2,913 research outputs found

    Minimizing the sum of flow times with batching and delivery in a supply chain

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.The aim of this thesis is to study one of the classical scheduling objectives that is of minimizing the sum of flow times, in the context of a supply chain network. We consider the situation that a supplier schedules a set of jobs for delivery in batches to several manufacturers, who in tum have to schedule and deliver jobs in batches to several customers. The individual problem from the viewpoint of supplier and manufacturers will be considered separately. The decision problem faced by the supplier is that of minimizing the sum of flow time and delivery cost of a set of jobs to be processed on a single machine for delivery in batches to manufacturers. The problem from the viewpoint of manufacturer is similar to the supplier's problem and the only difference is that the scheduling, batching and delivery decisions made by the supplier define a release date for each job, before which the manufacturer cannot start the processing of that job. Also a combined problem in the light of cooperation between the supplier and manufacturer will be considered. The objective of the combined problem is to find the best scheduling, batching, and delivery decisions that benefit the entire system including the supplier and manufacturer. Structural properties of each problem are investigated and used to devise a branch and bound solution scheme. Computational experience shows significant improvements over existing algorithms and also shows that cooperation between a supplier and a manufacturer reduces the total system cost of up to 12.35%, while theoretically the reduction of up to 20% can be achieved for special cases

    Bütünleşik tedarik zinciri çizelgeleme modelleri: Bir literatür taraması

    Get PDF
    Research on integration of supply chain and scheduling is relatively recent, and number of studies on this topic is increasing. This study provides a comprehensive literature survey about Integrated Supply Chain Scheduling (ISCS) models to help identify deficiencies in this area. For this purpose, it is thought that this study will contribute in terms of guiding researchers working in this field. In this study, existing literature on ISCS problems are reviewed and summarized by introducing the new classification scheme. The studies were categorized by considering the features such as the number of customers (single or multiple), product lifespan (limited or unlimited), order sizes (equal or general), vehicle characteristics (limited/sufficient and homogeneous/heterogeneous), machine configurations and number of objective function (single or multi objective). In addition, properties of mathematical models applied for problems and solution approaches are also discussed.Bütünleşik Tedarik Zinciri Çizelgeleme (BTZÇ) üzerine yapılan araştırmalar nispeten yenidir ve bu konu üzerine yapılan çalışma sayısı artmaktadır. Bu çalışma, bu alandaki eksiklikleri tespit etmeye yardımcı olmak için BTZÇ modelleri hakkında kapsamlı bir literatür araştırması sunmaktadır. Bu amaçla, bu çalışmanın bu alanda çalışan araştırmacılara rehberlik etmesi açısından katkı sağlayacağı düşünülmektedir. Bu çalışmada, BTZÇ problemleri üzerine mevcut literatür gözden geçirilmiş ve yeni sınıflandırma şeması tanıtılarak çalışmalar özetlenmiştir. Çalışmalar; tek veya çoklu müşteri sayısı, sipariş büyüklüğü tipi (eşit veya genel), ürün ömrü (sınırlı veya sınırsız), araç karakteristikleri (sınırlı/yeterli ve homojen/heterojen), makine konfigürasyonları ve amaç fonksiyonu sayısı (tek veya çok amaçlı) gibi özellikler dikkate alınarak kategorize edildi. Ayrıca problemler için uygulanan matematiksel modellerin özellikleri ve çözüm yaklaşımları da tartışılmıştır

    A new mathematical model for single machine batch scheduling problem for minimizing maximum lateness with deteriorating jobs

    Get PDF
    This paper presents a mathematical model for the problem of minimizing the maximum lateness on a single machine when the deteriorated jobs are delivered to each customer in various size batches. In reality, this issue may happen within a supply chain in which delivering goods to customers entails cost. Under such situation, keeping completed jobs to deliver in batches may result in reducing delivery costs. In literature review of batch scheduling, minimizing the maximum lateness is known as NP-Hard problem; therefore the present issue aiming at minimizing the costs of delivering, in addition to the aforementioned objective function, remains an NP-Hard problem. In order to solve the proposed model, a Simulation annealing meta-heuristic is used, where the parameters are calibrated by Taguchi approach and the results are compared to the global optimal values generated by Lingo 10 software. Furthermore, in order to check the efficiency of proposed method to solve larger scales of problem, a lower bound is generated. The results are also analyzed based on the effective factors of the problem. Computational study validates the efficiency and the accuracy of the presented model

