 𝑖′) assuming a simplified triangular Q-K model. Since constraints (4.13) 

and (4.14) are out of scope of this chapter, we did not consider them in the main body of 

our model. Interested readers can find further details about these constraints in the 
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original paper by Newell (1993) and in the recent papers by Zhou and Taylor (2014) and 

Li et al. (2015). 

 

4.3.7. Our Motives for Building Hyper-networks  

In this chapter, we intend to embed various constraints of the pickup and delivery 

problem with time windows (with/without transfers) on a three-dimensional SST network 

in which time and load are explicitly added as new dimensions to the physical 

transportation network. We show that our hyper-network structure not only handles large-

scale transportation networks with links whose routing cost (travel time) may vary over 

the time of day (based on the real-time traffic conditions), but also performs on the 

networks in which the routing cost of links is load-dependent (e.g. HOV or HOT lanes). 

In addition, the distinctive structure of our proposed multi-dimensional network 

allows us to mathematically model different forms of coordinated transportation service. 

In fact, introducing passengers’ cumulative service state as an independent dimension to 

the space-time network enables us to distinguish the ways by which a passenger can be 

served. We will further apply a Lagrangian heuristic to determine the price of each OD 

pair considering the way by which it is supposed to be fulfilled (e.g. through Lagrangian 

multipliers). The Lagrangian heuristic evaluates the price of each OD pair and guides a 

fast search. 

Note that our proposed SST network representation is able to solve the problem to 

optimality (more precisely, pseudo-optimality due to the time discretization) for a limited 

number of passengers due to the exponential order of passengers’ cumulative service 
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state. Therefore, in order to handle a real-world transportation network with a large set of 

passengers, we must split the large-sized primary problem into a number of small-sized 

sub-problems in which the most compatible trips are clustered together. In order to find 

well-matched passengers, we utilize the three-dimensional space (XY plane)-time 

network representation and apply a rational rule to explore all potential matchings. To 

define passengers’ cumulative service patterns within each cluster, we utilize the path 

representation schema for the TSP proposed by Bellman (1962) and Held and Karp 

(1962). We further relax the group of hard constraints by which we guarantee that each 

passenger is served exactly once. As a result, the problem is converted to a state-

dependent time-dependent least cost path problem which can be solved by 

computationally-efficient algorithms already proposed for solving the least cost path 

problem. Here, we develop a forward DP solution-based approach across multiple 

vehicles to reach optimality (more precisely, pseudo-optimality due to the time 

discretization) within a cluster. As a final point, by introducing passengers’ cumulative 

service patterns to the problem, we are able to tackle the symmetry issue which is 

common in combinatorial problems. We have comprehensively discussed this point in 

Section 4.3.5.  

 

4.3.8. Routing Outside the Clusters 

Our clustering procedure may raise the question of whether a vehicle may operate in 

more than one cluster. The answer is ‘yes’. In fact, if the space-time vertex at which 𝑣
𝑣′
𝑞′

 

picks up its first passenger is reachable for the space-time vertex at which 𝑣𝑣
𝑞
 drops off its 
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last passenger, then the service tasks of 𝑣
𝑣′
𝑞′

 and 𝑣𝑣
𝑞
 can be performed by a single vehicle. 

Therefore, vehicles will be utilized more during the day. Fig. 4.6 illustrates this procedure 

by an example in which seven passengers are clustered in three groups and served by a 

single vehicle.  
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Fig. 4.6. An illustration of three clusters performed by one vehicle. 

 

At this stage, we work with the set of heterogonous real vehicles distributed in the 

transportation network. These real vehicles whose origin/destination depots, work shift, 

and capacity are known beforehand and are provided by service providers. In this phase, 

we need to find the optimal chain of work pieces/tasks that can be performed by each real 

vehicle. Note that each work piece has already been completed by a hypothetical vehicle. 

We assume that all real vehicles are used and no one remains idle. We also assume that if 

the space-time vertex at which 𝑣
𝑣′
𝑞′

 picks up its first passenger is reachable for the space-

time vertex at which 𝑣𝑣
𝑞
 drops off its last passenger, then the work piece completed by 𝑣𝑣

𝑞
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is connected to the work piece done by 𝑣
𝑣′
𝑞′

 by link (𝑣𝑣
𝑞 , 𝑣

𝑣′
𝑞′

). The cost of the link 

connected from 𝑣𝑣
𝑞
’s work piece to 𝑣

𝑣′
𝑞′

’s work piece is defined as follows: {The cost of 

routing (including transportation and waiting costs) from the space-time vertex at which 

𝑣𝑣
𝑞
 drops off its last passenger to the space-time vertex at which 𝑣

𝑣′
𝑞′

 picks up its first 

passenger, plus the profit that the real vehicle gains by taking work piece of vehicle 𝑣
𝑣′
𝑞′

}. 

In order to simplify the network, we assume that if vehicle 𝑣𝑣
𝑞
 needs to wait more that 30 

minutes to start vehicle 𝑣
𝑣′
𝑞′

’s task, then these two work pieces should not be connected. 

Suppose 𝑜𝑣
𝑅 and 𝑑𝑣

𝑅 denote the origin and destination depots of real vehicle 𝑣. Then, 

variable 𝑥(𝑢, 𝑤) is equal to 1 if link (𝑢, 𝑤) is selected, and otherwise is 0. Index 𝑢 can be 

an origin depot of a real vehicle or a hypothetical vehicle’s work piece from a cluster, 

while 𝑤 is a destination depot of a real vehicle or a hypothetical vehicle’s work piece 

from a cluster. Let 𝑐(𝑢, 𝑤) denote the cost of link (𝑢, 𝑤). The objective is minimizing the 

cost while assigning the real vehicles to the chains of work pieces. This will be obtained 

by considering objective function (4.15) and flow balance constraints (4.16)-(4.18). 

Moreover, each work piece must be selected at most once (constraints (4.19)).  

𝑀𝑖𝑛 ∑ 𝑐(𝑢, 𝑤) × 𝑥(𝑢, 𝑤)𝑢,𝑤  (4.15) 

subject to: 

∑ 𝑥(𝑜𝑣
𝑅 ,𝑤 𝑤) = 1     ∀𝑜𝑣

𝑅  (4.16) 

∑ 𝑥(𝑢,𝑢 𝑑𝑣
𝑅) = 1      ∀𝑑𝑣

𝑅 (4.17) 

∑ 𝑥(𝑢,𝑤 𝑤) − ∑ 𝑥(𝑤,𝑤 𝑢) = 0     ∀𝑢; 𝑢 ≠ 𝑜𝑣
𝑅 , 𝑑𝑣

𝑅 (4.18) 

∑ 𝑥(𝑢,𝑤 𝑤)  ≤ 1      ∀𝑢, 𝑢 ≠ 𝑜𝑣
𝑅 , 𝑑𝑣

𝑅 (4.19) 
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𝑥(𝑢, 𝑤) ∈ {0,1}       ∀𝑢, 𝑤 (4.20) 

From a CG solution framework perspective (Dumas et al., 1991), our approach only 

examines the chains containing optimal routes of multiple vehicles, so called “long” 

columns, in comparison with the commonly used single-vehicle “short” columns in a 

generic CG scheme. Thus, our algorithms can be viewed as an adaption of CG algorithm 

that operates on a small set of long columns with passenger-to-vehicle assignment-

routing solutions. 

 

4.3.9. Lagrangian Heuristic for OD Pairs’ Price Adjustment 

After solving the optimization problem in Section 4.3.8 by any commercial solver 

such as CPLEX, GAMS, or GUROBI, we may find 3 different situations for passenger 

𝑗’s request:  

(1) The request has been successfully served by exactly one way.  

(2) The request has not been served by any ways completely. In this case, the request 

may be not touched by any vehicle at all, or maybe some OD pairs from one or more 

than one way have been served by some vehicles, but complete journey from 

passenger 𝑗’s origin to destination has not occurred.  

(3) The request has been completely served by more than one single way.  

Since the goal is to reach situation (1) for as many passengers as possible in the long 

run, adjusting the price of OD pairs in each iteration is a necessity. Here, for every 

passenger, we define a set of cuts crossing particular pickup links to reach this target, 

which are called “leg-covering cuts”. Cuts are usually defined for pruning, such as the 
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definition of cuts in a branch-and-cut algorithm, but here a leg-covering cut is a partition 

of the node set 𝑁 into two subsets 𝑆 and 𝑆̅, where 𝑁 is the set of physical transportation 

nodes and dummy nodes, 𝑆 is a set of particular dummy nodes corresponding passenger 

𝑗’s pickup action and 𝑆̅ = 𝑁 − 𝑆. This definition of cuts is similar to what we have for 

flows and cuts in the maximum flow problem.  

First of all, we identify the way by which passenger 𝑗 is served with the highest 

number of transfer points. Assume this way contains 𝜏 number of transfers, so 𝜏 + 1 leg-

covering cuts must be defined. Then, for every single stage that passenger 𝑗 can be picked 

up, a leg-covering cut is defined to guarantee that passenger 𝑗 is only served by one OD 

pair. These cuts not only ensure passenger 𝑗 is served by a single way, but also prevent 

half-finishing ways. Let 𝛯(𝑗) denote the set of leg-covering cuts defined for passenger 𝑗. 

Let 𝜉𝑙(𝑗), (𝜉𝑙(𝑗) ∈ 𝛯(𝑗)) is the 𝑙th cut crossing pickup links of passenger 𝑗’s OD pairs. 

Suppose 𝐴𝜉𝑙(𝑗) is a set of pickup links that are cut by 𝜉𝑙(𝑗). Then, constraints (4.21) 

ensure that passenger 𝑗 is served by only one way and prevent half-finishing ways. 

∑ 𝑥𝑖,𝑖′,𝑡,𝑡′,𝑠,𝑠′,𝑣,𝑣𝑣,(𝑖,𝑖′,𝑡,𝑡′,𝑠,𝑠′)∈𝐴𝜉𝑙(𝑗)
= 1 ∀𝜉𝑙(𝑗) ∈ 𝛯(𝑗) (4.21) 

Back to the example illustrated in Fig. 4.2, where way 𝜔3(𝑗) is the way with the 

highest number of transfers (i.e., 2). So, we need to define three leg-covering cuts that are 

𝐴𝜉1(𝑗) = {(𝑜𝜔1(𝑗)
1 , 𝑂), (𝑜𝜔2(𝑗)

1 , 𝑂), (𝑜𝜔3(𝑗)
1 , 𝑂)}, 𝐴𝜉2(𝑗) =

{(𝑜𝜔1(𝑗)
1 , 𝑂), (𝑜𝜔2(𝑗)

2 , 𝑇𝐴), (𝑜𝜔3(𝑗)
2 , 𝑇𝐵)}, and 𝐴𝜉3(𝑗) =

{(𝑜𝜔1(𝑗)
1 , 𝑂), (𝑜𝜔2(𝑗)

2 , 𝑇𝐴), (𝑜𝜔3(𝑗)
3 , 𝑇𝐶)} shown in Fig. 4.7. 
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Fig. 4.7. Three leg-covering cuts to guarantee that passenger 𝑗 is served by exactly one way. 

 

Finally, we tune the price of every leg-covering cut for each passenger, and 

subsequently adjust the price of each OD pair involved with the corresponding leg-

covering cut by using the sub-gradient method. Let 𝑘 denote the iteration number, and 

𝜃𝑘(𝜉𝑙(𝑗)) and 𝜆𝑘(𝜉𝑙(𝑗)) denote the step size and Lagrangian multiplier corresponding to 

cut 𝜉𝑙(𝑗) at iteration 𝑘, respectively. First, we initialize 𝜃0(𝜉𝑙(𝑗)) to a base profit, where 

base profit is the whole profit obtained by selecting arcs belonging to set 𝐴𝜉𝑙(𝑗). Second, 

we calculate the sub-gradient of 𝜉𝑙(𝑗), denoted by ∇𝐿𝜆𝑘(𝜉𝑙(𝑗)), using equation (4.22). 

Third, we update the Lagrangian multiplier corresponding to 𝜉𝑙(𝑗) for the next iteration 

with equation (4.23). Finally, we update the step size for the next iteration by equation 

(4.24). After calculating 𝜆𝑘+1(𝜉𝑙(𝑗)), we distribute the updated price of cut 𝜉𝑙(𝑗) among 

all OD pairs corresponding to this cut based on their current price.   

∇𝐿𝜆𝑘(𝜉𝑙(𝑗)) = {∑ 𝑥𝑖,𝑖′,𝑡,𝑡′,𝑠,𝑠′,𝑣,𝑣𝑣,(𝑖,𝑖′,𝑡,𝑡′,𝑠,𝑠′)∈𝐴𝜉𝑙(𝑗)
− 1} (4.22) 

𝜆𝑘+1(𝜉𝑙(𝑗)) = 𝜆𝑘(𝜉𝑙(𝑗)) + 𝜃𝑘(𝜉𝑙(𝑗)) × ∇𝐿𝜆𝑘(𝜉𝑙(𝑗)) (4.23) 

𝜃𝑘+1(𝜉𝑙(𝑗)) =  
𝜃0(𝜉𝑙(𝑗)) 

𝑘+1
 (4.24) 
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4.3.10. Dynamic System Performance Improvement Using Macroscopic Cumulative 

Flow Count Diagrams  

Continuous-time approximation is an efficient technique for modeling complex 

logistics problems. Wang and Regan (2009) studied the convergence of a time window 

discretization method for the traveling salesman problem with time windows, which is 

initially introduced in Wang and Regan (2002) to show that iteratively refining the 

discretization converges to the optimal solution. Recently, Boland et al. (2017a) and 

(2017b) have suggested partially time-expanded networks which are iteratively refined 

until optimality is reached for continuous-time service network design problems and the 

traveling salesman problem with time windows, respectively. 

Cumulative flow count diagrams are effective in describing the service process in the 

queueing system. The service process represents the required time and resources to serve 

a passenger. The performance of the queueing system is defined by the arrival process, 

service process, and queue discipline. We use time-dependent cumulative flow counts for 

each agent (i.e., passenger) to capture the arrival and departure of traveling objects. Fig. 

4.8 illustrates the graphs corresponding to passengers’ cumulative arrival, on-board, and 

departure count diagrams. The graph indicated by grey color is the passengers’ 

cumulative arrival count to the system at time 𝑡, the graph indicated by blue color is the 

passengers’ cumulative on-board count at time 𝑡, and the graph indicated by red color is 

the passengers’ cumulative departure count from the system at time 𝑡. The region 

bounded by the passengers’ cumulative arrival and on-board count diagrams represents 

the total waiting time for passengers to be picked up. In addition, the area contained by 
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the passengers’ cumulative on-board and departure count diagrams represents the total 

service time. 
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Fig. 4.8. Cumulative arrival, departure, and on board count diagrams. 

  

Meng and Zhou (2014) used cumulative variables to describe the arrivals and 

departures of trains to allocate the time-space resources in rail timetabling optimization 

problems. Recently, Shi and Zhou (2015) have applied cumulative flow counts to 

optimize the system waiting time in the rail yard operation problem and describe 

classification tracks as a queueing system to capture the spatial capacity constraint. In this 

chapter, we use the cumulative flow count diagram to improve the efficiency of real 

vehicles. We define thresholds for passengers’ waiting and service times to measure the 

system performance. We check the performance of the system (passengers waiting and 

riding times) within each time horizon and identify time zones at which system 

performance is poor. Then, we increase the total number of hypothetical vehicles in those 

clusters operating in these time zones. By increasing the number of hypothetical vehicles 
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in these clusters, we increase the chance of serving OD pairs corresponding to these 

clusters.  

   

4.3.11. On the Computational Complexity of the DP Algorithm used for Each 

Cluster  

Several efficient algorithms have been suggested to solve the time-dependent shortest 

path problem on a network with time-dependent arc costs (Ziliaskopoulos 

and Mahmassani 1993 and Chabini 1998 in deterministic networks; Miller-Hooks and 

Mahmassani 1998 and 2000 in stochastic networks). We have used a time-dependent 

state-dependent DP algorithm to solve the least-cost path problem obtained from Section 

4.3.6.  

Assume that the unit of time is one minute. Let 𝐿𝑖,𝑡,𝑠(𝑣) denote the label of vertex 

(𝑖, 𝑡, 𝑠) in vehicle 𝑣’s block, 𝑇𝑇𝑖,𝑖′,𝑡 denote the travel time of link (𝑖, 𝑖′) leaving from 

node 𝑖 at time 𝑡, and the term “pred” stands for the predecessor. Algorithm 1, described 

below, presents the proposed time-dependent forward DP approach. The condition 

“𝐿𝑖,𝑡,𝑠(𝑣) + 𝑐𝑖,𝑖′,𝑡,𝑡′,𝑠,𝑠′(𝑣) < 𝐿𝑖′,𝑡′,𝑠′(𝑣′)” corresponds to the Bellman optimality 

condition.  

// Algorithm 4.1: Time-dependent forward DP algorithm for each cluster 𝑞 

for each vehicle 𝑣, 𝑣 ∈ 𝑉𝑞 do 

begin 

// initialization 

𝐿.,.,.(. ) ∶=  +∞;   

node pred of vertex (. , . , . , . ) ∶=  −1;  

time pred of vertex (. , . , . , . ) ∶=  −1; 

state pred of vertex (. , . , . , . ) ∶=  −1; 

vehicle pred of vertex (. , . , . , . ) ∶=  −1; 

for each time 𝑡 ∈ [𝑡𝑠𝑡𝑎𝑟𝑡
𝑞

, 𝑡𝑒𝑛𝑑
𝑞

] do  

begin 
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for each link (𝑖, 𝑖′) do 

begin 

for each state 𝑠 do 

begin 

derive downstream state 𝑠′ based on the feasible state transition on link (𝑖, 𝑖′)  

derive arrival time 𝑡′ = 𝑡 + 𝑇𝑇𝑖,𝑖′ ,𝑡; 

if (𝐿𝑖,𝑡,𝑠(𝑣) + 𝑐𝑖,𝑖′,𝑡,𝑡′,𝑠,𝑠′(𝑣) < 𝐿𝑖′ ,𝑡′,𝑠′(𝑣′)) 

begin 

𝐿𝑖′ ,𝑡′,𝑠′(𝑣′) ∶=  𝐿𝑖,𝑡,𝑠(𝑣)  + 𝑐𝑖,𝑖′,𝑡,𝑡′,𝑠,𝑠′(𝑣) ; // label update 

node pred of vertex (𝑣′, 𝑖′, 𝑡′, 𝑠′) ∶= 𝑖;  
time pred of vertex (𝑣′, 𝑖′, 𝑡′, 𝑠′) ∶= 𝑡;  

state pred of vertex (𝑣′, 𝑖′, 𝑡′, 𝑠′) ∶= 𝑠; 

vehicle pred of vertex (𝑣′, 𝑖′, 𝑡′, 𝑠′) ∶=  𝑣; 

end; 

end; // for each link 

end; // for each state 

end; // for each time 

end; // for each vehicle 

 

Let 𝒩 denote the set of nodes including both physical transportation and dummy 

nodes, 𝒜 denote the set of links, and 𝒯 denote the set of time stamps covering all 

vehicles’ time horizons. According to our definition for cumulative service states, the 

total number of cumulative service states for 𝑛𝑞 number of OD pairs in cluster 𝑞 is 3𝑛𝑞 

because each OD pair’s cumulative service state can be 0, 1, or 2. Therefore, the space 

complexity of our proposed DP algorithm for each cluster is 𝑂(𝛼3𝛼|𝒯||𝒜|), where 𝛼 is 

the maximum number of passengers solvable by the DP algorithm for one cluster. This 

statement can be interpreted as the maximum number of steps to be performed in the four 

for-loop structure, corresponding to the sequential loops for vehicles, time, service states, 

and links for each cluster.  

Our experiments were performed on an Intel Workstation running two Xeon E5-2680 

processors clocked at 2.80 GHz with 20 cores and 192GB RAM running Windows Server 

2008 x64 Edition. Let’s assume that |𝒯| = 103 and |𝒜| = 103. In the innermost loop of 



 

125 
 

Algorithm 4.1, five data are supposed to be recorded: 𝐿𝑖′,𝑡′,𝑠′(𝑣′), node predecessor of 

vertex (𝑣′, 𝑖′, 𝑡′, 𝑠′), time predecessor of vertex (𝑣′, 𝑖′, 𝑡′, 𝑠′), state predecessor of vertex 

(𝑣′, 𝑖′, 𝑡′, 𝑠′), and vehicle predecessor of vertex (𝑣′, 𝑖′, 𝑡′, 𝑠′). As a result, 5𝛼3𝛼 × 106 

bytes of memory are required. In order to find the maximum value of 𝛼 for any machine 

that runs our algorithm, it is sufficient to find the solution for this inequality: 5𝛼3𝛼 ×

106 ≤ total available memory. For the machine we are running our experiments on, 

192GB RAM is available; therefore, the “theoretical” maximum value of 𝛼 is 7. Note that 

due to the existence of time and state dimensions in our model, the calculated 𝛼 is not 

very large. In the following paragraph, we will explain that, in practice, the actual value 

of 𝛼 solvable by our exact DP on our machine is larger than 7 (i.e., 𝛼 ≈ 35).  

In fact, not all 3𝛼 OD pairs’ cumulative service states are examined for each vehicle 

of a cluster, and the actual number is much smaller than this. We have shown this point 

for the example presented in Fig. 4.4. All hypothetical vehicles in cluster 𝑞 are the same 

in terms of starting and ending depots as well as their work shift. As a result, according to 

Fig. 4.9, the least cost path traveled by vehicle 𝑣1 from state [0,0] to [2,0] (blue route in 

block 1) is exactly the same as the least cost path traveled by vehicle 𝑣2 from state [0,2] 

to [2,2] (blue route in block 2). Similarly, the least cost path traveled by vehicle 𝑣1 from 

state [0,0] to [0,2] (red route in block 1) is exactly the same as the least cost path traveled 

by vehicle 𝑣2 from state [2,0] to [2,2] (red route in block 2). To sum up, despite the fact 

that our proposed three-dimensional network is quite large, many of the shortest paths 

from one landmark node to another in latter blocks have already been evaluated in prior 

blocks.  
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Fig. 4.9. Least cost paths from states [2,0] and [0,2] to state [2,2] in block 2 have already been calculated in 

block 1. 

 

According to Algorithm 4.1, the hyper-network is created before DP implementation. 

