10,675 research outputs found

    Heuristic branch-and-price for building long term trainee schedules.

    Get PDF
    Branch-and-price is an increasingly important technique for solving large integer programming models. Staff scheduling has been a particularly fruitful area since these problems typically exhibit a decomposable structure. Beside computational efficiency branch-and-price produces two other important advantages in comparison with pure integer programming. Firstly, it often allows for a more accurate problem statement since many constraints which are hard to formulate in the integer program could be easily incorporated in the column generator. Secondly, a branch-and-price algorithm can easily be turned into an effective heuristic when optimality is no major concern. We illustrate these advantages for a medical trainee scheduling problem encountered at Oogziekenhuis Gasthuisberg Leuven and present some computational results together with implementation issues.Advantages; Area; Branch-and-price; Constraint; Efficiency; Heuristic; Integer programming; Model; Models; Problems; Research; Scheduling; Staff scheduling; Structure;

    On the trade-off between staff-decomposed and activity-decomposed column generation for a staff scheduling problem.

    Get PDF
    In this paper a comparison is made between two decomposition techniques to solve a staff scheduling problem with column generation. In the first approach, decomposition takes place on the staff members, whereas in the second approach decomposition takes place on the activities that have to be performed by the staff members. The resulting master LP is respectively a set partitioning problem and a capacitated multi-commodity flow problem. Both approaches have been implemented in a branch-and-price algorithm. We show a trade-off between modeling power and computation times of both techniques.decomposition; staff scheduling; set partitioning; multi-commodity flow; branch-and-price; branch-and-price; programs;

    An Algorithmic approach to shift structure optimization

    Get PDF
    Workforce scheduling in organizations often consists of three major phases: workload prediction, shift generation, and staff rostering. Workload prediction involves using historical behaviour of e.g. customers to predict future demand for work. Shift generation is the process of transforming the determined workload into shifts as accurately as possible. In staff rostering, the generated shifts are assigned to employees. In general the problem and even its subproblems are NP-hard, which makes them highly challenging for organizations to solve. Heuristic optimization methods can be used to solve practical instances within reasonable running times, which in turn can result in e.g. improved revenue, improved service, or more satisfied employees for the organizations. This thesis presents some specific subproblems along with practical solution methods--- Työvoiman aikataulutusprosessi koostuu kolmesta päävaiheesta: työtarpeen ennustaminen, työvuorojen muodostus ja työvuorojen miehitys. Tulevaa työtarvetta ennustetaan pääasiassa menneisyyden asiakaskäytöksen perusteella käyttäen esimerkiksi tilastollisia malleja tai koneoppimiseen perustuvia menetelmiä. Työvuorojen muodostuksessa tehdään työvuororakenne, joka noudattaa ennustettua ja ennalta tiedettyä työtarvetta mahdollisimman tarkasti. Työvuorojen miehityksessä määritetään työvuoroille tekijät. Jokainen vaihe itsessään on haasteellinen ratkaistava. Erityisesti työvuorojen miehitys on yleensä NP-kova ongelma. On kuitenkin mahdollista tuottaa käytännöllisiä ratkaisuja järkevässä ajassa käyttäen heuristisia optimointimenetelmiä. Näin on saavutettavissa mitattavia hyötyjä mm. tuottoon, asiakkaiden palvelutasoon sekä työntekijöiden työtyyväisyyteen. Tässä väitöskirjassa esitellään eräitä työvoiman aikataulutuksen aliongelmia sekä niihin sopivia ratkaisumenetelmiä

    Project network models with discounted cash flows. A guided tour through recent developments.

    Get PDF
    The vast majority of the project scheduling methodologies presented in the literature have been developed with the objective of minimizing the project duration subject to precedence and other constraints. In doing so, the financial aspects of project management are largely ignored. Recent efforts have taken into account discounted cash flow and have focused on the maximalization of the net present value (npv) of the project as the more appropriate objective. In this paper we offer a guided tour through the important recent developments in the expanding field of research on deterministic and stochastic project network models with discounted cash flows. Subsequent to a close examination of the rationale behind the npv objective, we offer a taxonomy of the problems studied in the literature and critically review the major contributions. Proper attention is given to npv maximization models for the unconstrained scheduling problem with known cash flows, optimal and suboptimal scheduling procedures with various types of resource constraints, and the problem of determining both the timing and amount of payments.Scheduling; Models; Model; Discounted cash flow; Cash flow; Project scheduling; Project management; Management; Net present value; Value; Problems; Maximization; Optimal;