    A survey of scheduling problems with setup times or costs

    Get PDF
    Author name used in this publication: C. T. NgAuthor name used in this publication: T. C. E. Cheng2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Solving two production scheduling problems with sequence-dependent set-up times

    Get PDF
    In today�s competitive markets, the importance of good scheduling strategies in manufacturing companies lead to the need of developing efficient methods to solve complex scheduling problems. In this paper, we studied two production scheduling problems with sequence-dependent setups times. The setup times are one of the most common complications in scheduling problems, and are usually associated with cleaning operations and changing tools and shapes in machines. The first problem considered is a single-machine scheduling with release dates, sequence-dependent setup times and delivery times. The performance measure is the maximum lateness. The second problem is a job-shop scheduling problem with sequence-dependent setup times where the objective is to minimize the makespan. We present several priority dispatching rules for both problems, followed by a study of their performance. Finally, conclusions and directions of future research are presented.Production-scheduling, set-up times, priority dispatching rules

    Heuristics for scheduling a two-stage hybrid flow shop with parallel batching machines: application at a hospital sterilisation plant

    Get PDF
    The model of a two-stage hybrid (or flexible) flow shop, with sequence-independent uniform setup times, parallel batching machines and parallel batches has been analysed with the purpose of reducing the number of tardy jobs and the makespan in a sterilisation plant. Jobs are processed in parallel batches by multiple identical parallel machines. Manual operations preceding each of the two stages have been dealt with as machine setup with standardised times and are sequence-independent. A mixed-integer model is proposed. Two heuristics have been tested on real benchmark data from an existing sterilisation plant: constrained size of parallel batches and fixed time slots. Computation experiments performed on combinations of machines and operator numbers suggest balancing the two stages by assigning operators proportionally to the setup time requirements

    Minimizing the sum of flow times with batching and delivery in a supply chain

    Get PDF
    The aim of this thesis is to study one of the classical scheduling objectives that is of minimizing the sum of flow times, in the context of a supply chain network. We consider the situation that a supplier schedules a set of jobs for delivery in batches to several manufacturers, who in tum have to schedule and deliver jobs in batches to several customers. The individual problem from the viewpoint of supplier and manufacturers will be considered separately. The decision problem faced by the supplier is that of minimizing the sum of flow time and delivery cost of a set of jobs to be processed on a single machine for delivery in batches to manufacturers. The problem from the viewpoint of manufacturer is similar to the supplier's problem and the only difference is that the scheduling, batching and delivery decisions made by the supplier define a release date for each job, before which the manufacturer cannot start the processing of that job. Also a combined problem in the light of cooperation between the supplier and manufacturer will be considered. The objective of the combined problem is to find the best scheduling, batching, and delivery decisions that benefit the entire system including the supplier and manufacturer. Structural properties of each problem are investigated and used to devise a branch and bound solution scheme. Computational experience shows significant improvements over existing algorithms and also shows that cooperation between a supplier and a manufacturer reduces the total system cost of up to 12.35%, while theoretically the reduction of up to 20% can be achieved for special cases.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    The relevance of outsourcing and leagile strategies in performance optimization of an integrated process planning and scheduling

    Get PDF
    Over the past few years growing global competition has forced the manufacturing industries to upgrade their old production strategies with the modern day approaches. As a result, recent interest has been developed towards finding an appropriate policy that could enable them to compete with others, and facilitate them to emerge as a market winner. Keeping in mind the abovementioned facts, in this paper the authors have proposed an integrated process planning and scheduling model inheriting the salient features of outsourcing, and leagile principles to compete in the existing market scenario. The paper also proposes a model based on leagile principles, where the integrated planning management has been practiced. In the present work a scheduling problem has been considered and overall minimization of makespan has been aimed. The paper shows the relevance of both the strategies in performance enhancement of the industries, in terms of their reduced makespan. The authors have also proposed a new hybrid Enhanced Swift Converging Simulated Annealing (ESCSA) algorithm, to solve the complex real-time scheduling problems. The proposed algorithm inherits the prominent features of the Genetic Algorithm (GA), Simulated Annealing (SA), and the Fuzzy Logic Controller (FLC). The ESCSA algorithm reduces the makespan significantly in less computational time and number of iterations. The efficacy of the proposed algorithm has been shown by comparing the results with GA, SA, Tabu, and hybrid Tabu-SA optimization methods
    corecore