This means that, before DP starts scanning vertexes, for each time 𝑡 and each node 𝑖, all 

states corresponding to the OD pairs of cluster 𝑞 must be generated. Sometimes the total 

number of feasible states for (𝑖, 𝑡) is quite large, such that the size of the hyper-network 

becomes enormous. In this case, we suggest creating the network dynamically within the 

scanning process. Dynamically generating the hyper-network reduces the search space 

considerably. We also suggest using a beam search algorithm to keep a limited number of 

states for vertexes built from node 𝑖 and time 𝑡 at each level when the number of 

candidate states is large. 

Basically, the beam search algorithm reduces the search space by setting dominance 

rules and solves practical problems within reasonable time and memory. The beam search 

algorithm is a greedy search algorithm which uses breadth-first search to explore the 

search tree. In addition, only a limited number of promising nodes (in our case, nodes are 

states) are kept at each level of the search tree, and other nodes are pruned off. In this 

algorithm, beam width refers to the number of promising nodes left at each level. In 

general, beam width restricts the memory required to perform the tree search. Note that 
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fewer nodes are cut off with greater beam width. The beam search algorithm finally 

generates a representative set of non-dominated or promising solutions.  

In this chapter, four criteria regarding the performance of a vehicle routing system are 

proposed as evaluation rules during the node selecting procedure to be used in the beam 

search process. Let 𝐶𝐴𝑟𝑟𝑖𝑣𝑎𝑙
𝑝 (𝑡), 𝐶𝑂𝑛−𝑏𝑜𝑎𝑟𝑑

𝑝 (𝑡), 𝐶𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒
𝑝 (𝑡), 𝐶𝐴𝑟𝑟𝑖𝑣𝑎𝑙

𝑣 (𝑡), and 

𝐶𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒
𝑣 (𝑡) denote passengers’ cumulative arrival count to the system at time 𝑡, 

passengers’ cumulative on-board count at time 𝑡, passengers’ cumulative departure count 

from the system at time 𝑡, vehicles’ cumulative arrival count to the system at time 𝑡, and 

vehicles’ cumulative departure count from the system at time 𝑡, respectively. Then, our 

four criteria will be presented as follows: 

(1) The total number of unserved passengers at time 𝑡 should be minimized. This 

criteria can be calculated by 𝐶𝐴𝑟𝑟𝑖𝑣𝑎𝑙
𝑝 (𝑡) − 𝐶𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒

𝑝 (𝑡).  

(2) In order to improve service quality, the total waiting time of passengers receiving 

service until time 𝑡 should be minimized. This criteria can be calculated by 

∑ [𝐶𝐴𝑟𝑟𝑖𝑣𝑎𝑙
𝑝 (𝑡′) − 𝐶𝑂𝑛−𝑏𝑜𝑎𝑟𝑑

𝑝 (𝑡′)]𝑡
𝑡′=𝑡𝑠𝑡𝑎𝑟𝑡

𝑞 . 

(3) The total service time of passengers until time 𝑡 should also be minimized to 

improve passengers’ service quality. This criteria can be calculated by 

∑ [𝐶𝑂𝑛−𝑏𝑜𝑎𝑟𝑑
𝑝 (𝑡′) − 𝐶𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒

𝑝 (𝑡′)]𝑡
𝑡′=𝑡𝑠𝑡𝑎𝑟𝑡

𝑞 . 

(4) The total processing time for vehicles until time 𝑡 indicates the efficiency of the 

system to some degree. This criteria can be represented by ∑ [𝐶𝐴𝑟𝑟𝑖𝑣𝑎𝑙
𝑣 (𝑡′) −𝑡

𝑡′=𝑡𝑠𝑡𝑎𝑟𝑡
𝑞

𝐶𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒
𝑣 (𝑡′)].  
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In our experiments, two different approaches have been considered to define these 

dominance rules. The first approach is defining a utility function which is a weighted 

combination of all aforementioned criteria. Then, the top twenty states with the highest 

utility functions will be selected for further exploration, and other states will be pruned 

off. Note that we set twenty as our beam width after many trial and errors. In the second 

approach, we keep the top twenty states with the highest collected profit obtained from 

picking up OD pairs. In other words, states in which more OD pairs have been picked up 

have higher priority to be selected.    

Here we provide an example to show vehicles’ processing time as a measure of 

dynamic system performance. Assume a three-node transportation network in which two 

passengers with different origins and destinations have called for service (Fig. 4.10). 

Suppose passenger 1 wants to go from node 1 to node 3, while passenger 2 wants to go 

from node 3 to node 1. Vehicle 𝑣1 located at node 1 and vehicle 𝑣2 located at node 3 are 

available to deliver passengers. Note that each vehicle must return to its origin depot after 

finishing its tasks. In this example, each passenger can be served by two different ways: 

(1) by a non-stop trip, (2) by a one-stop trip with connection at node 2. Therefore, six OD 

pairs may be defined for this problem: 

𝑂𝐷𝑤1(1)
1 , 𝑂𝐷𝑤1(2)

1 , 𝑂𝐷𝑤2(1)
1 , 𝑂𝐷𝑤2(1)

2 , 𝑂𝐷𝑤2(2)
1 , 𝑂𝐷𝑤2(2)

2 . We have shown these six OD 

pairs by a, b, c, d, e, and f in Figure 4.10.  
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Fig. 4.10. Six OD pairs corresponding to the non-stop and one-stop trips for two passengers. 

 

Dummy nodes corresponding to passengers’ origins and destinations, as well as 

vehicles’ origin and destination depots are added to the physical transportation network 

(Fig. 4.11). Suppose all six OD pairs have been clustered in one group.  
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Fig. 4.11. Three-node transportation network with added dummy nodes. 

 

Figure 4.12 shows the space-vehicle-time path by which each passenger is served by 

a non-stop trip. This path is as follows: 𝑜𝑣1
→ 1 → 𝑜𝑤1(1)

1 → 1 → 2 → 3 → 𝑑𝑤1(1)
1 → 3 →

2 → 1 → 𝑑𝑣1
→ 𝑜𝑣2

→ 3 → 𝑜𝑤1(2)
1 → 3 → 2 → 1 → 𝑑𝑤1(2)

1 → 1 → 2 → 3 → 𝑑𝑣2
. The 

state corresponding to the vertex at which the state transition occurs has been shown in 
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Figure 4.12 as well. Note that the state written in this graph is presented by a sequence of 

numbers, each representative of the cumulative service state for OD pairs a, b, c, d, e, and 

f. If passengers are served by non-stop trips, deadheading for vehicles occurs. In other 

words, each vehicle must travel 1 hour without carrying any passengers to return to its 

depot. In this case, the total processing time for each vehicle is equal to 2 hours. 

Fig. 4.13 shows the space-vehicle-time path by which each passenger is served by a 

one-stop trip. This path is 𝑜𝑣1
→ 1 → 𝑜𝑤2(1)

1 → 1 → 2 → 𝑑𝑤2(1)
1 → 2 → 𝑜𝑤2(2)

2 → 2 →

1 → 𝑑𝑤2(2)
2 → 1 → 𝑑𝑣1

→ 𝑜𝑣2
→ 3 → 𝑜𝑤2(2)

1 → 3 → 2 → 𝑑𝑤2(2)
1 → 2 → 𝑜𝑤2(1)

2 → 2 →

3 → 𝑑𝑤2(1)
2 → 3 →  𝑑𝑣2

. If passengers are delivered by one-stop trips, deadheading for 

vehicles does not occur. In this case, the total processing time for each vehicle is equal to 

1 hour.  

We have used this example to show how the connection between microscopic 

cumulative service states and the macroscopic cumulative task count can help us to 

measure the processing time of each vehicle and subsequently the performance of the 

whole system. This evaluation rule is checked during the node selecting procedure in the 

beam search process. 
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Fig. 4.12. The microscopic cumulative service state representation for pickup and delivery without transfer 

in Fig. 4.11 is connected to the corresponding macroscopic cumulative task count graph to measure the 

dynamic system performance.    
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Fig. 4.13. The microscopic cumulative service state representation for pickup and delivery with transfer in 

Fig. 4.11 is connected to the corresponding macroscopic cumulative task count graph to measure the dynamic 

system performance.    



 

133 
 

4.4. Computational Experiments  

The time-dependent state-dependent DP described in this chapter was coded in C++ 

platforms, while OD pairs’ clustering and work pieces routing were solved by GAMS 

Distribution 23.00. The experiments were performed on an Intel Workstation running two 

Xeon E5-2680 processors clocked at 2.80 GHz with 20 cores and 192GB RAM running 

Windows Server 2008 x64 Edition. In this section, we initially explain the 

implementation of our model on a three-node transportation network. Then, we examine 

our proposed model on instances applied by Ropke and Pisinger (2006) which is publicly 

available at http://www.diku.dk/~sropke/, followed by the data provided by Cainiao 

Network available at https://tianchi.shuju.aliyun.com/datalab/index.htm to demonstrate 

the computational efficiency of our developed algorithm. The complete C++ 

implementation of the proposed DP algorithm and data set for the three-node example are 

available at https://github.com/xzhou99/Agent-Plus. 

 

4.4.1. Three-node Transportation Network  

The notations used for the implementation of our model for this example are first 

introduced in Table 4.2. Our proposed hyper-networks integrate physical transportation 

networks and service networks together. The nodes corresponding to the vertexes of a 

hyper-network can be categorized into three types: (1) passenger nodes (service nodes), 

(2) vehicle depots, and (3) transportation nodes. In the example provided below, service 

nodes, vehicle depots, and transportation nodes have been numbered from 10 to 999, 

from 1000 to 1999, and from 2000 to 2999, respectively. The links of hyper-networks 

http://www.diku.dk/~sropke/
https://tianchi.shuju.aliyun.com/datalab/index.htm
https://github.com/xzhou99/Agent-Plus
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include physical transportation links and service links representing service actions. In 

Table 4.2, four types of service actions have been defined as follows: 𝑃𝑂, 𝐷𝐷, 𝑃𝑇 and 

𝐷𝑇. 

Table 4.2 

Notations used for the implementation of our model for the three-node transportation network example. 

Symbol Definition 

𝑤, 𝑤′ Arrays that record the cumulative service state of passengers 

𝑝 Passenger’s index 

𝑤[𝑝] An element of array 𝑤 indicating passenger 𝑝’s cumulative service state 

𝑣 Vehicle’s index 

𝑇 Length of time horizon 

𝑡, 𝑡′ Time interval indexes 

𝑙 Link’s index 

𝑇𝑇[𝑙] Travel time of link 𝑙 

𝑃𝑂 A type of service link that represents pickup action from origin 

𝐷𝐷 A type of service link that represents drop-off action at destination  

𝑃𝑇 A type of service link that represents pickup action from a transfer point 

DT A type of service link that represents drop-off action at transfer point 

𝑓𝑟𝑜𝑚_𝑠𝑡𝑎𝑡𝑒_𝑐𝑜𝑑𝑒 Cumulative service state code at the tail node of a link 

𝑡𝑜_𝑠𝑡𝑎𝑡𝑒_𝑐𝑜𝑑𝑒 Cumulative service state code at the head node of a link 

𝑃𝑓𝑙𝑎𝑔 
Used to distinguish dummy nodes corresponding passengers’ origin/destination from 

physical nodes 

𝑉𝑓𝑙𝑎𝑔 
Used to distinguish dummy nodes corresponding vehicles’ depots from physical 

nodes 

𝑡𝑖𝑚𝑒_𝑤𝑖𝑛𝑑𝑜𝑤_𝑏𝑒𝑔𝑖𝑛 Beginning time of the time window at a node 

𝑡𝑖𝑚𝑒_𝑤𝑖𝑛𝑑𝑜𝑤_𝑒𝑛𝑑 Ending time of the time window at a node 

𝑐𝑢𝑡𝑜𝑓𝑓_𝑡𝑖𝑚𝑒 Cutoff time at a node 

𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛_𝑐𝑜𝑑𝑒 Location code of the node, ranges from 0 to 9 

 

When a service action occurs, the existing cumulative service state 𝑤 will change to a 

new service state 𝑤′. All 𝑤 values will be recorded in state set 𝑊. In addition, the value 

of the location code for passenger nodes ranges from 0 to 9, where “0” represents 

passenger’s origin node, “1” means that the passenger is being transported by a vehicle, 

and “9” indicates the passenger’s destination node. “2”, “3”, “4”, “5”, “6”, “7” and “8” 

represent the passenger’s possible transfer locations. Service state transitions are defined 

in Table 4.3.  



 

135 
 

Table 4.3 

Service state transition codes and their descriptions.  

𝑓𝑟𝑜𝑚_𝑠𝑡𝑎𝑡𝑒_𝑐𝑜𝑑𝑒 𝑡𝑜_𝑠𝑡𝑎𝑡𝑒_𝑐𝑜𝑑𝑒 Service link type 

0 1 Pickup from origin (𝑃𝑂) 

1 

2 

Drop-off at a transfer 

point (𝐷𝑇) 

3 

4 

5 

6 

7 

8 

1 9 
Drop off at the 

destination (𝐷𝐷) 

2 

1 
Pickup from a transfer 

location (𝑃𝑇) 

3 

4 

5 

6 

7 

8 

 

A passenger must be picked up within his particular departure time window and 

dropped off within his specific arrival time window. In addition, each vehicle has 

particular time windows for the departure from its starting depot and the arrival at its 

ending depot. We also define the “𝑐𝑢𝑡𝑜𝑓𝑓_𝑡𝑖𝑚𝑒” at a passenger’s transfer location, 

which indicates the latest time at which the passenger can be picked up from that 

particular transfer point. 

Physical transportation nodes and links of the three-node transportation network have 

been shown in Figure 4.14(a). Note that in this figure, the term “TN” stands for 

transportation node.  
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(a) Physical transportation network

(b) Network including dummy node  
Fig. 4.14. (a) Three-node transportation network; (b) Network containing dummy nodes. 

 

In this example, passenger 𝑝1 wants to travel from node TN1 to node TN3 and needs 

to be transferred at node TN2. It is supposed that vehicle 𝑣1 transports him from TN1 to 

TN2, while 𝑣2 is responsible for transporting the passenger to their final destination (i.e., 

node TN3). 

In order to capture service actions in this example clearly, solid service nodes are 

added to the physical transportation network to illustrate the concept of a transfer through 

“push” and “pull” actions. These nodes are connected to the corresponding physical 

nodes by service links. Nodes and links are identified by an ID number based on their 

types. According to Figure 4.14(b), service nodes/passenger nodes are numbered from 10 

to 999, vehicle depots are numbered from 1000 to 1999, and transportation nodes are 

numbered from 2000 to 2999. Node 10 represents the pick-up location and node 19 

represents the drop-off spot, while nodes 12 and 512 indicate the transfer location where 
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the passenger gets out of vehicle 𝑣1 and gets into vehicle 𝑣2, respectively. That is why we 

say that vehicle 𝑣1 “pushes” or drops off passenger 𝑝1 at node 12 and 𝑣2 “pulls” or picks 

him up from node 512.  

Note that nodes 12 and 512 are the service nodes, at which the passenger transfers to 

another vehicle; therefore nodes 12 and 512 are actually located at the same location. 

However, in order to update the service state of passenger 𝑝1, we must split the transfer 

location into two nodes such that pickup and drop-off actions will be recognizable. 

Meanwhile, the vehicle’s depot must be split into two nodes, although the starting and 

ending depots of a vehicle are located in the same spot. By doing this, the vehicles’ 

departure and arrival time windows at their starting and ending depots can be imposed 

independently. The input data corresponding to different nodes of the network 

demonstrated in Figure 4.14(b) is given in Table 4.4.  

Table 4.4 

The input data corresponding to different nodes of the network demonstrated in Fig. 4.14(b). 

𝑁𝑜𝑑𝑒_𝑁𝑜 𝑃𝑓𝑙𝑎𝑔 𝑉𝑓𝑙𝑎𝑔 𝑡𝑖𝑚𝑒_𝑤𝑖𝑛𝑑𝑜𝑤_𝑏𝑒𝑔𝑖𝑛 𝑡𝑖𝑚𝑒_𝑤𝑖𝑛𝑑𝑜𝑤_𝑒𝑛𝑑 𝑐𝑢𝑡𝑜𝑓𝑓_𝑡𝑖𝑚𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛_𝑐𝑜𝑑𝑒 

10 1 -1 10 20 20 0 

12 1 -1 0 35 35 2 

512 1 -1 35 10000 35 2 

19 1 -1 0 80 80 9 

1000 -1 1 0 10000 10000 0 

1009 -1 1 45 50 50 9 

1010 -1 2 50 10000 10000 0 

1019 -1 2 85 90 90 9 

2000 -1 -1 0 10000 10000 -1 

2001 -1 -1 0 10000 10000 -1 

2002 -1 -1 0 10000 10000 -1 

 

According to Table 4.4, the 𝑃𝑓𝑙𝑎𝑔 of a node is equal to the passenger ID (i.e. 1, 2, 3, 

4, etc.), if and only if the node is either the corresponding passenger’s origin/destination 

or pickup/drop-off locations at a transfer point. Otherwise, 𝑃𝑓𝑙𝑎𝑔 is equal to -1. The 
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𝑉𝑓𝑙𝑎𝑔 of a node is also equal to a vehicle ID (i.e. 1, 2, 3, 4, etc.), if and only if the node 

is either the corresponding vehicle’s origin depot or destination depot. Otherwise, 𝑉𝑓𝑙𝑎𝑔 

is equal to -1. 

𝑡𝑖𝑚𝑒_𝑤𝑖𝑛𝑑𝑜𝑤_𝑏𝑒𝑔𝑖𝑛 and 𝑡𝑖𝑚𝑒_𝑤𝑖𝑛𝑑𝑜𝑤_𝑒𝑛𝑑 denote the starting and ending time 

of a node’s time window. Note that if 𝑡𝑖𝑚𝑒_𝑤𝑖𝑛𝑑𝑜𝑤_𝑒𝑛𝑑 equals 10000, then we only 

need to make sure that the arrival time of a passenger/vehicle at that node is greater than 

or equal to the time corresponding to 𝑡𝑖𝑚𝑒_𝑤𝑖𝑛𝑑𝑜𝑤_𝑏𝑒𝑔𝑖𝑛. 𝑐𝑢𝑡𝑜𝑓𝑓_𝑡𝑖𝑚𝑒 has been 

defined to ensure that the passenger does not arrive late at the transfer node. Note that 

this parameter is only valid for service nodes. 

𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛_𝑐𝑜𝑑𝑒 denotes the service status of the passenger/vehicle at the 

corresponding node. For example, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛_𝑐𝑜𝑑𝑒 at node 12 is equal to 2, which means 

that the passenger has been dropped off at node 12 to be transferred to another vehicle. 

The input data corresponding to different links of the network demonstrated in Figure 

4.14(b) is given in Table 4.5.  

Links are numbered from 0, and their direction can be defined from 𝐹𝑟𝑜𝑚𝑁𝑜𝑑𝑒𝑁𝑜 

to 𝑇𝑜𝑁𝑜𝑑𝑒𝑁𝑜. 𝐿𝑖𝑛𝑘𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑇𝑦𝑝𝑒 is not used in the program, but it describes changes in 

the service state. According to Fig. 4.14(b), the type of link 2 (i.e., pointing from node 10 

to node 2000) is “pickup,” so 𝐹𝑟𝑜𝑚𝑆𝑡𝑎𝑡𝑒𝐶𝑜𝑑𝑒 and 𝑇𝑜𝑆𝑡𝑎𝑡𝑒𝐶𝑜𝑑𝑒 equal to 0 and 1, 

respectively. This means that the passenger gets into the vehicle at node 10. Similarly, the 

type of link 4 is “push” (dropping off the passenger at the transfer point); therefore, 

𝐹𝑟𝑜𝑚𝑆𝑡𝑎𝑡𝑒𝐶𝑜𝑑𝑒 and 𝑇𝑜𝑆𝑡𝑎𝑡𝑒𝐶𝑜𝑑𝑒 corresponding to this link are 1 and 2, respectively. 

One can conclude that the values of 𝐹𝑟𝑜𝑚𝑆𝑡𝑎𝑡𝑒𝐶𝑜𝑑𝑒 and 𝑇𝑜𝑆𝑡𝑎𝑡𝑒𝐶𝑜𝑑𝑒 are determined 
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by the corresponding 𝐿𝑖𝑛𝑘𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑇𝑦𝑝𝑒. In addition, if 𝐿𝑖𝑛𝑘𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑇𝑦𝑝𝑒 of a link is 

null, then both the 𝐹𝑟𝑜𝑚𝑆𝑡𝑎𝑡𝑒𝐶𝑜𝑑𝑒 and 𝑇𝑜𝑆𝑡𝑎𝑡𝑒𝐶𝑜𝑑𝑒 of the link are equal to -1. 

Furthermore, 𝐿𝑖𝑛𝑘𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑇𝑦𝑝𝑒 is converted from a string type parameter to an integer 

by 𝐿𝑖𝑛𝑘𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐶𝑜𝑑𝑒. Finally, 𝐿𝑖𝑛𝑘𝐿𝑒𝑛𝑔𝑡ℎ and 𝑆𝑝𝑒𝑒𝑑𝐿𝑖𝑚𝑖𝑡 are given as the length and 

speed limit of a link, by which we are able to calculate the minimum time needed to 

move through the corresponding link in minutes.  

Table 4.5  

The input data corresponding to different links of the network demonstrated in Fig. 4.14(b). 

LinkNo. 

From

Node

No 

ToNode
No 

LinkService
Type 

LinkService
Code 

LinkService
PaxCode 

FromState
Code 

ToState
Code 

LinkLength 
Speed
Limit 

0 1000 2000 Null 0 0 -1 -1 1 12 

1 2000 10 Null 0 0 -1 -1 1 6 

2 10 2000 Pickup 1 1 0 1 1 6 

3 2000 2001 Null 0 0 -1 -1 1 12 

4 2001 12 Push 4 1 1 2 1 12 

5 12 2001 Null 0 0 -1 -1 1 12 

6 2001 2000 Null 0 0 -1 -1 1 12 

7 2000 1009 Null 0 0 -1 -1 1 12 

8 1010 2002 Null 0 0 -1 -1 1 12 

9 2002 2001 Null 0 0 -1 -1 1 12 

10 2001 512 Null 0 0 -1 -1 1 12 

11 512 2001 Pull 3 1 2 1 1 12 

12 2001 2002 Null 0 0 -1 -1 1 12 

13 2002 19 drop-off 2 1 1 9 1 12 

14 19 2002 Null 0 0 -1 -1 1 12 

15 2002 1019 Null 0 0 -1 -1 1 12 

 

4.4.2. Ropke and Pisinger (2006) Standard Data Set 

The Ropke and Pisinger (2006) data set is the modified version of instances initially 

introduced by Savelsbergh and Sol (1998). In this data set, passenger 𝑝’s origin and 

destination are denoted by node 𝑝 and node 𝑛 + 𝑝, respectively, where 𝑛 is the total 

number of passengers in the system. In addition, the coordinates (x and y) of passengers’ 

origin and destination are randomly generated and uniformly distributed over a [0,50] ×
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[0,50] square. A single depot is located in [25,25]. The load of each passenger is 

randomly generated from [5, 𝐶𝑎𝑝𝑣], where 𝐶𝑎𝑝𝑣 is the maximum capacity of the vehicles 

(in these instances the vehicles’ capacity is assumed to be the same). Moreover, [0,1000] 

is considered as the vehicles’ time horizon (vehicles’ time horizon is assumed to be 

identical). Feasible departure/arrival time windows are also randomly generated for each 

passenger. Fig. 4.15 illustrates the position of passengers’ origin and destination and the 

routes of vehicles 𝑣1-𝑣4 in data set AA30.  