    Employee substitutability as a tool to improve the robustness in personnel scheduling

    Get PDF

    A survey of workforce scheduling and routing

    Get PDF
    In the context of workforce scheduling, there are many scenarios in which personnel must carry out tasks at different locations hence requiring some form of transportation. Examples of these type of scenarios include nurses visiting patients at home, technicians carrying out repairs at customers' locations, security guards performing rounds at different premises, etc. We refer to these scenarios as Workforce Scheduling and Routing Problems (WSRP) as they usually involve the scheduling of personnel combined with some form of routing in order to ensure that employees arrive on time to the locations where tasks need to be performed. This kind of problems have been tackled in the literature for a number of years. This paper presents a survey which attempts to identify the common attributes of WSRP scenarios and the solution methods applied when tackling these problems. Our longer term aim is to achieve an in-depth understanding of how to model and solve workforce scheduling and routing problems and this survey represents the first step in this quest

    A survey of workforce scheduling and routing

    Get PDF
    In the context of workforce scheduling, there are many scenarios in which personnel must carry out tasks at different locations hence requiring some form of transportation. Examples of these type of scenarios include nurses visiting patients at home, technicians carrying out repairs at customers' locations, security guards performing rounds at different premises, etc. We refer to these scenarios as Workforce Scheduling and Routing Problems (WSRP) as they usually involve the scheduling of personnel combined with some form of routing in order to ensure that employees arrive on time to the locations where tasks need to be performed. This kind of problems have been tackled in the literature for a number of years. This paper presents a survey which attempts to identify the common attributes of WSRP scenarios and the solution methods applied when tackling these problems. Our longer term aim is to achieve an in-depth understanding of how to model and solve workforce scheduling and routing problems and this survey represents the first step in this quest

    Optimizing a multiple objective surgical case scheduling problem.

    Get PDF
    The scheduling of the operating theater on a daily base is a complicated task and is mainly based on the experience of the human planner. This, however, does not mean that this task can be seen as unimportant since the schedule of individual surgeries influences a medical department as a whole. Based on practical suggestions of the planner and on real-life constraints, we will formulate a multiple objective optimization model in order to facilitate this decision process. We will show that this optimization problem is NP-hard and hence hard to solve. Both exact and heuristic algorithms, based on integer programming and on implicit enumeration (branch-and-bound), will be introduced. These solution approaches will be thoroughly tested on a realistic test set using data of the surgical day-care center at the university hospital Gasthuisberg in Leuven (Belgium). Finally, results will be analyzed and conclusions will be formulated.Algorithms; Belgium; Branch-and-bound; Constraint; Data; Decision; Experience; Healthcare; Heuristic; Integer; Integer programming; Model; Optimization; Order; Processes; Real life; Scheduling; University;

    09261 Abstracts Collection -- Models and Algorithms for Optimization in Logistics

    Get PDF
    From June 21 to June 26, 2009 the Dagstuhl Seminar Perspectives Workshop 09261 ``Models and Algorithms for Optimization in Logistics \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Workforce scheduling and routing problems: literature survey and computational study

    Get PDF
    In the context of workforce scheduling, there are many scenarios in which personnel must carry out tasks at different locations hence requiring some form of transportation. Examples of these type of scenarios include nurses visiting patients at home, technicians carrying out repairs at customers’ locations and security guards performing rounds at different premises, etc. We refer to these scenarios as workforce scheduling and routing problems (WSRP) as they usually involve the scheduling of personnel combined with some form of routing in order to ensure that employees arrive on time at the locations where tasks need to be performed. The first part of this paper presents a survey which attempts to identify the common features of WSRP scenarios and the solution methods applied when tackling these problems. The second part of the paper presents a study on the computational difficulty of solving these type of problems. For this, five data sets are gathered from the literature and some adaptations are made in order to incorporate the key features that our survey identifies as commonly arising in WSRP scenarios. The computational study provides an insight into the structure of the adapted test instances, an insight into the effect that problem features have when solving the instances using mathematical programming, and some benchmark computation times using the Gurobi solver running on a standard personal computer
    corecore