 
Fig. 4.15. Position of passengers’ origin and destination and route of vehicles 𝑣1-𝑣4 in data set AA30. 

 

Six groups of instances are examined by considering different values of vehicles’ 

capacity, different length of departure/arrival time windows, and different passengers’ 

load. The values of vehicles’ capacity in instances AA, BB, CC, and DD are 15, 20, 15, 

and 20, respectively. The lengths of passengers’ departure/arrival time windows are 60, 

60, 120, and 120, respectively. In addition, as mentioned before, in these four instances, 

the load of each passenger is randomly generated from [5, 𝐶𝑎𝑝𝑣]. In instances XX and 

YY, the value of vehicles’ capacity is 15, while the length of passengers’ 

departure/arrival time windows are 60 and 120, respectively. In addition, the load of each 

passenger is assumed to be 1. In instances XX and YY, due to the large value of vehicles’ 
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capacity (i.e. 15) in comparison to the load of each passenger (i.e. 1), more levels of 

complexity are expected.  

To the best of our knowledge, very few papers have published the results of instances 

XX and YY. Table 4.6 presents the results obtained from running our algorithm on 

Ropke and Pisinger (2006) instances. The two alphabetical letters in the instance names 

are representative of vehicles’ capacity, length of passengers’ time windows, and load of 

passengers, while the double-digit number after the alphabetical letters demonstrates the 

total number of passengers in that data set. According to Table 4.6, in most instances, our 

heuristic-based algorithm performs better than the heuristic proposed by Ropke and 

Pisinger (2006) in terms of the number of vehicles (as the primary objective) and routing 

cost (as the secondary objective). However, from a computation time perspective, it 

seems that the heuristic by Ropke and Pisinger (2006) performs slightly better than ours.  
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Table 4.6 

Results obtained from running our algorithm on Ropke and Pisinger (2006) instances.  

Name 
# of 

groups 

# of 

Vehicles 

# of Vehicles 
(Ropke and 

Pisinger (2006)) 

Routing 

cost 

UB of routing cost 
(Ropke and 

Pisinger (2006))  

Computation 

time (sec) 

Computation time 
(sec) (Ropke and 

Pisinger (2006)) 

AA30 5 4 5 41,316 51,317.40 25.6 27 

AA35 5 5 5 51,506 51,343.53 44.2 33 
AA40 6 6 6 61,759 61,609.44 44.67 41.4 

AA45 7 6 6 62,029 61,693.01 52.57 49.8 

AA50 8 6 7 62,213 71,932.03 54.25 58.8 
AA55 8 8 8 82,405 82,185.31 95.63 64.2 

AA60 9 8 9 82,629 92,366.70 94.44 76.8 
AA65 10 7 8 72,783 82,331.12 98.3 87.6 

AA70 10 8 11 82,950 112,458.28 143.7 98.4 

AA75 11 8 9 83,044 92,529.42 141.82 112.8 
BB30 5 4 5 41,267 51,193.62 28.4 28.2 

BB35 5 5 6 51,580 61,400.07 38.2 32.4 

BB40 6 5 5 51,785 51,421.35 60.83 44.4 

BB45 7 6 6 61,950 61,787.28 71.86 49.2 

BB50 8 7 7 72,164 71,889.75 89.5 58.8 

BB55 8 8 8 82,483 82,080.73 122.75 64.2 
BB60 9 11 10 112,988 102,323.77 122.22 73.8 

BB65 10 10 8 103,211 82,623.98 122.9 85.2 

BB70 10 11 9 113,534 92,647.75 160.4 100.8 
BB75 11 11 9 113,558 92,476.30 154.18 112.8 

CC30 5 5 5 51,358 51,145.18 44.2 28.2 

CC35 5 5 5 51,578 51,235.64 51.8 34.2 
CC40 6 5 6 51,695 61,473.91 49.5 43.2 

CC45 7 5 8 51,955 81,408.89 53.57 49.8 

CC50 8 7 6 72,154 61,936.27 51.38 63.6 
CC55 8 10 6 102,460 61,930.55 90.88 71.4 

CC60 9 8 7 82,546 72,104.00 84.89 82.8 

CC65 10 9 8 92,803 82,326.62 102.9 90 
CC70 10 9 9 92,963 92,613.68 149.3 102 

CC75 11 9 9 93,220 92,711.74 149 112.8 

DD30 5 4 6 41,426 61,040.10 41.4 27.6 
DD35 5 5 7 51,614 71,308.04 68.2 33.6 

DD40 6 5 6 51,851 61,531.68 68 43.2 

DD45 7 5 8 51,960 81,601.63 72.86 48 
DD50 8 6 7 62,131 71,761.23 70.25 60 

DD55 8 6 7 62,358 72,051.95 121.38 69 

DD60 9 7 8 72,521 82,308.08 113.78 78.6 
DD65 10 7 8 72,825 82,200.77 120.6 90 

DD70 10 8 8 83,034 82,631.56 173.6 102 

DD75 11 9 9 93,255 92,970.84 165.45 109.8 
XX30 5 4 - 41,093 - 101.4 - 

XX35 5 5 - 51,313 - 174.6 - 

XX40 6 5 - 51,540 - 166.33 - 
XX45 7 7 - 71,719 - 156.29 - 

XX50 8 6 - 61,707 - 126.88 - 

XX55 8 6 - 61,839 - 254.25 - 
XX60 9 6 - 62,033 - 299.44 - 

XX65 10 6 - 62,531 - 286.4 - 

XX70 10 7 - 72,775 - 400.1 - 
XX75 11 8 - 82,960 - 388.73 - 

YY30 5 4 - 41,195 - 76.2 - 

YY35 5 5 - 51,363 - 187.6 - 
YY40 6 6 - 61,608 - 161.33 - 

YY45 7 6 - 61,806 - 176.14 - 

YY50 8 6 - 61,966 - 203.88 - 
YY55 8 7 - 72,121 - 274.13 - 

YY60 9 6 - 62,321 - 276.56 - 
YY65 10 7 - 72,464 - 327.3 - 

YY70 10 7 - 72,586 - 419.6 - 

YY75 11 9 - 92,679 - 397.64 - 
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Basically, in most heuristics used for solving vehicle routing problems, a set of initial 

solutions are constructed and then improved by intensifying the search in the 

neighborhood of each solution. In large neighborhood search heuristics, instead of using 

small “standard moves”, i.e., moving a request from one route to another or exchanging 

two requests, we use very large moves that potentially can rearrange up to 30%-40% of 

all requests in a single iteration. The consequence of doing this is that the computation 

time needed for performing and evaluating the moves becomes much larger compared to 

the smaller moves. The number of solutions evaluated by the proposed heuristic per time 

unit is only a fraction of the solutions that could be evaluated by a standard heuristic. 

Nevertheless, very good performance is observed in the computational tests, since this 

method prevents getting stuck on a local optimum. 

Our approach, on the other hand, clusters OD pairs based on their space-time 

closeness, finds the near-optimal route inside each cluster (constructs near-optimal routes 

for pieces of a path), and then finds the optimal chains of pieces that can be performed by 

vehicles outside the clusters. In fact, two out of three phases of our algorithm provide 

near-optimal solutions. In addition, at the beginning of each iteration, by changing the 

values of 𝛽1 as the weight of space affinity, 𝛽2 as the weight of time closeness, 𝜁1 as the 

weight of spatio-temporal dissimilarities, and 𝜁2 as the weight of total number of clusters, 

we may generate new clusters which can be slightly or very different from the previous 

ones. In other words, both standard and ALNS heuristics may occur in the first phase of 

our algorithm. 
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4.4.3. Large-scale Network and Test Data Set from Cainiao’s Last Mile Rush 

Competition  

We also tested our algorithm on the data set proposed by Cainiao Network, also 

called Last_Mile_Rush, to address the last mile delivery problem. Cainiao Network is the 

logistics company launched by Chinese e-commerce giant Alibaba Group in 2013. In this 

data set, there are two types of packages: e-commerce packages and intra-city online-to-

offline (O2O) packages. In the case of e-commerce packages, couriers pick up packages 

from local branches of express companies and deliver them to individual passengers. In 

the case of intra-city O2O packages, couriers pick up packages from O2O shops and 

deliver them to the passengers, each of whom has particular pickup and delivery time 

windows. Several assumptions have been considered in this data set and are presented as 

follows: 

1. One express company with 124 local branches serves all e-commerce delivery 

requests in Shanghai. Note that there is no overlapping between the service ranges of any 

two local branches.  

2. All e-commerce packages arrive at local branches before 8:00am and must be 

delivered to individual passengers before 8:00pm.  

3. All couriers start working at 8:00am. They are allowed to deliver both types of 

packages at the same time. 

4. Type “A” Demand: There are 9,214 points of interest (POIs), each of which has a 

particular latitude and longitude. Every POI is representative of the location of an 
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order/passenger, which can be either an e-commerce or intra-city O2O order, and may 

contain one or more than one package.  

5. Each POI is served by only one local branch since there is no overlapping between 

the service ranges of any two local branches. 

6. No courier is allowed to carry more than 140 packages at a time. 

7. If a passenger requests multiple e-commerce packages, all should be delivered to the 

corresponding POI at one time. 

8. Type “B” Demand: There are 598 O2O shops in Shanghai. Similar to e-commerce 

packages, if a passenger requests multiple O2O packages, all should be delivered to the 

corresponding POI at one time. 

9. Each O2O order has particular pickup and delivery time windows. Couriers must pick 

up O2O orders from O2O shops at the designated pickup time and deliver them to the 

O2O passengers no later than the designated delivery time.  

10. If a courier arrives at a delivery point of an O2O order earlier than its designated 

delivery time, he does not need to wait and is allowed to leave the package(s) there.  

11. The data set contains the latitude (𝑙𝑎𝑡) and longitude (𝑙𝑛𝑔) of all local branches, 

POIs, and O2O shops. The distance between any two locations can be calculated by 

equation (4.25).  

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =

2𝑅. 𝑎𝑟𝑐𝑠𝑖𝑛(√𝑠𝑖𝑛2 (
𝜋

180
∆𝑙𝑎𝑡) + cos (

𝜋

180
𝑙𝑎𝑡𝐴) . cos (

𝜋

180
𝑙𝑎𝑡𝐵) . 𝑠𝑖𝑛2(

𝜋

180
∆𝑙𝑛𝑔) (4.25) 
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, where (𝑙𝑎𝑡𝐴, 𝑙𝑛𝑔𝐴) and (𝑙𝑎𝑡𝐵, 𝑙𝑛𝑔𝐵) are the latitude and longitude of nodes 𝐴 and 𝐵, 

respectively; ∆𝑙𝑎𝑡 =
𝑙𝑎𝑡𝐴−𝑙𝑎𝑡𝐵

2
; ∆𝑙𝑛𝑔 =

𝑙𝑛𝑔𝐴−𝑙𝑛𝑔𝐵

2
; and 𝑅 = 6,378,137 𝑚. 

12. The traveling speed of all couriers is assumed to be 15 km per hour. There are 1,000 

available couriers in this data set. Each courier may remain idle or serve in one or more 

than one local branch. 

13. Couriers start working exactly at 8:00am from local branches and end at the last POI. 

14. The process time of a POI’s request is also calculated by equation (4.26). 

𝑇 = 3√𝑛 + 5 (4.26)  

, where 𝑛 is the number of packages in the POI’s order.  

This data set contains several attributes related to the location of local branches, POIs, 

and O2O shops, as well as information related to the e-commerce and intra-city O2O 

orders, all of which are presented in Table 4.7. 

Table 4.7 

Given information for the location of local branches, POIs, O2O shops, e-commerce, intra-city O2O orders, 

and couriers. 

Information related to the location of local branches 

Information Description 

site_id Local branch code (e.g. A001) 

Lng Longitude of a local branch 

Lat Latitude of a local branch 

Information related to the location of POIS 

Information Description 

spot_id POI id (e.g. B0001) 

Lng Longitude of a POI 

Lat Latitude of a POI 

Information related to the location of O2O shops 

Information Description 

shop_id O2O shop id (e.g. S001) 

Lng Longitude of an O2O shop 

lat  Latitude of an O2O shop 

Information related to the e-commerce packages 

Information Description 

order_id e-commerce order id 

spot_id POI id 
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site_id Local branch id 

Num Number of packages in the order to be delivered from the given local branch to the 

given POI 

Information related to the intra-city O2O packages 

Information Description 

order_id Intra city O2O order id 

spot_id POI id 

shop_id O2O shop id 

pickup_time Pickup time at an O2O shop 

delivery_time Delivery time to an O2O passenger 

Num Number of packages in the order to be delivered from the given O2O shop to the 

given POI 

Information related to the couriers 

Information Description 

courier_id Courier id (e.g. D0001) 

 

The total number of e-commerce orders (type “A” tasks) and O2O orders (type “B” 

tasks) is 9,214 and 598, respectively, while at most 1000 vehicles are available to 

perform the tasks. There is always a trade-off between minimizing the total cost (total 

travel time) and maximizing the total number of tasks (both types) that are performed. In 

order to find a balance between these two different objectives, we offer an evaluation 

function containing two terms: (1) total travel time (TT) with the weight of 1; and (2) the 

total number of tasks that are performed with the weight of 𝛼. Parameter 𝛼 is tuned by 

running the algorithm for different values of 𝛼. In addition, in order to guide the search, 

we can assign different weights/priorities for type “A” or type ”B” tasks that haven been 

picked up and delivered successfully, as well as type “A” or type “B” tasks that have 

been only picked up but not delivered. Therefore, the evaluation function can be defined 

as follows: 

𝑀𝑖𝑛 {𝑇𝑇 + 𝛼(𝛽𝐴
𝑃&𝐷𝑛𝐴

𝑃&𝐷 + 𝛽𝐵
𝑃&𝐷𝑛𝐵

𝑃&𝐷 + 𝛽𝐴
𝑃𝑛𝐴

𝑃 + 𝛽𝐵
𝑃𝑛𝐵

𝑃)}    (4.27) 
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, where TT is the total travel time (total travel cost); 𝛼 is the weight of total number of 

tasks that are performed (complete pickup and delivery or just pickup); 𝛽𝐴
𝑃&𝐷 is the 

weight/priority of type “A” tasks that haven been picked up and delivered successfully; 

𝑛𝐴
𝑃&𝐷 is the total number of type “A” tasks that haven been picked up and delivered 

successfully; 𝛽𝐵
𝑃&𝐷 is the weight/priority of type “B” tasks that haven been picked up and 

delivered successfully; 𝑛𝐵
𝑃&𝐷 is the total number of type “B” tasks that haven been picked 

up and delivered successfully; 𝛽𝐴
𝑃 is the weight/priority of type “A” tasks that haven been 

only picked up but not delivered; 𝑛𝐴
𝑃 is the total number of type “A” tasks that haven 

been picked up but not delivered; 𝛽𝐵
𝑃 is the weight/priority of type “B” tasks that haven 

been only picked up but not delivered; and 𝑛𝐵
𝑃 is the total number of type “B” tasks that 

haven been picked up but not delivered. 

The above evaluation function can be utilized as a selection criterion for the set of 

states. Note that the results are very sensitive to parameters 𝛽𝐴
𝑃&𝐷, 𝛽𝐵

𝑃&𝐷, 𝛽𝐴
𝑃, and 𝛽𝐵

𝑃, 

whose values are varied by the distribution of OD demands and the characteristics of 

types “A” and “B” tasks. Therefore, the values of these parameters must be determined 

by a large number of experiments for each group of tasks. 

We have selected group 31 (out of all 111 groups of tasks) to explain how we have 

adjusted these parameters for a group of tasks. Our attempts for tuning the parameters for 

group 31 are presented in Appendix C. Note that we performed the same procedure for all 

111 groups of tasks. We also have used the Fibonacci sequence (max number of states) as 

the width of the beam search algorithm to reduce the search region.  
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All local branches, POIs, O2O shops, and OD demands in the Cainiao Network have 

been shown in Fig. 4.16(a). As shown in Table 4.8, we have used five different 

parameters for the beam width to implement our beam search algorithm. According to 

Table 4.8, it can be concluded that case IV provides the most favorable solution among 

other cases, since in this case all tasks (both types “A” and “B” tasks) have been 

performed by 893 vehicles in 3,764.51 seconds. Comparing the results of cases I and II to 

case IV, types “A” and “B” tasks are incomplete (IC) in the prior two cases. Comparing 

the results of case III to case IV, the total cost and the total number of vehicles needed in 

this case is much larger than those in case IV. Finally, comparing the results from case V 

to case IV, the random access memory (RAM) usage and CPU time taken for case V are 

roughly twice those used for case IV, while the total number of vehicles needed and total 

cost for both cases are almost the same. Therefore, we have selected case IV and shown 

the delivery routes of all couriers in Fig. 4.16(b). 

(a) (b)  
Fig. 4.16. (a) Cainiao network with all local branches, POIs, O2O Shops, and OD demands; (b) Delivery 

routes of all Couriers for Case IV in Table 4.8. 
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Table 4.8 

Results obtained from running our algorithm on the Cainiao network. 

Case 

No. 

Beam 

width 

RAM usage 

(GB) 

CPU time 

(sec) 

Total cost 

(min) 

Total # of tasks 

completed (A+B) 

# of 

vehicles 

I 6,765 19.84 431.78 459337 6908+433 (IC) 755 

II 10,946 48.09 888.68 389440 8936+497 (IC) 876 

III 17,711 84.93 1829.06 364270 9214+598 954 

IV 28,657 140.96 3764.51 297200 9214+598 893 

V 46,368 220.23 7748.42 296934 9214+598 892 

 

4.5. Conclusions 

In this research, by extending the work pioneered by Bellman (1962), Held and Karp 

(1962) and Psaraftis (1980) on using the dynamic programing method to solve the TSP 

and VRP, we embed many complex constraints of the pickup and delivery problem with 

transfers on a three-dimensional SST network. In this hyper-network construction 

process, elements of time and load are explicitly added as new dimensions to the physical 

transportation network. To address the issue of the curse of dimensionality, we 

demonstrate a consistent transition from the microscopic cumulative service states to 

macroscopic cumulative flow count diagrams, which can be used to effectively estimate 

the overall dynamic system performance and guide the search. We also split the large-

sized primary VRPPDTW into a number of small-sized sub-problems in which OD pairs 

with the most compatibility are clustered together. We use a time-dependent, state-

dependent forward DP algorithm to solve the time-dependent state-dependent least-cost 

assignment-path problem for the local clusters derived from the original PDPT. At the 

end, extensive computational results over the standard instances used by Ropke and 

Pisinger (2006) and real-world large scale data set proposed by Cainiao Network with 
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about 10,000 delivery orders were performed to examine the effectiveness and 

computational efficiency of our developed algorithm.  

Future work may concentrate on building a computational engine to establish a 

wrapper for the DP algorithms with the inputs of a transportation network and possible 

state transition matrixes, and the output of various vehicle-path assignment and routing 

solutions. Another interesting extension of our SST framework can be building a more 

practically useful and robust model with some levels of travelers/carriers’ behavior in 

better passengers’ and vehicles’ clustering, as opposed to simple and efficient trade-offs 

between time and distance. 
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CHAPTER 5 

ACCESSIBILITY WITH TIME AND RESOURCE CONSTRAINTS: 

COMPUTING HYPER-PRISMS FOR SUSTAINABLE TRANSPORTATION 

PLANNING 

 

5.1. Introduction 

Accessibility is a theoretical and analytical concept in transportation, urban, and 

social sciences. Accessibility, or the freedom to participate in activities, obtain resources, 

and interact with others in a given environment, is a fundamental reason why cities and 

transportation exist (Bartholomew 2009). As a result, accessibility measures and models 

have become core components of many advanced transportation and urban models, and a 

common basis for evaluating the performance of transportation systems, policies, plans 

and projects (Handy 2005). 

A common accessibility measure is the space-time prism (STP). A STP is a measure 

of potential mobility for an individual: it is the envelope of all possible travel paths 

between two locations in geo-space and time, considering (1) the given maximum travel 

speed on each direction, and (2) the time budget which is defined by (a) the times when 

the individual is required to be (or observed) at both locations, and (b) any stationary time 

required for activity participation during the time interval. The STP is an elegant and 

sensitive accessibility measure: it captures the interface among the locations and timing 

of activities in an environment, individual differences in scheduling constraints, and the 

ability of the transportation systems in meeting an individual’s mobility and accessibility 
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needs (Hägerstrand 1970). STPs have been applied widely as measures of individual and 

joint accessibility in transportation, urban, and social sciences, both directly and 

indirectly as components of accessibility benefit measures based on spatial interaction 

and economic welfare theory (e.g., Burns 1979; Dong et al. 2006; Ettema and 

Timmermans 2007; Kwan 1998; Kwan 1999; Miller 1999; and Neutens et al. 2010). 

Although STPs and NTPs are powerful measures of individual accessibility, they 

focus on time as the main constraint limiting accessibility. They do not capture other, 

non–temporal resource constraints that may limit accessibility. These constraints can 

include private resource limitations such as finite fuel capacity in conventional vehicles, 

the need to recharge batteries in electric vehicles (EVs) or limited monetary budgets for 

distance-based fares. Non-temporal resource constraints can also include common 

resources such as placing limits on vehicle emissions to preserve clean air.   

This chapter extends the concept of STPs and NTPs to other resource limitations in 

addition to time. Resource hyper-prisms (RHPs) are prisms that capture incorporate 

private and/or common resource budgets in addition to time budgets. These prisms are 

the envelope of all possible space-time paths between two locations and times that satisfy 

speed limits, a time budget and other resource constraints on mobility. We present a 

mathematical program approach for network-based RHPs and a solution algorithm based 

on forward and backward DP.   

We discuss several potential applications of RHPs and show our solution methods 

using a sketch network of Chicago to analyze accessibility considering carbon emission 

budget. We also use parts of Washington D.C. and Baltimore networks to illustrate 
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realistic scenarios involving EVs and recharging stations along highways or in towns. By 

using our proposed RHP approach, not only we can track the level of resource 

(electricity) at any time and location to guarantee that the EVs do not run out of power 

while on the road, but also evaluate the impact of recharging stations location on the 

accessibility of the users. To the best of our knowledge, our framework is the first work 

studied this problem from this perspective. There are a number of research focused on 

this problem before, although they did not see the resource as an explicit dimension for 

the space-time network. For example, Liu et al. (2017) propose a mathematical model for 

constrained energy-efficient time-aware routing problem, denoted as CEETAR and solve 

it by an approximate dynamic programing, but not considering energy as an explicit 

dimension.     

The remainder of this chapter is organized as follows. The next section provides a 

brief literature review on existing time geography frameworks. Section 5.3 describes in 

detail, the construction of a STR hyper-network as the foundation of our method. The 

fourth section presents a mathematical formulation to specify the borders of a RHP, 

followed by a DP solution approach. Section 5.5 provides results from the application of 

the proposed algorithm to the large-scale Chicago sketch transportation network as well 

as parts of Washington D.C. and Baltimore networks. Discussion, concluding remarks, 

and directions for future research form the sixth and final section of this chapter. We also 

provide the computational experiments on small-scale six-node transportation network 

and medium-scale Sioux Falls network in Appendix D for those researchers willing to 

reproduce the results. 
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5.2. Literature Review 

Accessibility is defined as the ease of reaching desired destinations, activities, or 

services within an environment. People-based accessibility measures recognize the 

individuals’ different activity schedules and available transportation resources, and 

therefore are sensitive to individuals’ social and economic background (Miller 2005). A 

STP is an envelope of all feasible space-time paths between two activity locations, given 

the scheduled times for activities and the maximum moving speed (Miller 1991). Fig. 5.1 

shows a space-time prism for an individual who wants to travel from his origin to 

destination. According to Fig. 5.1, the travel speed can be different in various directions. 

In this figure, the red circle on the XY plane shows the boundary of the accessible region 

for the individual based on his time restrictions.  
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Fig. 5.1. A space-time prism for an individual who wants to travel from his origin to destination. 
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An NTP, as its name implies, is the STP confined by spatial networks (Kuijpers et al. 

2010). NTPs have been widely used to study individuals’ travel behaviors and space-time 

accessibilities (e.g. Horner and Wood 2014; Kwan 1999; Raubal et al. 2004; Tong et al. 

2015; Widener et al. 2015). 

STPs and NTPs have been introduced to explain how spatio–temporal constraints 

impose upon individuals’ day-to-day activities and trip decisions and only consider time 

as a scarce resource. However, the resource constraints have attracted little attention. In 

fact, other resource constraints can determine space-time accessibility, such as limits or 

“budgets” for energy, emissions, or monetary expenses and may have significant impacts 

on transportation planning and traveling behaviors.  

Road capacities, toll fare budgets, energy provisions, emission constraints, and 

available shared-mobility services are a few examples of resource constraints that have 

been studied in fields related to time-geography. For instance, the minimum travel time 

between locations is a key component to define NTP, and studies have proved that the 

road capacity, as a resource constraint, is critical in determining the network reliability 

and travel time between locations (Chen et al. 2002; Sullivan et al. 2010). The impacts of 

road capacity can be mitigated by identifying critical locations and setting toll fares, 

because individuals also have monetary budget on tolls (Brownstone and Small 2005; 

Irnich and Desaulniers 2005; Osenga 2005). Another example is the resource constraints 

of automobile vehicles, such as available recharging stations for EVs (e.g. Adler et al. 

2016; Schneider et al. 2014) and perceptions/policies on carbon emission limits (e.g. 

Javid et al. 2014; Schwanen et al. 2012). The ever-increasing popularity of share-mobility 
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also introduces new constraints such as the number of seats left for passengers and the 

available pickup/drop-off locations (e.g. Mahmoudi and Zhou 2016; Spieser et al 2014). 

Hence, considering these resource constraints can refine prisms as accessibility measures, 

and make prisms more practically useful. In this chapter, we mainly focus on constraints 

associated with the fuel consumption for EVs and emission budget for gasoline passenger 

cars. 

About electricity consumption budget constraints for EVs, several studies have 

focused on EVs’ charging stations network design to meet the needs of current and future 

EV fleets. These studies aim at locating charging facilities near the urban activity centers 

of EV owners (e.g. home, shopping malls, and workplaces) for their short distance trips 

to maximize the overall accessibility of the EV owners (e.g. Dashora et al., 2010, Frade et 

al., 2011; Sweda and Klabjan, 2011; Chen et al., 2013). To the best of our knowledge, 

most existing studies along this direction have focused on short distance trips (less than 

100 miles round trip), while charging seems more important for long distance trips than 

short distance ones. In fact, with EVs, the concern is not city-level accessibility, since 

people rarely drive 130 miles in a typical day. Moreover, they can just plug in their EVs 

at home during the night. But limited EV ranges are a big concern when driving between 

cities. Where should these stations be placed to not only we can get between big cities, 

but also accessibility to other cities and towns along the way? Recently, Nie and 

Ghamami, 2013 developed an optimization model to study travel by EVs along a long 

corridor, in which the objective is to select the charging power at each station and the 

number of stations needed along the corridor to meet a given level of service such that the 
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total social cost is minimized. In this chapter, we develop scenarios based on EVs and 

state/region level to study regional accessibility with charging stations along highways or 

in towns.  

About emission budget constraints for gasoline cars, since highway vehicles account 

for 72 percent of total transportation emissions (Greene and Schafer, 2003), they have 

been the main focus of environmental protection and transportation agencies to reduce 

greenhouse gas emissions. Various strategies have been considered for potential 

vehicular emission reduction such as low-carbon alternative fuels, energy efficiency 

improvements, increasing the operating efficiency of the transportation system, and 

reducing travel. Several studies have been also conducted to estimate greenhouse 

emissions based on different input factors such as travel-related factors (e.g. distance 

travelled and speed) (An and Ross, 1993; Humphrey, 1996); highway network 

characteristics and conditions (e.g. geometries and road surface conditions) (Baker, 

1994); vehicle-related factors (e.g. weight, engine type, and age) (Murrel, 1980); and 

other factors (e.g. ambient temperature and wind speeds) (Ahn, 1998). Motor Vehicle 

Emission Simulator (MOVES) is an air pollution emission estimator designed by the US 

Environmental Protection Agency (USEPA) in which vehicle emission rates are 

described as a combination of two factors: the emission source and the vehicle operating 

mode. Emission sources are classified in bins by vehicle characteristics such as vehicle 

types, fuel/engine technologies, ages, model years, engine size, and average weight 

fraction. The vehicle operating modes refer to vehicle operating conditions and are 

classified in bins of second-by-second vehicle activity characteristics, represented as 
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vehicle specific power (VSP) which is a function of vehicle speed, road grade, and 

acceleration (USEPA, 2012). Recently, Zhou et al. 2015 have coupled mesoscopic 

simulation-based dynamic network loading framework DTALite with a simplified 

version of the EPA-MOVES, MOVES Lite, to evaluate the traffic dynamics and vehicle 

emission/fuel consumption impacts of different traffic management strategies. In this 

chapter, we do not aim to focus on the greenhouse emission reduction strategies or the 

input factors affecting the level of emission; instead, we intend to analyze an individual 

accessibility based on the emission budget constraints limiting his daily travel. We 

compute accessibility based on a time budget and an emissions budget, and then, develop 

scenarios based on changing the emissions budgets to address urban air quality concerns. 

Apart from limitation of STPs and NTPs in dealing with the various types of resource 

constraints, the emerging paradigm toward sustainable transportation planning motivates 

a spectrum of new efforts and applications such as energy efficient vehicles, emission 

control zones, and ride-sharing designs (Banister 2008; Chan 2007; Chu and Majumdar 

2012; Thomas 2009). They bring both challenges and opportunities to the study of 

people-based accessibility based on STPs and NTPs. This research defines a STR 

network that captures both network structures and available resources.    

 

5.3. Problem Statement 

In this section, we briefly discuss about the three-dimensional space-time (ST) 

networks, and then, explain how to extend it to a STR network. The classical space-time 

network has been developed to track the location of each individual at any time. The 
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space consists of two dimensions (X and Y coordinates), by which the location of 

physical transportation nodes (e.g. intersections or freeway merge points) can be 

specified. The time horizon also has been discretized into a series of time intervals with 

the same time length. Fig. 5.2 shows a space-time network in which an individual departs 

from his origin located at [𝑥1, 𝑦1] = [20,10] at time 6:00PM and reaches his destination 

at [𝑥2, 𝑦2] = [0,10] at time 6:20PM. Note that in this particular example, we assume a 

unit of time has ten minutes length. 
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Fig. 5.2. A space–time network in which an individual departs from origin at 6:00PM and reaches destination 

at 6:20PM. 

 

5.3.1.  Resource Discretization 

In order to illustrate STR networks, we initially map the two-dimensional space to a 

one-dimensional space, at which all nodes are positioned in a row. We also keep the time 

dimension as defined in ST networks. Thus far, we have a discretized space-time graph. 

Then, the resource dimension should be added to the two-dimensional space-time graph.  
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Suppose the carbon monoxide CO emission budget as a resource constraint in 

gasoline passenger cars. According to Eq. (5.1) (Stein and Walker, 2003), the CO 

emission rate (Ω) depends on travel time or speed. Note that in this equation, Ω is the CO 

emission rate in terms of grams of CO per vehicle per second and 𝑣 is the vehicle’s speed 

in terms of miles per hour (mph). In order to add the resource dimension to the ST graph, 

the resource should be presented in a discretized version. As shown in Fig. 5.3, the lowest 

and highest resource consumption rates (i.e. 0.18 and 1.88) occur in 39.23 mph (roughly 

40 mph) and 120 mph speed, respectively. Since one minute has been assumed as the unit 

of time in this research, we need to convert resource consumption rate per hour to 

resource consumption rate per minute. Based on the range of resource consumption rates 

mentioned above, CO emission rate per minute is a number between 0.003 and 0.03. For 

the Chicago sketch network, the free-flow speed is assumed to be 25 mph, and according 

to Eq. (5.1), the fuel consumption rate at 25 mph speed is equal to 0.238 per hour or 

0.004 per minute. Therefore, 0.004 is assumed as the unit of resource (i.e. emission) in 

this data set. 

Ω = −0.064 + 0.0056𝑣 + 0.00026(𝑣 − 50)2     (5.1) 

 
Fig. 5.3. CO emission rate per hour in different speeds. 
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According to Eq. (5.1), CO emission rate per minute is a function of vehicle speed, 

while as discussed in Section 5.2, in order to estimate the emission rate more precisely, 

travel-related factors, highway network characteristics and conditions, vehicle-related 

factors, and other factors may need to be considered. Motor vehicle emission simulator 

(MOVES) is an air pollution emissions estimation software designed by the US 

Environmental Protection Agency (USEPA). The emission model in MOVES estimates 

emissions for a wide range of on-road vehicles (e.g., cars, trucks, motorcycles, and 

buses). In this estimation approach, vehicle emission rates are defined as a combination 

of two factors: (1) the emission source and (2) the vehicle operating mode. Emission 

sources are categorized in bins by vehicle characteristics such as vehicle types, 

fuel/engine technologies, ages, model years, engine size, and average weight fraction. 

Operating modes refer to vehicle operating conditions and are categorized in bins of 

second-by-second vehicle activity characteristics, represented as VSP. VSP is a function 

of vehicle speed, road grade, and acceleration which accounts for kinetic energy, rolling 

resistance, aerodynamic drag, and gravity. The equation to calculate VSP adopted in 

MOVES (USEPA, 2012) is expressed as follows: 

𝑉𝑆𝑃 =
𝐴

𝑀
× 𝜈 +

𝐵

𝑀
× 𝜈2 +

𝐶

𝑀
× 𝑣3 + (𝑎 + sin (𝜙)) × 𝜈                                                (5.2) 

, where 𝐴 (metric ton), 𝐵 (metric ton/(m/s)), and 𝐶 (metric ton/(m/s)2) refer to the rolling 

term, rotating term and drag term, respectively; 𝑀 is the vehicle mass (metric ton); 𝑣 is 

the vehicle speed (m/s); 𝑎 denotes the vehicle acceleration (m/s2); and ϕ is the road grade. 

Then, the calculated VSPs are categorized by speed and VSP ranges. A detailed 

classification is provided in Table 5.1.  
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Table 5.1 

Definition of MOVES operating mode bins by speed and VSP ranges (USEPA, 2012) 

0 mph < 𝜈 ≤ 25 mph 25 mph < 𝜈 ≤ 50 mph 𝜈 > 50 mph 

Operating Mode ID Description Operating Mode ID Description Operating Mode ID Description 

11 VSP < 0 21 VSP < 0 NA NA 

12 0 ≤ VSP < 3 22 0 ≤ VSP < 3 NA NA 

13 3 ≤ VSP < 6 23 3 ≤ VSP < 6 33 VSP < 6 

14 6 ≤ VSP < 9 24 6 ≤ VSP < 9 35 6 ≤ VSP < 12 

15 9 ≤ VSP < 12 25 9 ≤ VSP <12 NA NA 

16 12 ≤ VSP 27 12 ≤ VSP < 18 37 12 ≤ VSP < 18 

Others: 28 18 ≤ VSP <24 38 18 ≤ VSP < 24 

0 Braking 29 24 ≤ VSP <30 39 24 ≤ VSP < 30 

1 Idling 30 30 ≤ VSP 40 30 ≤ VSP 

NA = Not Applicable 

 

Table 5.2 presents average emission rate (e.g. CO2, NOx, CO, HC (g/h)) for zero-age 

passenger cars (Frey and Liu, 2013). In this case, a resource constraint can be defined as 

a restriction on the daily emission (e.g. CO2) budget for an agent (e.g. passenger car). 

Table 5.2 

Average emission rate for zero-age passenger cars (Frey and Liu, 2013) 

Operating Mode ID   Energy (KJ/h) CO2 (g/h) NOx (g/h) CO (g/h) HC (g/h) 

0 49206 3536 0.05 2.37 0.04 

1 45521 3271 0.01 4.06 0.00 

… … … … … … 

40 641649 46113 14.34 407.60 2.73 

 

Suppose electricity consumption budget constraints as the resource constraints for 

EVs. A study conducted by the US Department of Energy (Electric Vehicle Operation 

Program, 1999) examined six different types of vehicles in urban versus highway driving 

under various conditions (e.g. headlight setting, auxiliary loads, and air conditioning). It 

found on average an EV can travel 2.5 miles for each kW h (kilo Watt hour) of energy. In 
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this research, real-world data set corresponding to the geographical location of EV 

charging stations has been adopted. This data set is publicly available at 

https://www.afdc.energy.gov/data_download. We develop scenarios and consider a 

number of charging stations along highways and inside towns to study regional 

accessibility with charging stations along highways or in towns.  

 

5.3.2. STR Hyper-network Construction 

Finally, the obtained STR hyper-network helps us to track the level of resource and 

location of the individuals at any time. Fig. 5.4 shows the STR hyper-network 

corresponding to the example mentioned in Fig. 5.2. In this example, we assume that the 

individual starts his trip from his origin at time 6:00PM with resource (emission) level 

index 𝑟 = 0.000, and respecting 0.005 emission rate per minute (the free–flow speed for 

all transportation links is assumed to be 60 mph in this example), he reaches his 

destination at 6:20PM with resource level index 𝑟 = 0.010. 

In this problem, the origin and destination of the individuals are given. What we are 

interested in is that how far an individual can travel based on his own time and resource 

constraints.  

In order to address the aforementioned objective, we need to construct a high-

dimensional network first. The first step for the network construction is defining the 

vertexes and arcs. A vertex in our STR network is recognized by a triplet of three 

different indexes: node index 𝑖, time index 𝑡, and resource level 𝑟. We also assume that 

vertex (𝑖, 𝑡, 𝑟) is connected to vertex (𝑖′, 𝑡′, 𝑟′) through directional arc (𝑖, 𝑖′, 𝑡, 𝑡′, 𝑟, 𝑟′). 

https://www.afdc.energy.gov/data_download
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The travel time and emission production corresponding to arc (𝑖, 𝑖′, 𝑡, 𝑡′, 𝑟, 𝑟′) can be 

calculated by (𝑡′ − 𝑡) and (𝑟′ − 𝑟), respectively. Note that at 60 mph speed, 𝑟′ = 𝑟 +

0.005(𝑡′ − 𝑡). The cost of each arc is a ratio of its emission production. In this research, 

the ratio is assumed to be 1. 
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Fig. 5.4. Our proposed STR hyper-network in which the individual starts his trip from his origin at time 6:00 

PM with resource level index 𝑟 = 0.000, and reaches his destination at time 6:20 PM with 𝑟 = 0.010. 

  

Let us assume resource is the fuel. Note that everything mentioned in the following 

paragraphs is also correct for carbon emission. In order to find an individual’s hyper-

network, we assume that the individual starts his route from his origin spot at the 

beginning of the time horizon with the highest level of fuel, i.e. 𝑟𝑚𝑎𝑥, and ends it to his 

destination location at the end of the time horizon with fuel level 𝑟 (0 ≤ 𝑟 ≤ 𝑟𝑚𝑎𝑥). By 

considering this rule, each individual may explore the transportation network as much as 

possible with respect to his time and resource budgets. Waiting at any location and time 

with any level of fuel is allowed. The length of a waiting arc is assumed to be one minute. 



 

166 
 

We also assumed that the resource is not consumed while waiting. Therefore, the cost of 

a waiting arc is zero. 

Since the level of resource at the end of the time horizon, i.e. 𝑡 = 𝑇,  may vary from 0 

to 𝑟𝑚𝑎𝑥, to be able to mathematically model this problem, we need to end the individual's 

route to a fixed vertex. Therefore, we define a virtual sink vertex at time 𝑇 + 1 with 𝑟 =

0, whom all feasible destination vertexes are connected to. Finally, to find the hyper-

network, it is sufficient to find all vertexes that are reachable from both individual’s 

origin and destination.  

 

5.4. Mathematical Programming Approach for Solving Network-based Hyper-

prisms 

Back to our discussion about finding the hyper-prism, we initially use a forward DP 

algorithm to find the shortest path from the individual’s origin vertex to the sink vertex. 

In fact, the problem mentioned above, is a time-dependent resource-dependent shortest 

path problem which can be solved by many computationally efficient algorithms already 

proposed in the literature for this optimization problem.  

 

5.4.1. Mathematical Program 

Table 5.3 lists the notations for the sets, indices, and parameters in this problem. The 

mathematical programming for this problem has been provided as follows: 
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Table 5.3 

Indices, parameters, and variables in our proposed model for finding the hyper–prism. 

Symbol Definition 

(𝑖, 𝑖′) Index of the physical link between adjacent nodes 𝑖 and 𝑖′ 

𝑇𝑇(𝑖, 𝑖′, 𝑡) Link travel time from node 𝑖 to node 𝑖′ starting at time t 

𝑇 Ending time of the time horizon  

𝑟, 𝑟′ The corresponding resource level at vertexes (𝑖, 𝑡) and (𝑖′, 𝑡′) 

𝑜 Origin node  

𝑑 Destination node 

𝜙 Sink node 

𝑐𝑖,𝑖′,𝑡,𝑡′,𝑟,𝑟′ Routing cost of arc (𝑖, 𝑖′, 𝑡, 𝑡′, 𝑟, 𝑟′) which is equal to 𝑟 − 𝑟′ 

𝑥𝑖,𝑖′,𝑡,𝑡′,𝑟,𝑟′ = 1 if the individual travels from vertex (𝑖, 𝑡, 𝑟) to vertex (𝑖′, 𝑡′, 𝑟′); 0 otherwise 

 

The objective is to find the time–dependent resource–dependent least cost path. 

𝑀𝑖𝑛 ∑ {𝑐𝑖,𝑖′,𝑡,𝑡′,𝑟,𝑟′ × 𝑥𝑖,𝑖′,𝑡,𝑡′,𝑟,𝑟′} (𝑖,𝑖′,𝑡,𝑡′,𝑟,𝑟′)                                                     (5.3) 

subject to:  

Flow balance constraint for the origin vertex:  

∑ 𝑥𝑖,𝑖′,𝑡,𝑡′,𝑟,𝑟′𝑖′,𝑡′,𝑟′ = 1                                                        (5.4)  

, where 𝑖 = 𝑜, 𝑡 = 0, and 𝑟 = 𝑟𝑚𝑎𝑥.  

Flow balance constraint for the sink vertex: 

∑ 𝑥𝑖,𝑖′,𝑡,𝑡′,𝑟,𝑟′𝑟 = 1                                                                                                      (5.5)  

, where = 𝑑 , 𝑖′ = 𝜙, 𝑡 = 𝑇, 𝑡′ = 𝑇 + 1, and 𝑟′ = 0. 

Flow balance constraint at intermediate vertexes  

∑ 𝑥𝑖,𝑖′,𝑡,𝑡′,𝑟,𝑟′𝑖′,𝑡′,𝑟′ − ∑ 𝑥𝑖′,𝑖,𝑡′,𝑡,𝑟′,𝑟 = 0 𝑖′,𝑡′,𝑟′                             ∀𝑖, 𝑡, 𝑟               (5.6)     

Binary definitional constraint 

𝑥𝑖,𝑖′,𝑡,𝑡′,𝑟,𝑟′ ∈ {0, 1}                                                     ∀𝑖, 𝑡, 𝑟, 𝑖′, 𝑡′, 𝑟′                   (5.7) 
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5.4.2. Solution Algorithm: Forward and Backward DP 

We initialize the label of all vertexes except origin vertex to infinity and move 

forward to update any vertex that is reachable for the origin vertex. Note that we initialize 

the label of origin vertex to zero. Then, we use a backward DP algorithm to find the 

shortest path from the sink vertex to the individual’s origin. Again, we initialize the label 

of all vertexes except the sink vertex to infinity and move backward to update any vertex 

that is reachable for the sink vertex. Note that we initialize the label of the sink vertex to 

zero in this case. Finally, we determine the hyper-prism for the individual by taking those 

vertexes that are reachable for both the individual’s origin and sink vertexes. The pseudo 

code corresponding this algorithm has been provided as follows. In this pseudo code, 

terms “pred”, “succ”, “max_fc”, and “min_fl” stand for predecessor, successor, the 

maximum allowed fuel/energy consumption, and the minimum allowed fuel level. 

// resource hyper-prism search algorithm 

 

// step 1: forward DP algorithm 

// initialization 

Forward_Label(origin vertex) := 0; 

Forward_Label(vertex(i,t,r)) := +∞; 

Node_pred(vertex(i,t,r)) := –1; 

Time_pred(vertex(i,t,r)) := –1; 

Resource_pred(vertex(i,t,r)) := –1; 

 

// updating the forward labels 

For each time t  

Begin 

For each link l // i and i’ are given; i & i’ are equal for waiting 

arcs 

Begin 

For each resource r // r >= min_fl 

Begin 

 

Derive t’; // based on i, i’, t, and r 

Drive r’; // based on i, i’, t, t’, and r (r’ must be >= min_fl) 

 

If Forward_Label(vertex(i,t,r)) + (r – r’) < 

Forward_Label(vertex(i’,t’,r’)) 
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{ 

Forward_Label(vertex(i’,t’,r’) := Forward_Label(vertex(i,t,r)) + 

(r – r’); 

Node_pred(vertex(i’,t’,r’)) := i; 

Time_pred(vertex(i’,t’,r’)) := t; 

Resource_pred(vertex(i’,t’,r’)) := r; 

} 

End 

End 

End 

 

// step 2: backward DP algorithm 

// initialization 

Backward_Label(sink vertex) := 0; 

rsink vertex := rmax; 

Backward_Label(vertex(i’,t’,r’)) := +∞; 

Node_succ(vertex(i’,t’,r’)) := –1; 

Time_succ(vertex(i’,t’,r’)) := –1; 

Resource_succ(vertex(i’,t’,r’)) := –1; 

 

// updating the backward labels 

For each time t’ 

Begin  

For each link l // i and i’ are given; i & i’ are equal for waiting 

arcs 

Begin 

For each resource r’ // r’ >= min_fl 

Begin 

 

Derive t; // based on i, i’, t’, and r’ 

Drive r; // based on i, i’, t, t’, and r’ (r must be >= min_fl) 

 

If Backward_Label(vertex(i’,t’,r’)) + (r – r’) < 

Backward_Label(vertex(i,t,r)) 

{ 

Backward_Label(vertex(i,t,r) := Backward_Label(vertex(i,t,r)) + 

(r – r’); 

Node_succ(vertex(i’,t’,r’)) := i; 

Time_succ(vertex(i’,t’,r’)) := t; 

Resource_succ(vertex(i’,t’,r’)) := r; 

} 

End 

End 

End 

 

 

// step 3: calculating the hyper–prism 

For each node i 

Begin 

For each time t 

Begin 

For each resource r // r >= min_fl 

Begin 



 

170 
 

 

If Forward_Label(vertex(i,t,r)) + 

Backward_Label(vertex(i,t,r)) <= max_fc 

{vertex(i,t,r) is in the hyper–prism} 

End 

End 

End 

 

5.4.3. Search Region Reduction 

Our experiments executed on an Intel Workstation running two Xeon E5–2680 

processors clocked at 2.80 GHz with 20 cores and 192GB RAM running Windows Server 

2008 x64 Edition. In order to tackle the curse of dimensionality in this algorithm, we use 

a few heuristics to reduce the search space as much as possible. For instance, we reduce 

the search space for the NTP by overlaying the corresponding STP on the network and 

restricting the NTP to the vertexes within the STP (Kuijpers and Othman, 2009), since 

the STP always overbounds the NTP. We also calculate the NTP first (by applying 

forward and backward DP algorithms), and then we extend the resource dimensions only 

for those vertexes belonging to the NTP. As a result, we do not apply forward and 

backward DP for the whole three-dimensional search space.  

We also use another heuristic for search space contraction. Suppose after calculating 

the space-time prism, the least time needed to travel from origin node to a node in the 

network is 𝜏; therefore, we do not need to construct the vertexes corresponding that node 

whose time index is less than 𝜏. By considering this rational rule, we can skip several 

vertexes that can be constructed before time 𝜏 for the corresponding node. Similarly, 

suppose the least time required to travel from a node in the network to the sink node is 𝜏′; 

so, the latest time one can depart from this node to reach the sink node is 𝑇 + 1 − 𝜏. Note 
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that in this expression, 𝑇 + 1 refers to the time stamp we defined for the sink vertex. 

Again, by considering this rational rule, we can skip several vertexes that can be 

constructed after time 𝑇 + 1 − 𝜏 for the corresponding node.  

 

5.5. Computational Experiments 

In this section, we develop scenarios on city level over Chicago sketch network and 

state/region level over parts of Washing, D.C. and Baltimore network. In the city level, 

we compute accessibility based on a time budget and an emissions budget; we further 

develop scenarios based on changing the emissions budgets. In the state/region level, we 

develop scenarios based on EVs and regional accessibility with charging stations along 

highways or in town. The complete C++ implementation of the proposed DP algorithm 

and data set for the Chicago sketch network are available at 

https://github.com/mmahmou2/Space-time-resource-Prism. 

The time horizon has been discretized into a series of time intervals with the same 

time length. Without loss of generality, we can assume that a unit of time has one minute 

length. We have also provided our computational experiments over six-node 

transportation network with 13 transportation links as a small-scale network and Sioux 

Falls network with 24 nodes and 76 links as a medium-sized network with enough details 

in Appendix D for those researchers willing to reproduce the examples. 

 

 

 

https://github.com/mmahmou2/Space-time-resource-Prism
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5.5.1. Illustration of Accessibility 

 Chicago sketch network includes 933 nodes and 2,967 links illustrated in Fig. 5.5. 

The free-flow speed is assumed to be 25 mph for all transportation links, the length of 

time horizon is 80 minutes, and nodes 421 and 424 are an individual’s origin and 

destination, respectively. We assume that the index of minimum level of resource 

(emission) is 0.000. We also assumed that maximum emission production index 

(max_ep) is 0.320.  

 
Fig. 5.5. Chicago sketch network with 933 nodes and 2,967 transportation links. 

 

Fig. 5.6 illustrates the nodes that are accessible for both origin and destination. The 

following figures corresponding to the accessible regions have been plotted by google 

fusion tables. We have provided the procedure of creating the heatmaps by google fusion 

tables at https://github.com/mmahmou2/Space-time-resource-Prism.  In this figure, nodes 

with more accessibility are shown by red color, while less accessible nodes are shown by 

green color. Note that a node is more accessible if and only if it is reachable in longer 

https://github.com/mmahmou2/Space-time-resource-Prism
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period of time and larger range of resource levels. The CPU time for running our 

algorithm on this network is 102.7 seconds.   

 

Fig. 5.6. Accessible nodes for both origin and destination respecting time and resource budgets. 

 

5.5.2. Effect of Time and Resource Budget on Space-time Prisms 

In Fig. 5.7, considering 0.320 as the maximum emission production index, we 

examine the effect of time budget on the space-time prism by testing our algorithm for 

30, 50, and 80 minutes time budgets. The individual’s origin and destination are similar 

to the ones used for the example above. It is expected that by increasing the value of time 

budget, more nodes be reachable for the individual. 
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(a) time budget = 30 minutes (b) time budget = 50 minutes (c) time budget = 80 minutes

Fig. 5.7. The effect of time budget on the STR network. 

 

In Fig. 5.8, considering 80 minutes as the time budget, we examine the effect of 

resource budget on the space-time prism by testing our algorithm for 0.120, 0.200, and 

0.320 resource budget (max_ep) indexes. Fig. 5.8 shows that by increasing the value of 

resource budget, more nodes are reachable for the individual. 

(a) resource budget = 0.120 (b) resource budget = 0.200 (c) resource budget = 0.320

Fig. 5.8. The effect of resource budget on the STR network. 
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5.5.3. Regional Accessibility with EV Charging Stations along Highways or in Town 

On average an EV can travel 2.5 miles for each kW h (kilo Watt hour) of energy. We 

use parts of Washington, D.C. and Baltimore networks (with 12,145 nodes and 30,697 

links) illustrated in Fig. 5.9 for a use case of an individual with an EV to study regional 

accessibility with charging stations along highways or in towns to show how a RHP can 

measure the accessibility impacts of new EV charging stations. We extracted this 

network from the state-wide network used by Erdoğan et al. (2014) for their state-wide 

dynamic traffic routing model.  

 
Fig. 5.9. Parts of Washington, D.C. and Baltimore networks (with 12,145 nodes and 30,697 links) 

 

In our experiments, the length of time horizon is assumed to be 120 minutes. We also 

changed our C++ code to improve the computational efficiency for large-scale 

transportation networks. Fig. 5.10 illustrates the STR network for an individual with an 

EV when no charging station has been added to the network. In this network, 7,438 nodes 

are accessible for the individual whose origin and destination are located inside the city 
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of Washington, which means that 61.24% of the whole network is accessible for the 

individual in this scenario. The CPU time for running our algorithm on this network is 

236.6 seconds.   

 

Fig. 5.10. STR network for an individual with an EV when no charging station has been added to the network. 

 

We tested our algorithm for the same individual with the same origin and destination, 

while four charging stations inside Washington, D.C. have been added to the network. In 

this case, 7,648 nodes or equivalently, 62.97% of the whole network is accessible for the 

individual. We also tested our algorithm for the case in which four charging stations 

along the main corridor connecting Washington, D.C. to Baltimore have been added to 

the network. In this case, 8,247 nodes or equivalently, 67.90% of the network is 

accessible for the individual. Finally, we tested our algorithm for the case in which we 

combine the first two scenarios (four charging stations inside the town and four charging 

stations along the main corridor). The results show that 8,302 nodes are accessible in this 

scenario, which is 68.35% of the whole network. 
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According to our results, more accessibility for individuals is expected if charging 

stations are established along corridors and inside towns both; however, the installation 

cost of a charging station basically forces us to decide between the first two scenarios. 

According to our result, we may conclude that establishing EV along main corridor 

provides more accessibility for the users With EVs in comparison to establishing them 

inside the town. Moreover, as discussed before, the concern with EV is not city-level 

accessibility, since people rarely drive 130 miles in a typical day, and they can just plug 

in their EVs at home during the night.  

 

5.5.4. Capturing Non–temporal Resource Budgets in SPTs and NTPs 

STPs and NTPs only capture accessibility as constrained by space and time 

scheduling constraints and do not see other resource constraints that may limit 

accessibility. These resources can include private resources such as a battery that needs 

recharging, a mode of transportation that a traveler chooses for his trip, or amount of 

money that a traveler desires to spend for his trip as well as common resources such as 

clean air. The main contribution of this chapter is that our method is supposed to extend 

NTPs to capture both types of resource constraints. For example, in order to address how 

accessibility of an individual can be affected by choosing different transportation modes, 

we may need to define a dimension called “mode”. This dimension tracks the mode of 

transportation that the individual uses to travel from vertex 𝑋 to 𝑌. Therefore, a vertex in 

our space-time-resource-mode network is recognized by a quadruple of four different 

indexes: node index 𝑖, time index 𝑡, resource level 𝑟, and transportation mode index 𝑚. 
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Similar to what we defined for arcs in the three-dimensional STR networks, vertex 

(𝑖, 𝑡, 𝑟, 𝑚) is connected to vertex (𝑖′, 𝑡′, 𝑟′, 𝑚′) through directional arc 

(𝑖, 𝑖′, 𝑡, 𝑡′, 𝑟, 𝑟′, 𝑚, 𝑚′). Assume that a traveler is located at vertex (𝑖, 𝑡, 𝑟). It is clear that 

using different modes of transportation to transport the individual from node 𝑖 to 𝑖′ may 

result in different 𝑡′ and 𝑟′. Note that for any transportation arc, 𝑚 and 𝑚′ are the same, 

except for a transfer arc by which the individual changes the transportation mode. For 

example ride-sharing is a mode of transportation in which a passenger hires a driver to 

take him exactly where he needs to go, but he may share his ride with one or more than 

one passenger. It is obvious that using ride-sharing mode of transportation can lower the 

fuel consumption/emission per person per mile and may save the natural resources. Table 

5.4 provides a list of transportation modes and their corresponding fuel consumption in 

terms of BUT (British Thermal Union) per passenger-mile and MJ (Mega Joule) per 

passenger-kilometer (Davis et al. 2011) for year 2009. 

Table 5.4  

List of transportation modes and their corresponding fuel consumption in 2009 reported by Davis et al. 

(2011).  

Transportation mode 
Average passengers per 

vehicle 

BUT per passenger–

mile 

MJ per passenger–

kilometer 

Rail (intercity Amtrak) 20.9 2,435 1,596 

Motorcycles 1.16 2,460 1.61 

Rail (transit light and 

heavy) 
24.5 2,516 1.649 

Rail (commuter) 32.7 2,812 1.843 

Air 99.3 2,826 1.853 

Cars 1.55 3,538 2.319 

Personal trucks 1.84 3,663 2.401 

Buses 9.2 4,242 2.781 

Taxi 1.55 15,645 10.257 

 

To sum up, transportation mode can be treated as a kind of private resource in our 

proposed multi-dimensional hyper-prism, and individuals have this freedom to choose 
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their transportation mode to increase their accessibility by saving their resources to some 

degree.   

 

5.6. Conclusion 

Although mobility has many benefits, it also has substantial negative impacts on local 

and global environments. Transportation is a major consumer of non-renewable natural 

resources, as well as a key source for greenhouse gas emissions and damaging air 

pollutants. Although space-time prisms have been introduced as the measure of 

individuals’ accessibility to explain how spatio-temporal constraints impose upon 

individuals’ day-to-day activities and trip decisions, the resource constraints have 

attracted little attention. In this research, in order to examine the effect of resource budget 

constraints on an individual’s accessibility, we introduce a new dimension specifically for 

the resource to the classical space-time network. Having this, the level of resource for 

each individual at any location and time can be monitored. Fuel, money, carbon emission, 

and transportation mode are a few out of many types of resources in the real-world 

transportation systems. We applied a forward and backward resource-dependent time-

dependent DP to find the resource hyper-prims for each individual. Finally, we tested our 

algorithm on small, medium, and large scale transportation network to show the solution 

optimality as well as computational efficiency of our developed algorithm. 

The current work could be extended by considering different types of resources, 

particularly for the transportation mode, by which we can evaluate the effect of multi-

modal transportation options on the accessibility of the travelers. 
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CHAPTER 6 

HOW MANY TRIP REQUESTS COULD WE SUPPORT? AN ACTIVITY-

TRAVEL BASED VEHICLE SCHEDULING APPROACH 

 

6.1. Motivation and Background  

The past decade has witnessed unprecedented advances in the auto industry, 

specifically in the domain of autonomous vehicle technologies. Several auto companies 

have forged new paths and introduced vehicles of the future that need minimal human 

intervention for their operation (Tesla Motors Team, 2015; Sherman, 2016). 

Ridesourcing, operated by TNCs such as Uber and Lyft, is another game changing 

technology introduced in recent times. TNCs aim to provide reliable and inexpensive 

personalized travel options that combine the best of personalized transport (for example, 

door-to-door travel), as well as transit services (where the users pay per trip and do not 

have to drive the vehicle themselves). Recent reports show that 12% of registered voters 

across the United States used ridesourcing services at least once in the past month 

(Morning Consult, 2015).  

The rapidly growing popularity of TNCs coupled with autonomous vehicle 

technologies, could potentially redefine the way in which individuals schedule and 

execute their activities and also the way in which travel demand is managed by network 

operators. For the traveler, the freedom from having to drive could lead to more flexible 

activity schedules and increased productivity while travelling. On the other hand, 

network operators could handle demand by incentivizing/dis-incentivizing travel during a 
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certain portion of the day (similar to surge pricing by Uber), or along a specific route. 

There is growing interest in the field to study incentive-based demand management 

strategies (for example, see Hu et al. 2014). It is therefore of critical importance to 

understand and accurately depict these transformative technologies and their implications 

for activity-travel patterns in travel demand model systems. 

Great strides have been made in the past couple of decades in advancing travel 

demand modeling from the traditional 4-step travel demand models where demand and 

supply sides were considered static to present day state-of-the art integrated travel model 

systems. On the travel demand front, the profession has progressed from traditional trip-

based methods to ABMs, which date back to the pioneering work of Kitamura (1988) 

(see Rasouli and Timmermans (2014) for a detailed synthesis on ABMs).  ABMs view 

travel as derived demand, arising from the necessity of individuals to participate in 

various activities. This facilitates representing travel in a behaviorally realistic way in 

ABMs. On the other hand, network supply/simulation has progressed from static traffic 

assignment to DTA models that employ microscopic simulation and are capable of 

evaluating various traffic management strategies on the fly (Peeta and Ziliaskopoulos, 

2001). There are ongoing efforts to tightly integrate the ABMs with DTA models with a 

view to accurately predict the impacts of dynamic pricing strategies and real-time 

information provision (Zockaie et al. 2015). While some of the integrated models operate 

in a sequential paradigm (exchange of information between the model components 

happens after a full iteration, for example Lin et al. 2008; Hao et al. 2010), others employ 
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a tighter integration where information is exchanged on a more continuous basis (Balmer 

et al. 2009; Pendyala et al. 2012; Auld et al. 2016). 

While the integrated models developed so far address modeling needs for the current 

array of travel options (modes, demand management strategies, etc.), they do not 

adequately handle emerging transportation technologies (ride-sharing services, 

autonomous vehicle technologies) that are increasingly penetrating the marketplace. For 

example, in an autonomous taxi fleet future, how would individuals go about scheduling 

their activities? How would the demand arising in such a situation impact network 

performance? Conversely, for a given fleet size, how many activities can a transportation 

networking company support? Integrated travel demand models of the present day would 

not be able to answer these questions for a variety of reasons. 

ABMs still operate based on zonal level information (such as skims, by time-of-day) 

provided by DTA models. The ABMs are oblivious to network logistics such as 

availability of ridesourcing options and incentives/disincentives customized to specific 

trips/travelers. On the other hand, the VRP, used to depict ride-sharing services in DTA 

models, view travel as disjoint trips that are independent of each other (Toth and Vigo, 

2014). The solutions to VRP are typically optimization-based and lack a sound 

behavioral foundation. Solutions to VRP in the standard DTA models are often aimed at 

serving the maximum number of trip requests without taking into consideration the 

precedence constraints (or linkages) between the trips. Consider an individual’s schedule 

comprising of three trips a) pick-up child, b) accompany child to the playground and c) 

take the child home. A VRP algorithm could produce a solution where trip requests for 
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activities ‘b’ and ‘c’ are served, but in reality, activities ‘b’, and ‘c’ have a precedence 

constraint of engaging in activity ‘a’. This vital behavioral constraint is ignored in the 

VRP optimization techniques incorporated in DTA models. 

Fig. 6.1(a) compares the characteristics of a standard dynamic traffic assignment 

system with the activity-travel based vehicle scheduling system. Due to the flexibility of 

the service offered by vehicle service providers and a vast variety of traveler’ behaviors 

(e.g. different levels of traveler flexibility in terms of departure and/or arrival time 

windows, trip cost budget, and ride synchronization), future dynamic transportation 

network models must consist of various layers of passengers and vehicle service 

providers interacting with one another (Fig. 6.1(b)).    
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Fig. 6.1. (a) a comparison between standard traffic assignment and proposed activity-travel vehicle 

scheduling system (adapted from Mahmassani, 2012); (b) layers of passengers’ requests, vehicles, and roads 

infrastructure network.  

 

The objective of this chapter is two-fold i) add to the existing knowledge in the VRP 

domain by proposing an algorithm that incorporates behavioral realism into VRP; ii) 
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facilitate the representation of emerging technologies in ABM-DTA integrated models by 

providing ABMs with a richer set of information made available by the proposed 

algorithm. The objective of the chapter is achieved by formulating and solving a time-

discretized multi-commodity network flow model. The solution for the proposed 

algorithm takes into account the time-space constraints as well as activity hierarchy 

(precedence) constraints. It is envisioned that the proposed algorithm would enable the 

provision of a much richer set of information to ABMs, thus enabling ABMs to include 

ride-sharing/ride-hailing as an additional mode of travel. For example, if individuals are 

provided with a price (in the form of a Lagrangian multiplier) to undertake a trip, they 

can determine whether or not to engage in a discretionary activity based on the prevailing 

‘price’ for the trip to get to that activity.   

The remainder of the chapter is organized as follows. The next section describes in 

detail, the construction of the activity-travel graphs for passengers and SST networks for 

vehicles, and the third section presents the mathematical formulation of the time-

discretized multi-commodity network flow model, as well as the solution approach. The 

fourth section provides results from the application of the proposed algorithm to the 

Phoenix subarea transportation network. Discussion, concluding remarks, and directions 

for future research form the fifth and final section of the chapter. 

 

6.2. Network Construction for Passengers and Vehicles 

This section describes the construction of activity networks for passengers followed 

by the explanation of multi-dimensional SST network construction for vehicles. In a 
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vehicle network, adding the ‘under-service trip requests state’ dimension helps in 

tracking the execution status of the passengers’ trip requests at any time. Interested 

readers are referred to a recent paper by Mahmoudi and Zhou (2016) for more details 

about how to construct a SST network. 

 

6.2.1. Illustrative Example for Passenger Activity-travel Network Construction  

This section details the construction of the graph containing passenger 𝑝’s activities 

using an example. Take an eight-node transportation network, illustrated in Fig. 6.2(a). 

Suppose two passengers, each with a specific origin and destination. Each passenger 

intends to perform a set of activities during the day (some of them are mandatory and 

others are optional). Table 6.1 presents the information related to the passengers’ trip 

requests. 
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(a) an eight-node transportation network

(b) activities location on the transportation network  
Fig. 6.2. (a) an eight-node transportation network; (b) the transportation network in which the location of 

passengers’ activities has been specified. 
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The location of passengers’ activities has been depicted on the eight-node 

transportation network in Fig. 6.2(b). In this example, passenger 𝑝1 has a trip request 

from his home to office (working at office is a mandatory activity for 𝑝1). Moreover, he 

would like to shop for groceries after work (note that this activity is optional). On the 

other hand, passenger 𝑝2 has to drop off his kid at school first thing in the morning, and 

then go to work. Although both the activities in the morning are mandatory for passenger 

𝑝2, he has more flexible schedule (with discretionary activities) after work. He may (1) 

directly go home from office and assign the task of picking up the kid from school to his 

wife, (2) pick up the kid from school and go home, or (3) pick up the kid from school, 

take her to the playground and play with her for half an hour and then return home. In the 

latter alternative, taking the kid to the playground is dependent on picking her up from 

school. 

Table 6.1  

Information related to the trip requests of passengers 

Passenger 𝑝1    

Origin Location   

  Home   Node 1   

Destination Location    

  Home    Node 1   

Activity Location  Type Time window 

  Working at office   Node 3   Mandatory    [8:00 AM, 4:00 PM] 

  Shopping groceries   Node 6   Optional    [4:05 PM, 4:50 PM] 

Passenger 𝑝2    

Origin Location   

  Home   Node 2   

Destination Location    

  Home    Node 2   

Activity Location  Type Time window 

  Drop-off the kid at school   Node 4   Mandatory   [7:55 AM, 7:55 AM] 

  Working at office   Node 3   Mandatory   [8:00 AM, 4:00 PM] 

  Pick up the kid from school   Node 4   Optional    [4:10 PM, 4:10 PM] 

  Play with kid at playground   Node 5   Optional    [4:15 PM, 4:45 PM] 
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To construct the activity graph for each passenger, it is sufficient to arrange all 

possible trip requests respecting their type and time window. Fig. 6.3(a) and Fig. 6.3(b) 

presents the graphs of travel activities for passengers 𝑝1 and 𝑝2, respectively. In these 

graphs, each passenger should start and end his activity trip chain (or a tour) at the same 

location (home). 

a1

destinationorigin a2

a1

a4

a2 a3

(a) passenger p1's activity network (b) passenger p2's activity network 

destinationorigin

Fig 6.3. (a) passenger 𝑝1’s activity-travel graph; (b) passenger 𝑝2’s activity-travel graph. 

 

6.2.2. Vehicle SST Network Construction 

The construction of multi-dimensional SST networks for vehicles is explained in this 

section with the help of the example mentioned above. Note that in the SST network 

representation, an activity can only performed along the corresponding activity link. In 

order to consider the precedence constraints (e.g. drop-off a passenger at an activity 

location should occur before his pickup from there) as well as vehicle capacity 

constraints, a new dimension called as the “under-service trip requests state” is 

introduced. With the help of this definition, the execution status of passengers’ trip 

requests in each vehicle can be tracked at any time within the vehicle time horizon. In the 

example mentioned above, we assume that the vehicle has 3 seats available for serving 

the passengers. Let 𝑟(𝑝, 𝑎, 𝑎′) denote passenger 𝑝’s trip request in which he leaves 

activity location 𝑎 to perform activity 𝑎′. From Fig. 6.3(a), there might be four trip 
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requests for passenger 𝑝1, i.e. 𝑟𝑝1
1 = 𝑟(𝑝1, 𝑜𝑟𝑖𝑔𝑖𝑛, 𝑎1), 𝑟𝑝1

2 = 𝑟(𝑝1, 𝑎1, 𝑎2), 𝑟𝑝1
3 =

𝑟(𝑝1, 𝑎1, 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛), 𝑟𝑝1
4 = 𝑟(𝑝1, 𝑎2, 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛), while according to Fig. 6.3(b), 

seven trip requests can be possible for passenger 𝑝2, i.e. 𝑟𝑝2
1 = 𝑟(𝑝2, 𝑜𝑟𝑖𝑔𝑖𝑛, 𝑎1), 𝑟𝑝2

2 =

𝑟(𝑝2, 𝑎1, 𝑎2), 𝑟𝑝2
3 = 𝑟(𝑝2, 𝑎2, 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛), 𝑟𝑝2

4 = 𝑟(𝑝2, 𝑎2, 𝑎3), 𝑟𝑝2
5 =

𝑟(𝑝2, 𝑎3, 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛), 𝑟𝑝2
6 = 𝑟(𝑝2, 𝑎3, 𝑎4), 𝑟𝑝2

7 = 𝑟(𝑝2, 𝑎4, 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛). The under-

service trip requests state (denoted by 𝑤 from now on) is explained with the help of Table 

6.2. Table 6.2 presents the under-service trip requests state 𝑤 at any node 𝑖 and time 𝑡. 

Note that 𝑤 = [ _ _ _ ] is the null state in which the vehicle is not involved in any 

passenger’s trip request. Figures 6.4(a) and 6.4(b) show the route of the passengers when 

they share their ride with each other. Fig. 6.5(a) also depicts the vehicles two-dimensional 

space-time network when two passengers are served through the ride-sharing.  
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Fig 6.4. (a) passenger 𝑝1’s route in the ride-sharing mode; (b) passenger 𝑝2’s route in the ride-sharing mode; 

(c) passenger 𝑝1’s route if he drives alone; (d) passenger 𝑝2’s route if he drives alone. 
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Table 6.2  

State transitions and trips for the aforementioned example  
Trips in the morning 

from node 𝑖 at time 𝑡 at state 𝑤 to node 𝑖′ at time 𝑡′  at state 𝑤′  

Node 0 7:20 AM [ _ _ _ ] Node 2 7:25 AM [ _ _ _ ] 

Node 2 7:25 AM [ _ _ _ ] Node 2 7:25 AM [𝑟𝑝2

1  𝑟𝑝2

1  _ ] 

Node 2 7:25 AM [𝑟𝑝2

1  𝑟𝑝2

1  _ ] Node 1 7:30 AM [𝑟𝑝2

1  𝑟𝑝2

1  _ ] 

Node 1 7:30 AM [𝑟𝑝2

1  𝑟𝑝2

1  _ ] Node 1 7:30 AM [𝑟𝑝2

1  𝑟𝑝2

1  𝑟𝑝1

1 ] 

Node 1 7:30 AM [𝑟𝑝2

1  𝑟𝑝2

1  𝑟𝑝1

1 ] Node 6 7:50 AM [𝑟𝑝2

1  𝑟𝑝2

1  𝑟𝑝1

1 ] 

Node 6 7:50 AM [𝑟𝑝2

1  𝑟𝑝2

1  𝑟𝑝1

1 ] Node 4 7:55 AM [𝑟𝑝2

1  𝑟𝑝2

1  𝑟𝑝1

1 ] 

Node 4 7:55 AM [𝑟𝑝2

1  𝑟𝑝2

1  𝑟𝑝1

1 ] Node 4 7:55 AM [ _ 𝑟𝑝2

2  𝑟𝑝1

1 ] 

Node 4 7:55 AM [ _ 𝑟𝑝2

2  𝑟𝑝1

1 ] Node 3 8:00 AM [ _ 𝑟𝑝2

2  𝑟𝑝1

1 ] 

Node 3 8:00 AM [ _ 𝑟𝑝2

2  𝑟𝑝1

1 ] Node 3 8:00 AM [ _ _ _ ] 

Node 3  8:00 AM [ _ _ _ ] Node 7 8:05 AM [ _ _ _ ] 
Trips in the afternoon 

from node 𝑖 at time 𝑡 at state 𝑤 to node 𝑖′ at time 𝑡′  at state 𝑤′  

Node 7 3:55 PM [ _ _ _ ] Node 3 4:00 PM [ _ _ _ ] 

Node 3 4:00 PM [ _ _ _ ] Node 3 4:00 PM [𝑟𝑝2

4  𝑟𝑝1

2  _ ] 

Node 3 4:00 PM [𝑟𝑝2

4  𝑟𝑝1

2  _ ] Node 6 4:05 PM [𝑟𝑝2

4  𝑟𝑝1

2  _ ] 

Node 6 4:05 PM [𝑟𝑝2

4  𝑟𝑝1

2  _ ] Node 6 4:05 PM [𝑟𝑝2

4  _ _ ] 

Node 6 4:05 PM [𝑟𝑝2

4  _ _ ] Node 4 4:10 PM [𝑟𝑝2

4  _ _ ] 

Node 4 4:10 PM [𝑟𝑝2

4  _ _ ] Node 4 4:10 PM [𝑟𝑝2

6  𝑟𝑝2

6  _ ] 

Node 4 4:10 PM [𝑟𝑝2

6  𝑟𝑝2

6  _ ] Node 5 4:15 PM [𝑟𝑝2

6  𝑟𝑝2

6  _ ] 

Node 5 4:15 PM [𝑟𝑝2

6  𝑟𝑝2

6  _ ] Node 5 4:15 PM [ _ _ _ ] 

Node 5 4:15 PM [ _ _ _ ] Node 5 4:45 PM [ _ _ _ ] 

Node 5 4:45 PM [ _ _ _ ] Node 5 4:45 PM [𝑟𝑝2

7  𝑟𝑝2

7  _ ] 

Node 5 4:45 PM [𝑟𝑝2

7  𝑟𝑝2

7  _ ] Node 6 4:50 PM [𝑟𝑝2

7  𝑟𝑝2

7  _ ] 

Node 6 4:50 PM [𝑟𝑝2

7  𝑟𝑝2

7  _ ] Node 6 4:50 PM [𝑟𝑝2

7  𝑟𝑝2

7  𝑟𝑝1

4 ] 

Node 6 4:50 PM [𝑟𝑝2

7  𝑟𝑝2

7  𝑟𝑝1

4 ] Node 2 5:10 PM [𝑟𝑝2

7  𝑟𝑝2

7  𝑟𝑝1

4 ] 

Node 2 5:10 PM [𝑟𝑝2

7  𝑟𝑝2

7  𝑟𝑝1

4 ] Node 2 5:10 PM [ _ _ 𝑟𝑝1

4 ] 

Node 2 5:10 PM [ _ _ 𝑟𝑝1

4 ] Node 1 5:15 PM [ _ _ 𝑟𝑝1

4 ] 

Node 1 5:15 PM [ _ _ 𝑟𝑝1

4 ] Node 1 5:15 PM [ _ _ _ ] 

Node 1 5:15 PM [ _ _ _ ] Node 0 5:20 PM [ _ _ _ ] 

 

By using the ride-sharing mode for the passengers’ trip requests, several miles are 

deducted. Figures 6.4(c) and 6.4(d) illustrate the route of the passengers and Figures 

6.5(b) and 6.5(c) depict the corresponding mileage for performing their respective 

activities by using their own vehicle. In these figures, passenger 𝑝1 travels for 31 miles, 

whereas 𝑝2 travels for 34 miles. Therefore, if each passenger drives separately, they 

spend 65 miles in total to perform their activities, while according to Fig. 6.5(a), if they 
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share a ride with each other (for a portion of their tours), the vehicle only travels for 43 

miles which is 22 miles less than driving alone. 
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(a) vehicle v's space-time network in the ride-sharing mode

(b) passenger p1's route if he drives alone (c) passenger p2's route if he drives alone

S
p
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e

S
p
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e

Fig. 6.5. (a) vehicle space-time network in the ride-sharing mode; (b) passenger 𝑝1’s route when he drives 

by his own car; (c) passenger 𝑝2’s route when he drives by his own car. 
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6.3. Time-discretized Multi-commodity Network Flow Programming Model 

In this section, we initially present the mathematical programming of the proposed 

time-discretized multi-commodity network flow model. We further apply LR approach to 

relax the two groups of complicated constraints into the objective function. By doing so, 

the main problem is systematically decomposed to two sub-problems where sub-problem 

(1) is a typical least cost path problem and sub-problem (2) is a time-dependent state-

dependent least cost path problem. Both sub-problems can be solved by computationally 

efficient algorithms for solving the shortest path problem, e.g. DP, label correcting 

algorithm, etc. 

 

6.3.1. Mathematical Model 

Mathematical formulation for the proposed time-discretized multi-commodity 

network flow model is presented in this section. This formulation not only guarantees that 

each activity (depending on whether it is mandatory or optional) is performed within its 

time window, but also ensures that the road as well as vehicle capacity constraints are not 

violated. Note that the roads’ capacity constraints can be constructed based on the 

cumulative arrival and departure functions to reflect detailed traffic congestion 

propagation through simplified kinematic wave model (Newell, 1993). In this model, we 

assume that all vehicles have the same planning horizon, i.e. [0, 𝑇]. Moreover, to 

distinguish regular transportation nodes from passengers’ origin, destination, activities 

location, as well as vehicles’ origin and destination, we add dummy nodes corresponding 

each to the original transportation network. Each dummy node is only connected to its 
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corresponding transportation node by a link. The travel time on this link can be 

interpreted as the service time if the added dummy node is related to a passenger’s 

pickup/drop-off, and as preparation time if it is related to a vehicle’s departure/arrival at a 

depot. Without loss of generality, this travel time is assumed to be a unit of time for all 

passengers and vehicles in this chapter. Table 6.3 lists the notations for the sets, indices, 

parameters, and variables in this model. 

Table 6.3 

Sets, Indexes, Parameters, and Variables Used in Our Proposed Model 

Symbol Definition 

𝑘 Vehicle index 

𝑝 Passenger index 

𝑤, 𝑤’  Under-service trip requests state indices in vehicles networks 

(𝑖, 𝑖′) Index of a physical link between adjacent nodes 𝑖 and 𝑖′ 

𝑇𝑇(𝑖, 𝑖′, 𝑡) Link travel time from node i to node 𝑖′ starting at time t 

(𝑖, 𝑡, 𝑤), (𝑖′, 𝑡′, 𝑤′) Indexes of SST vertices for vehicles SST network 

(𝑖, 𝑖′, 𝑡, 𝑡′, 𝑤, 𝑤′) 

Index of a space-time-state arc indicating vehicle 𝑣 travels from node 𝑖 at time 

𝑡 with under-service trip requests state 𝑤 to node 𝑖′ at time 𝑡′ with under-

service trip requests state 𝑤’ 
𝑎, 𝑎′ Passengers’ activity indices in passenger 𝑝’s activities graph 

𝑟(𝑝, 𝑎, 𝑎′) 
Trip request in which passenger 𝑝 leaves activity location 𝑎 to perform 

activity 𝑎′  

𝑢(𝑝, 𝑎, 𝑎′) Utility gained from serving trip request 𝑟(𝑝, 𝑎, 𝑎′)   

𝜇(𝑖, 𝑖′, 𝑡) Maximum road capacity per unit time interval on physical link (𝑖, 𝑖′) at time 𝑡 

𝜙(𝑝, 𝑎, 𝑎′, 𝑖, 𝑖′, 𝑡, 𝑡 + 1) 
= 1, if (𝑖, 𝑡) is the dummy vertex from which passenger 𝑝 calls a vehicle to be 

picked up for trip request 𝑟(𝑝, 𝑎, 𝑎′) (trip 𝑟(𝑝, 𝑎, 𝑎′) starts); = 0 otherwise 

𝜓(𝑝, 𝑎, 𝑎′, 𝑖, 𝑖′, 𝑡 − 1, 𝑡) 
= 1, if (𝑖′, 𝑡) is the dummy vertex at which passenger 𝑝 is dropped off exactly 

when trip request 𝑟(𝑝, 𝑎, 𝑎′) is completed; = 0 otherwise 

Ω(𝑝, 𝑎, 𝑎′, 𝑖, 𝑡) 
Set of all feasible arcs from dummy vertex (𝑖, 𝑡, 𝑤) to (𝑖′, 𝑡, 𝑤’) in which state 

𝑤′ contains 𝑟(𝑝, 𝑎, 𝑎′), while 𝑤 does not (pickup).   

𝛩(𝑝, 𝑎, 𝑎′, 𝑖′, 𝑡) 
Set of all feasible arcs from (𝑖, 𝑡 − 1, 𝑤) to dummy vertex (𝑖′, 𝑡, 𝑤’) in which 

state 𝑤 contains 𝑟(𝑝, 𝑎, 𝑎′), while 𝑤’ does not (drop-off).   

𝑦(𝑘, 𝑖, 𝑖′, 𝑡, 𝑡′, 𝑤, 𝑤′) = 1 if arc (𝑖, 𝑖′, 𝑡, 𝑡′, 𝑤, 𝑤′) is used by vehicle 𝑘; = 0 otherwise 

𝑥(𝑝, 𝑎, 𝑎′) = 1 if link (𝑎, 𝑎′) is traversed by passenger 𝑝; = 0 otherwise 

 

Note that each vehicle 𝑘 must start its route from the dummy node corresponding to 

its origin depot at time 𝑡 = 0 with the null state. We call this vertex as super source 

vertex(𝑘). In addition, vehicle 𝑘 must ends its route at the dummy node corresponding to 
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its destination depot at time 𝑡 = 𝑇 with the null state. This vertex is called as super sink 

vertex(𝑘). Finally, this time-discretized multi-commodity network flow problem can be 

formulated as follows: 

𝑀𝑎𝑥 ∑ [𝑢(𝑝, 𝑎, 𝑎′). 𝑥(𝑝, 𝑎, 𝑎′)]𝑝,𝑎,𝑎′        (6.1) 

s.t. 

Flow balance constraint at any node belongs to passenger 𝑝’s activity network: 

∑ 𝑥(𝑝, 𝑎, 𝑎′)𝑎′ −  ∑ 𝑥(𝑝, 𝑎′, 𝑎)𝑎′ =  𝑏      (6.2) 

𝑏 = +1, if 𝑎: passenger 𝑝’s origin; 𝑏 = −1, if 𝑎: passenger 𝑝’s destination; 𝑏 = 0; 

otherwise.  

Flow balance constraint at any vertex belongs to vehicle 𝑘’s SST network: 

∑ 𝑦(𝑘, 𝑖, 𝑖′, 𝑡, 𝑡′, 𝑤, 𝑤′)𝑖′,𝑡′,𝑤′ −  ∑ 𝑦(𝑘, 𝑖′, 𝑖, 𝑡′, 𝑡, 𝑤′, 𝑤) =𝑖′,𝑡′,𝑤′ 𝑏′   (6.3) 

𝑏′ = +1, if (𝑖, 𝑡, 𝑤): super source vertex(𝑘); 𝑏′ = −1, if (𝑖, 𝑡, 𝑤): super sink vertex(𝑘); 

𝑏′ = 0, otherwise.         

Coupling constraint to link ‘the execution of passenger 𝑝’s pickup for the trip request 

𝑟(𝑝, 𝑎, 𝑎′)’ to ‘corresponding pickup arc in vehicle 𝑘’s SST network’:  

∑ 𝑦(𝑘, 𝑖, 𝑖′, 𝑡, 𝑡 + 1, 𝑤, 𝑤′) = 𝜙(𝑝, 𝑎, 𝑎′, 𝑖, 𝑖′, 𝑡, 𝑡 + 1). 𝑥(𝑝, 𝑎, 𝑎′)𝑘,(𝑤,𝑤′)∈Ω(𝑝,𝑎,𝑎′,𝑖,𝑡)                 

∀𝜙 > 0          (6.4)  

Coupling constraint to link ‘the execution of passenger 𝑝’s drop-off exactly when trip 

request 𝑟(𝑝, 𝑎, 𝑎′) is completed’ to ‘corresponding delivery arc in vehicle 𝑘’s SST 

network:  



 

194 
 

∑ 𝑦(𝑘, 𝑖, 𝑖′, 𝑡 − 1, 𝑡, 𝑤, 𝑤′) = 𝜓(𝑝, 𝑎, 𝑎′, 𝑖, 𝑖′, 𝑡 − 1, 𝑡). 𝑥(𝑝, 𝑎, 𝑎′)𝑘,(𝑤,𝑤′)∈𝛩(𝑝,𝑎,𝑎′,𝑖′,𝑡)                

∀𝜓 > 0          (6.5) 

Conceptual road outflow capacity constraint:  

∑ ∑ 𝑦(𝑘, 𝑖, 𝑖′, 𝑡, 𝑡′, 𝑤, 𝑤′)𝑡′,𝑤,𝑤′𝑘 ≤ 𝜇(𝑖, 𝑖′, 𝑡)  ∀(𝑖, 𝑖′);  𝑡 ∈ [0, 𝑇 − 1] (6.6) 

Binary definitional constraint: 

𝑥(𝑝, 𝑎, 𝑎′) ∈ {0, 1}  ∀𝑝, 𝑎, 𝑎′      (6.7) 

𝑦(𝑘, 𝑖, 𝑖′, 𝑡, 𝑡′, 𝑤, 𝑤′) ∈ {0, 1}  ∀𝑘, 𝑖, 𝑖′, 𝑡, 𝑡′, 𝑤, 𝑤′    (6.8) 

 

6.3.2. LR-based Solution Approach    

Defining multi-dimensional decision variables 𝑦(𝑘, 𝑖′, 𝑖′, 𝑡′, 𝑡′, 𝑤, 𝑤′) leads to 

computational challenges for the real-world data sets, which are addressed properly by 

specialized programs and an innovative solution framework. We reformulate the problem 

by relaxing the complex set of constraints (6.4), (6.5), and (6.6) into the objective 

function and introducing the corresponding Lagrangian multipliers, 𝛼(𝑝, 𝑎, 𝑎′), 

𝛽(𝑝, 𝑎, 𝑎′), and 𝛾(𝑖, 𝑖′, 𝑡) to construct the dualized Lagrangian function (6.9).  

𝐿 = 𝑀𝑖𝑛 ∑ [−𝑢(𝑝, 𝑎, 𝑎′). 𝑥(𝑝, 𝑎, 𝑎′)]𝑝,𝑎,𝑎′ +

∑ 𝛼(𝑝, 𝑎, 𝑎′). [∑ 𝑦(𝑘, 𝑖, 𝑖′, 𝑡, 𝑡 + 1, 𝑤, 𝑤′) − 𝜙(𝑝, 𝑎, 𝑎′, 𝑖, 𝑖′, 𝑡, 𝑡 +𝑘,(𝑤,𝑤′)∈Ω(𝑝,𝑎,𝑎′,𝑖,𝑡)𝑝,𝑎,𝑎′

1). 𝑥(𝑝, 𝑎, 𝑎′)] + ∑ 𝛽(𝑝, 𝑎, 𝑎′). [∑ 𝑦(𝑘, 𝑖, 𝑖′, 𝑡 − 1, 𝑡, 𝑤, 𝑤′) −𝑘,(𝑤,𝑤′)∈𝛩(𝑝,𝑎,𝑎′,𝑖′,𝑡)𝑝,𝑎,𝑎′

𝜓(𝑝, 𝑎, 𝑎′, 𝑖, 𝑖′, 𝑡 − 1, 𝑡). 𝑥(𝑝, 𝑎, 𝑎′)] +

∑ 𝛾(𝑖, 𝑖′, 𝑡). [∑ ∑ 𝑦(𝑘, 𝑖′, 𝑖′, 𝑡′, 𝑡′, 𝑤, 𝑤′)𝑡′,𝑤,𝑤′𝑘 − 𝜇(𝑖, 𝑖′, 𝑡)]𝑖,𝑖′,𝑡    (6.9) 
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Based on a Lagrangian reformulation framework, the main problem can be 

transformed to two easy sub-problems, 𝑃𝑥 and 𝑃𝑦, which can be solved independently 

with much computationally efficient effort (15).  

Sub-problem 𝑃𝑥         (6.10) 

𝑀𝑖𝑛 (−𝑈 − 𝐴𝛷 − 𝐵𝛹)𝑋  
s.t. 

Constraints (6.2) & (6.7) 

 

Sub-problem 𝑃𝑦         (6.11) 

 𝑀𝑖𝑛 (𝐴 + 𝐵 + 𝛤)𝑌 − 𝛤𝛭 
s.t. 

Constraints (6.3) & (6.8) 

 

Sub-problem 𝑃𝑥 is a typical least cost path problem, and 𝑃𝑦 is a time-dependent state-

dependent least cost path problem. Both sub-problems can be solved by computationally 

efficient algorithms, e.g. DP, label correcting algorithm, etc. In this research, we apply 

time-dependent state-dependent forward DP to solve these two sub-problems.  

If individuals are provided with a price (in the form of lagrangian multipliers 𝛼 and 

𝛽) to undertake a trip, they can determine whether or not to engage in a discretionary 

activity based on the prevailing ‘price’ for the trip to get to that activity. In Section 6.4, 

the results from the application of the proposed algorithm on Phoenix subarea 

transportation network are provided. 

 

6.4. Computational Experiments 

The time-dependent state-dependent forward DP described in this chapter is coded in 

C++ platforms. The experiments were performed on an Intel Workstation running two 
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Xeon E5-2680 processors clocked at 2.80 GHz with 20 cores and 192 GB RAM running 

Windows Server 2008 x64 Edition. In addition, parallel computing and OpenMP 

technique are implemented for generating lower bound and upper bound at each iteration 

in the LR algorithm.  

In this section, we examine our proposed model on sample data sets from the Phoenix 

subarea with 1162 transportation nodes and 3164 links, illustrated in Fig. 6.6, to 

demonstrate the computational efficiency, as well as, solution optimality of the proposed 

algorithm. Some sample trip requests (an OD pairs) are illustrated by directed dashed 

links, whereas vehicles’ paths are shown by directed thick links with different colors 

from transportation links color. 

Request 1

Request 4

Request 2
Request 3Request 5

R
eq

u
est 6

Fig. 6.6. Phoenix Metropolitan Chandler subarea transportation network with 6 trip requests. 

 

It is assumed that the routing cost of a transportation arc is $22/h, while the waiting 

cost at a node is $15/h. The initial charge is assumed to be $7 for all passengers. The 

maximum capacity of the vehicles for service is 2 seats, and the length of time horizon is 

2 hours (120 min). It is also assumed that a unit of time has 1 min length. The proposed 



 

197 
 

multi-commodity flow programming model is first demonstrated by the general purpose 

optimization package GAMS (Rosenthal, 2015) in small transportation networks. For 

large-scale applications, we also create a time-dependent state-dependent shortest path 

computational engine by enhancing an open-source mesoscopic dynamic traffic 

assignment model namely DTALite (Zhou and Taylor, 2014). The resulting open-source 

project with GAMS and C++ source codes can be found at 

https://github.com/xzhou99/Agent-Plus.  

Trip requests on the test network are generated from an open-source activity based 

travel demand modeling system called Open Source Activity Mobility Simulator 

(OpenAMOS) (Pendyala et al. 2012). We also pre-specify the locations of vehicle depots 

at major activity locations in the test network. Table 6.4 presents the summary of vehicle 

routing results for a few test cases, with the following observations. If the number of trip 

requests increases, we generally need more vehicles to satisfy the travel demand desires. 

The ratio of required fleet size and total request number dramatically varies, between 

about 20% and 66%, from depending on the underlying spatial and temporal patterns. 

Typically, a larger pool of travel requests could lead to better system vehicle use 

efficiency. Due to the fixed vehicle depot and time-window restrictions, there are still a 

few under-served trip requests in the given passenger activity-travel pattern. Different 

from commonly used heuristic algorithms, the developed algorithm aims to find the exact 

or close-to-optimal solution to the proposed optimization model. The desirable trip-to-

vehicle assignment and detailed routing solution could take about 5 min to compute for a 

medium case with about 50 trip requests.  

https://github.com/xzhou99/Agent-Plus
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Table 6.4 

Results for the Phoenix subarea with 1162 nodes and 3164 links 

Test case  
Number of trip 

requests 

Number of 

vehicles required 

Number of passengers 

not served 

Running 

time (s) 

1 6 4 0 8.41 

2 10 5 0 25.5 

3 15 10 1 51.7 

4 37 20 1 255.9  

5 48 9 0 308.2 

 

We also explain the pricing mechanism by test case 1 with 6 trip requests. Fig. 6.7 

demonstrates the Lagrangian multiplier corresponding each trip request along 5 

iterations. According to Fig. 6.7, each multiplier ultimately converges to a specific value. 

This value can be literally interpreted as the ‘ultimate price’ of a trip to get to a specific 

travel activity. Through this pricing mechanism, vehicle service providers would be able 

to offer a reasonable bid to their customers. 

 
Fig. 6.7. Lagrangian multipliers along 10 iterations in test case 1. 
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6.5. Conclusions 

Despite all advancements in the real-time traffic control, DTA modelers still seek for 

a robust framework to extend their existing model (1) from single-OD demand to trip 

chaining, and (2) from driving your own mode to shared-use vehicle systems. In this 

research, it is expected that with the help of the proposed algorithm, it would be possible 

to provide a much richer set of information to ABMs, thus enabling ABMs to include 

ride-sharing/ride-hailing as an additional mode of travel. 

Future research directions include (1) how to schedule activity-travel requests at 

extremely large scales to meet temporally and spatially distributed traveler demand, (2) 

how to seamlessly integrate distributed computing, car platooning, and resource-oriented 

pricing and scheduling for better coordinated use of vehicles and road infrastructure 

resources. We hope this research line could offer a set of novel techniques on holistic 

behaviorally oriented traveler mobility optimization under the new environment of shared 

self-driving car networks. 
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CHAPTER 7 

CONCLUSION 

 

In Chapter 1, we introduce the pickup and delivery problem and extensions of this 

problem which have been studied in this dissertation. The objectives of this dissertation 

as well as overview of our proposed methods have been extensively discussed in this 

chapter.  

Chapter 2 provides a comprehensive literature review for the pickup and delivery 

problem. In this chapter, we focus on the applications of this problem, as well as solution 

methods used to solve this optimization problem. In this chapter, we aim to emphasize 

that previous research has made a number of important contributions to the challenging 

pickup and delivery problem along different formulation or solution approaches. 

However, there are a number of modeling and algorithmic challenges for a large-scale 

deployment of a vehicle routing and scheduling algorithm, especially for regional 

networks with various road capacity and traffic delay constraints on freeway bottlenecks 

and signal timing on urban streets.  

Chapter 3 first proposes a new time-discretized multi-commodity network flow model 

for the VRPPDTW based on the integration of vehicles’ carrying states within space-time 

transportation networks, so as to allow a joint optimization of passenger-to-vehicle 

assignment and turn-by-turn routing in congested transportation networks. Our three-

dimensional state-space-time network construct is able to comprehensively enumerate 

possible transportation states at any given time along vehicle space-time paths, and further 
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allows a forward dynamic programming solution algorithm to solve the single vehicle 

VRPPDTW problem. By utilizing a Lagrangian relaxation approach, the primal multi-

vehicle routing problem is decomposed to a sequence of single vehicle routing sub-

problems, with Lagrangian multipliers for individual passengers’ requests being updated 

by sub-gradient-based algorithms. We further discuss a number of search space reduction 

strategies and test our algorithms, implemented through a specialized program in C++, on 

medium-scale and large-scale transportation networks, namely the Chicago sketch and 

Phoenix regional networks. 

By reformulating the PDPTW through space-time networks to consider time window 

requirements, our proposed approach can not only solve the vehicle routing and 

scheduling problem directly in large-scale transportation networks with time-dependent 

congestion, but also avoid the complex procedure to eliminate any sub-tour possibly 

existing in the optimal solution for many existing formulations. By further introducing 

virtual vehicle constructs, the proposed approach can fully incorporate the full set of 

interacting factors between passenger demand and limited vehicle capacity in this model 

to derive feasible solutions and practically important system-wide cost-benefit estimates 

for each request through a sub-gradient-based pricing method. This joint optimization and 

pricing procedure can assist transportation network service providers to quantify the 

operating costs of spatially and temporally distributed trip requests. 

On a large-scale regional network, the capacity impact of optimized passenger-to-

vehicle matching results can be further evaluated in mesoscopic dynamic traffic 

simulation packages such as an open-source Dynamic Traffic Assignment-Light weight 
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(DTALite) (Zhou and Taylor, 2014). Future work will concentrate on the development of 

the model for the following cases: (𝑖) Passengers may desire different ride-sharing 

capacities (i.e. a passenger may desire to share his ride with up to only one passenger, 

whereas the other passenger may have no restriction about the number of passengers 

which share their ride with him). (𝑖𝑖) A passenger may desire to be or not to be served by 

a particular vehicle. (𝑖𝑖𝑖) A transportation request could contain a group of passengers 

who have the same origin, while they may or may not have the same destination. 

Alternatively, a transportation request could contain a group of passengers who have the 

same destination, while they may or may not have the same origin. In this case, we are 

interested in adding dummy nodes corresponding to passengers’ origins and destinations 

more wisely and efficiently. In addition, in our future research, a comprehensive branch-

and-bound algorithm should be included in our solution framework to fully address the 

complexity of assigning different vehicles to multiple passengers.    

In Chapter 3, we focus on the pickup and delivery problem with time windows and 

synchronized transfers which is a challenging version of the vehicle routing problem. In 

order to tackle this tough problem, we add time dimension to physical transportation 

networks to not only track the location of vehicles at any time, but also consider 

passengers’ preferred pickup and delivery time windows, synchronization time points, 

and precedence constraints to the problem. We also add another dimension so called 

“cumulative service state” to the constructed space-time graph to track the service status 

of requests at any time. The constructed hyper-network not only handles real-life 

transportation networks with time-dependent and load-dependent costs, but also is well-
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suited for connecting microscopic cumulative service states to macroscopic cumulative 

flow count diagrams. We develop a continuous time approximation approach using 

cumulative arrival, departure, and on-board count diagrams to effectively assess the 

dynamic system performance and guide the search. In order to handle a large set of 

passengers, we develop the traditional cluster-first, route-second approach. We break the 

large-sized primary problem into a number of small-sized sub-problems in which the 

most compatible origin-destination pairs are clustered together. Then, we reach 

optimality (more precisely, pseudo-optimality due to the time discretization) for local 

clusters derived from a large set of passengers. Finally, we find the optimal chain of work 

piece which can be done by vehicles to improve the vehicles’ efficiency. We perform the 

extensive experiments over the standard instances applied by Ropke and Pisinger (2006) 

and real-world large scale data set proposed by Cainiao network with about 10,000 

delivery orders, to examine the effectiveness and computational efficiency of our 

developed algorithm.  

Future work may concentrate on building a computational engine to establish a wrapper 

for the dynamic programming algorithms with the inputs of a transportation network and 

possible state transition matrixes, and the output of various vehicle-path assignment and 

routing solutions. Another interesting extension of our state-space-time framework can be 

building a more practically useful and robust model with some levels of travelers/carriers’ 

behavior in better passengers’ and vehicles’ clustering, as oppose to simple and efficient 

trade-off between time and distance. 



 

204 
 

Accessibility is the ease of obtaining desired destinations, activities, or services in an 

environment.  A common accessibility measure in basic and applied transportation 

science is the space-time prism (STP) and the network-time prisms (NTPs): these are the 

envelopes of all possible paths between two locations and times in planar space and 

transportation networks, respectively. STPs and NTPs focus on time as the scarce 

resource limiting accessibility. However, other resource constraints can constrain space-

time accessibility, such as limits or “budgets” for energy, emissions, or monetary 

expenses. Chapter 4 extends NTPs to include other resource constraints in addition to 

time. Network-based resource hyper-prisms (RHPs) incorporate other resource 

constraints into NTP, capturing the trade-offs between time and other resources in 

determining space-time accessibility. We conceptualize RHPs as a constrained 

optimization problem and develop a forward and backward resource-dependent time-

dependent dynamic programming to determine the boundaries of a RHP given time and 

other resource budgets. We illustrate our approach using the Chicago sketch network 

(with 933 nodes and 2,967 links) for a use case of an individual with a gasoline passenger 

car with limited carbon emission budget and using parts of Washington, D.C. and 

Baltimore networks (with 12,145 nodes and 30,697 links) for a use case of an individual 

with an electric vehicle (EV) to study regional accessibility with charging stations along 

highways or in towns to show how a RHP can measure the accessibility impacts of new 

EV charging stations. The current work could be extended by considering different types 

of resources, particularly for the transportation mode, by which we can evaluate the effect 

of multi-modal transportation options on the accessibility of the travelers. 
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It is vital to have integrated model systems that fully capture the interactions between 

supply and demand dimensions of travel to model the implications of advanced 

technologies and mobility services on traveler behavior. In Chapter 6, we introduce a new 

state dimension (called the ‘under-service trip request’ state) to the vehicle scheduling 

model in order to track the execution status of the trip requests at any time and 

transportation node. We also construct activity-travel graphs for passengers to detect the 

execution of the passenger’s activities. We further propose a time-discretized multi-

commodity network flow model that not only guarantees that each activity request is 

systematically evaluated within its time window (depending on whether it is mandatory 

or optional), but also ensures that the road as well as vehicle capacity constraints are not 

violated. By introducing a mapping constraint between ‘passenger’s pickup/drop-off at an 

activity location’ and ‘under-service trip requests state in a vehicle network’ as linking 

constraints, passenger and vehicle networks can be seamlessly connected together. By 

dualizing this set of trip request constraints and the road capacity constraints into the 

objective function and utilizing a Lagrangian relaxation approach, the main problem is 

decomposed to two sub-problems which can be solved in parallel through 

computationally efficient algorithms for real-world transportation networks. Based on a 

standard optimization solver and C++, we developed an open-source activity-based 

vehicle routing engine, namely Agent+, using real-world Phoenix subarea network data 

sets and trip requests generated from activity-based modelling system OpenAMOS. 

Despite all advancements in the real-time traffic control, DTA modelers still seek for 

a robust framework to extend their existing model (1) from single-OD demand to trip 
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chaining, and (2) from driving your own mode to shared-use vehicle systems. In this 

research, it is expected that with the help of the proposed algorithm, it would be possible 

to provide a much richer set of information to ABMs, thus enabling ABMs to include 

ride-sharing/ride-hailing as an additional mode of travel. 

Future research directions include (1) how to schedule activity-travel requests at 

extremely large scales to meet temporally and spatially distributed traveler demand, (2) 

how to seamlessly integrate distributed computing, car platooning, and resource-oriented 

pricing and scheduling for better coordinated use of vehicles and road infrastructure 

resources. We hope this research line could offer a set of novel techniques on holistic 

behaviorally oriented traveler mobility optimization under the new environment of shared 

self-driving car networks. 
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APPENDIX A 

DESCRIPTION OF THE PDPTW IN THE OD NETWORK 
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Cordeau (2006) formulated the PDPTW on a network that is built based on demand 

request nodes and the links are defined as direct connections between pickup and delivery 

nodes (without explicitly considering transportation links or paths). For a systematic 

comparison, the following notation is adapted from Cordeau (2006).  

Table A.1  

Sets, indices and parameters used in Cordeau (2006) for the PDPTW. 

Symbol Definition 

𝒏 Number of passengers 

𝑷 Set of passengers’ pickup nodes. 𝑃 = {1, … , 𝑛} 

𝑫 Set of passengers’ delivery nodes. 𝐷 = {𝑛 + 1, … , 2𝑛} 

0 Node representative of origin depot 

𝟐𝒏 + 𝟏 Node representative of destination depot 

𝑵 Set of passengers’ pickup and drop-off nodes and vehicles’ depots. 𝑁 =
{𝑃, 𝐷, {0, 2𝑛 + 1}} 

𝑨 Set of arcs 

𝑮 Directed graph 𝐺 = (𝑁, 𝐴) 

𝒊 Passenger 𝑖’s pickup node 

𝒏 + 𝒊 Passenger 𝑖’s delivery node 

𝒒𝒊 Load at node 𝑖, (𝑖 ∈ 𝑁) 

𝒅𝒊 Service duration at node 𝑖, (𝑖 ∈ 𝑁) 

𝒆𝒊 Earliest time at which service is allowed to start at node 𝑖, (𝑖 ∈ 𝑁) 

𝒍𝒊 Latest time at which service is allowed to start at node 𝑖, (𝑖 ∈ 𝑁) 

(𝒊, 𝒋) Index of arc between adjacent nodes 𝑖 and 𝑗 

𝒄𝒊𝒋 Routing cost of arc (𝑖, 𝑗) 

𝒕𝒊𝒋 Travel time of arc (𝑖, 𝑗) 

𝑽 Set of vehicles 

𝒗 Vehicle index 

𝑸𝒗 Capacity of vehicle 𝑣 

𝑻𝒗 Maximal duration of vehicle 𝑣’s route 

𝑳 Maximum ride time of a passenger 

 

Note that 𝑞0 = 𝑞2𝑛+1 = 0, 𝑞𝑖 ≥ 0 for (𝑖 = 1, … , 𝑛), and 𝑞𝑖 = −𝑞𝑖−𝑛 (𝑖 = 𝑛 +

1, … , 2𝑛), and service duration 𝑑𝑖 ≥ 0 and 𝑑0 = 𝑑2𝑛+1 = 0. Time window [𝑒𝑖 , 𝑙𝑖] is also 

specified either for the pickup node or for the drop-off node of a request, but not for both. 

The arc set is also defined as 𝐴 = {(𝑖, 𝑗): (𝑖 = 0, 𝑗 ∈ 𝑃) 𝑜𝑟 (𝑖 ∈ 𝑃 ∪ 𝐷, 𝑗 ∈ 𝑃 ∪ 𝐷, 𝑖 ≠

𝑗, 𝑖 ≠ 𝑛 + 𝑗) 𝑜𝑟 (𝑖 ∈ 𝐷, 𝑗 = 2𝑛 + 1)}. The model uses three-index variables 𝑥𝑖𝑗
𝑣  being 

equal to 1 if and only if vehicle 𝑣 travels from node 𝑖 to node 𝑗. Let 𝐵𝑖
𝑣 be the time at 
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which vehicle 𝑣 begins servicing node 𝑖 and 𝑄𝑖
𝑣 be the load of vehicle 𝑣 upon departing 

from node 𝑖. Finally, for each passenger 𝑖, let 𝐿𝑖
𝑣 be the ride time of passenger 𝑖 on 

vehicle 𝑣. The PDPTW can be formulated as follows: 

𝑀𝑖𝑛 ∑ ∑ ∑ 𝑐𝑖𝑗
𝑣 𝑥𝑖𝑗

𝑣
𝑗∈𝑁𝑖∈𝑁𝑣∈𝑉         (A.1) 

s.t.    

∑ ∑ 𝑥𝑖𝑗
𝑣 = 1𝑗∈𝑁𝑣∈𝑉   ∀𝑖 ∈ 𝑃       (A.2)                                                                                                                                       

∑ 𝑥𝑖𝑗
𝑣 − ∑ 𝑥𝑛+𝑖,𝑗

𝑣
𝑗∈𝑁 = 0𝑗∈𝑁   ∀𝑖 ∈ 𝑃, 𝑣 ∈ 𝑉     (A.3)                                                                                                                  

∑ 𝑥0𝑗
𝑣

𝑗∈𝑁 = 1  ∀𝑣 ∈ 𝑉       (A.4)                                                                                                                                        

∑ 𝑥𝑗𝑖
𝑣 − ∑ 𝑥𝑖𝑗

𝑣
𝑗∈𝑁 = 0𝑗∈𝑁   ∀𝑖 ∈ 𝑃 ∪ 𝐷, 𝑣 ∈ 𝑉    (A.5)                                                                                                                  

∑ 𝑥𝑖,2𝑛+1
𝑣 = 1𝑖∈𝑁   ∀𝑣 ∈ 𝑉      (A.6)                                                                                                                                                

𝑥𝑖𝑗
𝑣 (𝐵𝑖

𝑣 + 𝑑𝑖 + 𝑡𝑖𝑗) ≤ 𝐵𝑗
𝑣  ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑣 ∈ 𝑉    (A.7)                                                                                                          

𝑥𝑖𝑗
𝑣 (𝑄𝑖

𝑣 + 𝑞𝑗) ≤ 𝑄𝑗
𝑣  ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑣 ∈ 𝑉     (A.8)                                                                                                                   

𝐿𝑖
𝑣 = 𝐵𝑛+𝑖

𝑣 − (𝐵𝑖
𝑣 + 𝑑𝑖)  ∀𝑖 ∈ 𝑃, 𝑣 ∈ 𝑉     (A.9)                                                                                                                            

𝐵2𝑛+1
𝑣 − 𝐵0

𝑣 ≤ 𝑇𝑣  ∀𝑣 ∈ 𝑉      (A.10)                                                                                                                                             

𝑒𝑖 ≤ 𝐵𝑖
𝑣 ≤ 𝑙𝑖  ∀𝑖 ∈ 𝑁, 𝑣 ∈ 𝑉       (A.11)                                                                                                                                           

𝑡𝑖,𝑛+𝑖 ≤ 𝐿𝑖
𝑣 ≤ 𝐿  ∀𝑖 ∈ 𝑃, 𝑣 ∈ 𝑉      (A.12)                                                                                                                                    

𝑚𝑎𝑥{0, 𝑞𝑖} ≤ 𝑄𝑖
𝑣 ≤ 𝑚𝑖𝑛{𝑄𝑣, 𝑄𝑣 + 𝑞𝑖}  ∀𝑖 ∈ 𝑁, 𝑣 ∈ 𝑉   (A.13)                                                                                                 

𝑥𝑖𝑗
𝑣 ∈ {0,1}  ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑣 ∈ 𝑉      (A.14)                                                                                                                                      

The objective function (A.1) minimizes the total routing cost. (A.2) guarantees that 

each passenger is definitely picked up. (A.2) and (A.3) ensure that each passenger’s 

origin and destination are visited exactly once by the same vehicle. (A.4) expresses that 
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each vehicle 𝑣 starts its route from the origin depot. (A.5) ensures the flow balance on 

each node. (A.6) expresses that each vehicle 𝑣 ends its route at the destination depot. 

(A.7) and (A.8) ensure the validity of the time and load variables. (A.9) defines each 

passenger’s ride time. (A.10) to (A.13) impose maximal duration of each route, time 

windows, the ride time of each passenger, and capacity constraints, respectively. Since 

the non-negativity of the ride time of each passenger guarantees that node 𝑖 is visited 

before node 𝑛 + 𝑖, (A.12) also functions as precedence constraints.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

233 
 

APPENDIX B 

MIXED INTEGER-PROGRAMMING MODEL FOR THE PDPT PROPOSED BY 

RAIS ET AL. (2014) 
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Rais et al. (2014) formulated the PDPT on a network that is built based on demand 

request nodes. The links are defined as direct connections between pickup and delivery 

nodes (without explicitly considering transportation links or paths). For a systematic 

comparison, the following notation is adapted from Rais et al. (2014). Moreover, this is 

the modified version of Rais et al. (2014) in which constraints (B.16) and (B.17) have 

been modified. 

Table B.1  

Sets, indices, parameters, and variables used by Rais et al. (2014) for the PDPT. 

Symbol Definition 

𝐺 Directed graph 𝐺 = (𝑁, 𝐴) having node-set 𝑁 and arc-set 𝐴 

𝑁 Set of nodes 

𝐴 Set of arcs 

𝑖𝑗 Arc from node 𝑖 to node 𝑗; 𝑖, 𝑗 ∈ 𝑁 and 𝑖𝑗 ∈ 𝐴 

𝐾 Set of vehicles 

𝑘 Vehicle index; 𝑘 = 1, … , |𝐾| 
𝑢𝑘 Vehicle 𝑘’s load-carrying capacity 

𝑜(𝑘), 𝑜′(𝑘) Vehicle 𝑘’s initial depot and final depot, respectively; 𝑜(𝑘), 𝑜′(𝑘) ∈ 𝑁 

𝑅 Set of passenger pickup-and-delivery requests 

𝑟 Request index; 𝑟 = 1, … , |𝑅| 
𝑞𝑟 Quantity of request 𝑟 

𝑝(𝑟) Pickup node associated with passenger request 𝑟; 𝑝(𝑟) ∈ 𝑁 

𝑑(𝑟) Delivery node associated with passenger request 𝑟; 𝑑(𝑟) ∈ 𝑁 

𝑇 Set of transshipment nodes; 𝑇 ⊆ 𝑁 

𝑐𝑖𝑗
𝑘  Unit cost of transportation from node 𝑖 to 𝑗 using vehicle 𝑘 

𝜏𝑖𝑗
𝑘  The time required by vehicle 𝑘 to go from node 𝑖 to node 𝑗  

[𝑎𝑝(𝑟), 𝑏𝑝(𝑟)] Request 𝑟’s pickup time window 

[𝑎𝑑(𝑟), 𝑏𝑑(𝑟)] Request 𝑟’s delivery time window 

𝑥𝑖𝑗
𝑘  = 1 if vehicle 𝑘 uses arc 𝑖𝑗, and = 0 otherwise 

𝑦𝑖𝑗
𝑘𝑟  = 1 if vehicle 𝑘 carries request 𝑟 on arc 𝑖𝑗, and = 0 otherwise 

𝑧𝑖𝑗
𝑘  = 1 if node 𝑖 precedes node 𝑗 (not necessarily immediately) in the route of vehicle 𝑘, and 

= 0 otherwise 

𝑠𝑗𝑟
𝑘𝑙  = 1 if request 𝑟 is transferred from vehicle 𝑘 to vehicle 𝑙 (𝑙 ≠ 𝑘) at node 𝑗, and = 0 

otherwise 

𝑡𝑗
𝑘, 𝑡𝑗̅

𝑘 The arrival and departure times of vehicle 𝑘 at node 𝑗, respectively. For each arc 𝑖𝑗 ∈ 𝐴 

such that 𝑥𝑖𝑗
𝑘 = 1, we must have 𝑡𝑗

𝑘 ≥ 𝑡𝑖̅
𝑘 + 𝜏𝑖𝑗

𝑘 , as well as 𝑡𝑗̅
𝑘 ≥ 𝑡𝑗

𝑘  

 

Then, the PDPT with time windows is formulated as follows: 

𝑀𝑖𝑛 ∑ ∑ 𝑐𝑖𝑗
𝑘 𝑥𝑖𝑗

𝑘
𝑖𝑗∈𝐴𝑘∈𝐾  (B.1) 
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subject to: 

∑ 𝑥𝑜(𝑘)𝑗
𝑘

𝑗:𝑜(𝑘)𝑗∈𝐴 ≤ 1 ∀𝑘 ∈ 𝐾 (B.2) 

∑ 𝑥𝑜(𝑘)𝑗
𝑘

𝑗:𝑜(𝑘)𝑗∈𝐴 = ∑ 𝑥𝑗𝑜′(𝑘)
𝑘

𝑗:𝑗𝑜′(𝑘)∈𝐴  ∀𝑘 ∈ 𝐾 (B.3) 

∑ 𝑥𝑖𝑗
𝑘

𝑗:𝑖𝑗∈𝐴 − ∑ 𝑥𝑗𝑖
𝑘

𝑗:𝑗𝑖∈𝐴 = 0 ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑁\{𝑜(𝑘), 𝑜′(𝑘)} (B.4) 

∑ ∑ 𝑦𝑝(𝑟)𝑗
𝑘𝑟

𝑗:𝑝(𝑟)𝑗∈𝐴𝑘∈𝐾 = 1 ∀𝑟 ∈ 𝑅 (B.5) 

∑ ∑ 𝑦𝑗𝑑(𝑟)
𝑘𝑟

𝑗:𝑗𝑑(𝑟)∈𝐴𝑘∈𝐾 = 1 ∀𝑟 ∈ 𝑅 (B.6) 

∑ ∑ 𝑦𝑖𝑗
𝑘𝑟

𝑗:𝑖𝑗∈𝐴𝑘∈𝐾 − ∑ ∑ 𝑦𝑗𝑖
𝑘𝑟

𝑗:𝑗𝑖∈𝐴𝑘∈𝐾 = 0 ∀𝑟 ∈ 𝑅, ∀𝑖 ∈ 𝑇 (B.7) 

∑ 𝑦𝑖𝑗
𝑘𝑟

𝑗:𝑖𝑗∈𝐴 − ∑ 𝑦𝑗𝑖
𝑘𝑟

𝑗:𝑗𝑖∈𝐴 = 0 ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅, ∀𝑖 ∈ 𝑁\𝑇 (B.8) 

𝑦𝑖𝑗
𝑘𝑟 ≤ 𝑥𝑖𝑗

𝑘  ∀𝑖𝑗 ∈ 𝐴, ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅 (B.9) 

∑ 𝑞𝑟𝑦𝑖𝑗
𝑘𝑟

𝑟∈𝑅 ≤ 𝑢𝑘𝑥𝑖𝑗
𝑘  ∀𝑖𝑗 ∈ 𝐴, ∀𝑘 ∈ 𝐾 (B.10) 

𝑥𝑖𝑗
𝑘 ≤ 𝑧𝑖𝑗

𝑘  ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝐾, 𝑖 ≠ 𝑜(𝑘), 𝑗 ≠ 𝑜′(𝑘) (B.11) 

𝑧𝑖𝑗
𝑘 + 𝑧𝑗𝑖

𝑘 = 1 ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝐾, 𝑖 ≠ 𝑜(𝑘), 𝑗 ≠ 𝑜′(𝑘) (B.12) 

𝑧𝑖𝑗
𝑘 + 𝑧𝑗𝑙

𝑘 + 𝑧𝑙𝑖
𝑘 ≤ 2 ∀𝑖, 𝑗, 𝑙 ∈ 𝑁, ∀𝑘 ∈ 𝐾, 𝑖, 𝑗 ≠ 𝑜(𝑘), 𝑙 ≠ 𝑜′(𝑘) (B.13) 

𝑡𝑖̅
𝑘 + 𝜏𝑖𝑗

𝑘 − 𝑡𝑗
𝑘 ≤ 𝑀(1 − 𝑥𝑖𝑗

𝑘 ) ∀𝑖𝑗 ∈ 𝐴, ∀𝑘 ∈ 𝐾 (B.14) 

𝑡𝑗
𝑘 ≤ 𝑡𝑗̅

𝑘 ∀𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝐾 (B.15) 

∑ 𝑎𝑝(𝑟)𝑦𝑖𝑝(𝑟)
𝑘𝑟

𝑖:𝑖𝑗∈𝐴 ≤ 𝑡𝑝(𝑟)
𝑘 , 𝑡𝑝̅(𝑟)

𝑘 ≤ ∑ 𝑏𝑝(𝑟)𝑦𝑝(𝑟)𝑗
𝑘𝑟

𝑗:𝑖𝑗∈𝐴  ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅 (B.16) 

∑ 𝑎𝑎𝑑(𝑟)
𝑦𝑖𝑎𝑑(𝑟)

𝑘𝑟
𝑖:𝑖𝑗∈𝐴 ≤ 𝑡𝑑(𝑟)

𝑘 , 𝑡𝑑̅(𝑟)
𝑘 ≤ ∑ 𝑏𝑑(𝑟)𝑦𝑑(𝑟)𝑗

𝑘𝑟
𝑗:𝑖𝑗∈𝐴  ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅 (B.17) 

 ∑ 𝑦𝑗𝑖
𝑘𝑟

𝑗:𝑗𝑖∈𝐴 + ∑ 𝑦𝑖𝑗
𝑙𝑟

𝑗:𝑖𝑗∈𝐴 ≤ 𝑠𝑗𝑟
𝑘𝑙 + 1 ∀𝑟 ∈ 𝑅, ∀𝑖 ∈ 𝑇, ∀𝑘, 𝑙 ∈ 𝐾, 𝑘 ≠ 𝑙 (B.18) 

𝑡𝑗
𝑘 − 𝑡𝑗̅

𝑙 ≤ 𝑀(1 − 𝑠𝑗𝑟
𝑘𝑙) ∀𝑟 ∈ 𝑅, ∀𝑗 ∈ 𝑇, ∀𝑘, 𝑙 ∈ 𝐾, 𝑘 ≠ 𝑙 (B.19) 

𝑥𝑖𝑗
𝑘 ∈ {0,1} ∀𝑖𝑗 ∈ 𝐴, ∀𝑘 ∈ 𝐾 (B.20) 
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𝑦𝑖𝑗
𝑘𝑟 ∈ {0,1} ∀𝑖𝑗 ∈ 𝐴, ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅 (B.21) 

The objective of the problem is to find a set of minimum-cost vehicle routes for 

meeting all passenger requests. Constraint (B.2) ensures that each vehicle starts at most 

one route from its origin depot. Not all of the available vehicles may have to be used for 

meeting the passenger requests. Constraint (B.3) guarantees the same vehicle ends the 

route at its final depot. Flow conservation of the vehicles through the nodes in the 

network must be maintained (Constraint B.4). All pickups and deliveries must be 

enforced (constraints (B.5) and (B.6)). Constraint (B.7) states that the request flow 

conservation must be maintained at the transshipment nodes where the requests are 

allowed to switch from one vehicle to another. The request flow conservation is 

maintained at the non-transshipment nodes by constraint (B.8). Therefore, any vehicle 

that picks up a request must also drop off the same request. Constraint (B.9) highlights 

that a vehicle flow on an arc must exist if there is some request flow in the same vehicle 

on the same arc. The capacity of each vehicle on each arc of the network is assured by 

constraint (B.10). The sub-tours in the solution are eliminated by constraints (B.11), 

(B.12), and (B.13). Constraint (B.14) states that if vehicle flow 𝑘 on arc 𝑖𝑗 exists, we 

must have 𝑡𝑗
𝑘 ≥ 𝑡𝑖̅

𝑘 + 𝜏𝑖𝑗
𝑘 , as well as 𝑡𝑖̅

𝑘 ≥ 𝑡𝑗
𝑘. Constraints (B.16) and (B.17) ensure that all 

pickup and delivery time windows are imposed, respectively. The precedence and 

synchronization of the transport load transfers between vehicles at the transshipment 

nodes are managed by constraints (B.18) and (B.19). Constraint (B.20) states that 

variables 𝑥𝑖𝑗
𝑘  and 𝑦𝑖𝑗

𝑘𝑟are binary. We provide the model proposed by Rais et al. (2014) to 

show our motives for defining our model on hyper-networks.  



 

237 
 

(1) The Rais et al. (2014) mixed integer programming model solves the problem on 

passengers’ origin/destination-based network. Their model does not work with 

transportation networks directly in which travel time may vary over the time of the day or 

with the load of the vehicle (e.g. HOV or HOT lanes). 

(2) By the serial structure of our proposed hyper-network, we can tackle the 

symmetry issue, which has been comprehensively explained at the end of Section 4.6. 

(3) We do not have non-linear constraints related to the validity of the time and load 

variables such as the ones presented in the Rais et al. (2014) mixed integer programming 

model. 

(4) We convert our problem to a time-dependent state-dependent least cost path 

problem which can be solved by computationally efficient algorithms. 

(5) Apart from the first phase where the algorithm clusters OD pairs and uses a 

heuristic for that, the other phases provide a near- optimal solution: the second phase of 

our algorithm provides a pseudo-optimal solution (pseudo-optimal due to the time 

discretization) and the last phase provides an optimal chain of work pieces that can be 

performed by each real vehicle. 

(6) Our model is relatively flexible to add any further constraints related to the 

passengers’ preferences (e.g. vehicle type, particular departure/arrival time windows, ride 

time, etc.) and also vehicles’ restrictions (e.g. drivers’ work shift, vehicles capacity, etc.). 
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APPENDIX C 

ARAMETERS TUNNG FOR CAINIAO NETWORK 
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We have taken our group 31 as an example of a group of tasks to explain how we 

have adjusted these parameters for a group of tasks by the aid of our evaluation function. 

In these experiments, we have defined 5 different scenarios as follows:  

I. Set 𝛽𝐴
𝑃&𝐷 = 2, 𝛽𝐵

𝑃&𝐷  =  1 and define some sub-scenarios to adjust the values of 

𝛽𝐴
𝑃 and 𝛽𝐵

𝑃; 

II. Set 𝛽𝐴
𝑃&𝐷 = 2, 𝛽𝐵

𝑃&𝐷 =  0.5 and define some sub-scenarios to adjust the values of 

𝛽𝐴
𝑃 and 𝛽𝐵

𝑃; 

III. Set 𝛽𝐴
𝑃&𝐷 = 2, 𝛽𝐵

𝑃&𝐷 = 1.5 and define some sub-scenarios to adjust the values of 

𝛽𝐴
𝑃 and 𝛽𝐵

𝑃; 

IV. Set 𝛽𝐴
𝑃&𝐷 = 2, 𝛽𝐵

𝑃&𝐷 = 2 and define some sub-scenarios to adjust the values of 𝛽𝐴
𝑃 

and 𝛽𝐵
𝑃; 

V. Set 𝛽𝐴
𝑃&𝐷 = 2, 𝛽𝐵

𝑃&𝐷 = 2.5 and define some sub-scenarios to adjust the values of 

𝛽𝐴
𝑃 and 𝛽𝐵

𝑃; 

Note that in Table C1, the demand completion time is the time that the last vehicle 

finishes its task. Fig. C1 illustrates the values of the objective function for different 

scenario-sub scenarios to help us choose the best parameter settings. Scenario I. sub-

scenario III has the smallest objective function among other scenarios. Therefore, we set 

the parameters of group 31 based on the parameters used in scenario I. sub-scenario III. 
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Fig. C.1. A comparison between the values of the objective function for different scenarios-sub scenarios for 

group 31. 

 

In Fig. C.2, we intend to show the cumulative arrival/departure and on board 

diagrams for tasks in case scenario I, sub-scenarios I to VIII. In this figure, the graphs 

indicated by black color are the cumulative arrival tasks to the system, the graphs 

indicated by red color are the cumulative on board tasks (pickup only), and the graphs 

indicated by blue color are the cumulative departure tasks from the system. Fig. C.2(a) to 

C.2(d) are the cumulative flow graphs for scenario I, sub-scenario I to IV, while C.2(e) to 

C.2(h) are the cumulative flow graphs for scenario I, sub-scenario V to VIII. There is no 

incomplete task in sub-scenarios I to IV, while a number of tasks have remained 

incomplete in sub-scenarios V to VIII. 

 

 

 

0

2000

4000

6000

8000

10000

12000

I
II

III

IV

V

VI

VII

VIII

I

II

III

IV

V

VI

I
II

III
IV

V

VI

I

II

III

IV

V

VI

I

II

III

IV

V
VI

I

II

III

IV

V

Sub-scenarios

Best Solution

Scenarios



 

241 
 

Table C.1  

Parameter setting for group 31. 

Scenario 

No. 

Sub-

scenari

o No. 
𝛽𝐴

𝑃&𝐷 𝛽𝐵
𝑃&𝐷 𝛽𝐴

𝑃 𝛽𝐵
𝑃 

Performed tasks Total 

travel 

time 

(min) 

Demand 

completion 

time (min) 

Total # of 

vehicles 

needed 

objective 

function 

Type “A” Type “B” 

Picked 

up only 

Picked up & 

delivered 

Picked 

up only 

Picked up & 

delivered 

I 

I 2 1 0.5 2 0 44 0 18 3769 671 8 6840 

II 2 1 1 2 0 44 0 18 3443 617 8 6460 

III 2 1 1.5 2 0 44 0 18 3153 612 8 6165 

IV 2 1 2 2 0 44 0 18 3586 685 8 6671 

V 2 1 2.5 2 0 42 3 15 2968 659 7 6977 

VI 2 1 3 2 3 41 5 12 2924 659 7 7303 

VII 2 1 3.5 2 5 39 6 12 3061 698 8 8009 

VIII 2 1 4 2 7 37 7 11 3505 571 9 9156 

II 

I 2 0.5 0.5 2 0 44 0 16 3769 775 8 7544 

II 2 0.5 1 2 0 44 0 16 3706 786 8 7492 

III 2 0.5 1.5 2 4 40 2 16 3797 896 8 8153 

IV 2 0.5 2 2 4 40 2 15 3896 964 8 8620 

V 2 0.5 2.5 2 2 42 6 11 3909 978 8 8867 

VI 2 0.5 3 2 6 38 10 8 4126 1236 9 10702 

III 

I 2 1.5 0.5 2 1 42 2 16 3669 617 8 7576 

II 2 1.5 1 2 1 43 2 16 3756 764 8 7410 

III 2 1.5 1.5 2 4 40 2 16 3797 964 8 8221 

IV 2 1.5 2 2 4 40 2 16 3443 906 8 7809 

V 2 1.5 2.5 2 6 38 2 16 3606 999 9 8745 

VI 2 1.5 3 2 9 35 4 14 4236 1369 9 10615 

IV 

I 2 2 0.5 2 1 43 0 18 3569 689 8 6848 

II 2 2 1 2 0 44 1 17 3797 764 8 7111 

III 2 2 1.5 2 4 40 2 16 3909 964 8 8333 

IV 2 2 2 2 4 40 4 14 3896 1096 8 8752 

V 2 2 2.5 2 6 38 6 12 3960 978 9 9678 

VI 2 2 3 2 9 35 6 12 4038 1236 9 10584 

V 

I 2 2.5 0.5 2 4 38 0 18 3614 697 8 8271 

II 2 2.5 1 2 4 38 0 18 3709 764 8 8433 

III 2 2.5 1.5 2 6 38 0 18 3666 938 8 8144 

IV 2 2.5 2 2 6 38 0 18 3705 869 8 8114 

V 2 2.5 2.5 2 6 38 2 16 3976 986 9 9102 

VI 2 2.5 3 2 9 35 4 14 4236 1345 9 10591 
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Fig. C.2. Cumulative arrival/departure as well as on board diagrams for scenario I (a) sub-scenario I, (b) 

sub-scenario II, (c) sub-scenario III, (d) sub-scenario IV, (e) sub-scenario V, (f) sub-scenario VI, (g) sub-

scenario VII, and (h) sub-scenario VIII. 
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APPENDIX D 

SMALL-SCALE SIX-NODE AND MIDIUM-SCALE SIOUX FALLS 

TRANSPORTATION NETWORK 
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In our experiments for the six-node transportation network and Sioux Fall network, 

the free-flow speed for all transportation links is assumed to be 60 mph. According to 

Fig. 5.2, the emission rate at 60 mph speed is roughly 0.3 per hour or 0.005 per minute. 

That is why 0.005 is assumed as the unit of resource in these experiments. Consider a 

physical transportation network consisting of six nodes presented in Fig. D.1. Each link 

in this network is associated with time-dependent travel time 𝑇𝑇(𝑖, 𝑗, 𝑡). Without loss of 

generality, the number written on each link denotes the time-invariant travel time 𝑇𝑇(𝑖, 𝑗) 

in terms of minutes. The length of time horizon is assumed to be 3 minutes, and nodes 0 

and 3 are an individual’s origin and destination, respectively.  

3
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5 4

1
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2

2

2

21
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Fig. D.1. A six–node transportation network 

 

In this network, the node sequence of the least cost path from the origin node (node 0) 

to the sink node (we assumed node 6 as the sink node) is 0, 4, 5, 3, 6; the time sequence 

is 0, 1, 2, 3, 4; the sequence of emission level index is 0.000, 0.005, 0.010, 0.015, 1.00; 

and the label sequence is 0.00, 0.005, 0.010, 0.015, and 0.015. The resource hyper-prism 

corresponding this example is presented in Table D.1. 
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Table D.1 

Resource hyper–prism for an individual whose origin and destination are nodes 0 and 3, respectively. 

Vertex No. Node No. Time stamp Resource level 
Summation of forward and backward 

labels 

100 0 0 0.015 0.015 

300 4 1 0.015 0.015 

399 5 2 0.015 0.015 

195 3 3 0.015 0.015 

404 6 4 1.000 0.015 

Sioux Falls network includes 24 nodes and 76 links illustrated in Fig. D.2. Similar to 

the six-node transportation network, the free-flow speed for all transportation links is 60 

mph, the length of time horizon is 15 minutes, and nodes 9 and 14 are an individual’s 

origin and destination, respectively. We also assume that maximum emission production 

index is 0.065. 

 
Fig. D.2. Sioux Falls network with 24 nodes and 76 links (all links are bi-directional). 

 

Since we are not able to illustrate the four-dimensional RHP, we map it to the three-

dimensional ST prism. The space-time prism considering the individual’s time and 

resource restrictions has been illustrated by Fig. D.3. According to Fig. D.3, some nodes 

in the ST prism are more accessible than others, or in other words, they are reachable in 

longer period of time.   
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Fig. D.3. Space-time prism for Sioux Falls network considering the individual’s time and resource 

constraints. 

 

The CPU time for running our algorithm on this example is 1.4 seconds. In Fig. D.4, 

we specify the nodes that are accessible for both origin and destination respecting the 

individual’s time and resource restrictions. Note that nodes 10 and 13 are accessible in 

terms of time, but not from the resource standpoint.   

Accessible 

Nodes

 
Fig. D.4. Accessible nodes for both origin and destination respecting the individual’s time and resource 

constraints. 


