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Abstract

In today’s competitive markets, the importance of good scheduling strategies in

manufacturing companies lead to the need of developing efficient methods to solve complex

scheduling problems.

In this paper, we studied two production scheduling problems with sequence-dependent

setups times. The setup times are one of the most common complications in scheduling

problems, and are usually associated with cleaning operations and changing tools and shapes in

machines.

The first problem considered is a single-machine scheduling with release dates, sequence-

dependent setup times and delivery times. The performance measure is the maximum lateness.

The second problem is a job-shop scheduling problem with sequence-dependent setup times

where the objective is to minimize the makespan.

We present several priority dispatching rules for both problems, followed by a study of their

performance. Finally, conclusions and directions of future research are presented.
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1. Introduction

Recent trends in scheduling attempt to fill the gap between scheduling theory and

scheduling practice, with the aim to give answer to respond to market demand for more

efficient method to solve complex scheduling problems. Although classical scheduling theory

are one of the most studied field in Operations Research,  some practical environments are

often ignored in the classical models, since they improve the complexity of mathematical

models. For a discussion in the gap between scheduling theory and scheduling practice see

MacCarthy and Liu (1993).

The setup times appear frequently in real scheduling problems and are one of the most

frequent additional complications in scheduling. Moreover, these type of constraints are

particularly relevant in production scheduling.

The setup time is defined as the time intervals between the end of job processing and

beginning of next job. In this time interval no jobs can be processed in machine. The cleaning

operations and changing tools and shapes are some examples of these setup times, and are

frequent in manufacturing companies as commercial printing, plastics manufacturing, metal

and chemical processing, paper industry, etc. The most complicated case is sequence-

dependent setup times, where the setup time depends on the job previously scheduled. A

typical example is the manufacturing of different colors of paint, Conway et al. (1967). In this

case a cleaning operation time is needed, and is related with sequence of the colors processed.

Another example is the extrusion machine for plastics films. The time spent in cleaning

operations depends of film type and color. The trend in manufacturing of the production of

small batches or unit products to satisfy demand and avoid inventory has made more relevant

the scheduling problems with sequence-dependent setup times between all jobs, and not only

between batches.

The aim of this paper is to study the performance of dispatching priority rules for the

single-machine and job-shop scheduling problems with sequence dependent-dependent setup

times and to indicate how to develop a good heuristic strategy to solve these problems in a

practical and dynamic environment.

In chapter 2, we present related scheduling research with setup times. In chapter 3 and 4,

we present the single-machine and the job-shop scheduling problem with sequence-dependent

setup times, respectively. The priority dispatching rules are present in chapter 5, for the single-

machine scheduling and in chapter 6 for the job-shop scheduling. Chapter 7 and 8 present the
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computational experiment and the results obtained, and finally we present the conclusions and

the directions of future research.

2. Related research

Different types of setup times have been considered in the literature, and can be classified in

four different types:

1. Sequence-independent setup times. In this situation, they can be added to the processing

times.

2. Sequence-independent batch setup times. There are no setup times into sets of identical

jobs (batches). They only appear when changing the batch in production, and are

independent of the jobs previously scheduled.

3. Sequence-dependent batch setup times. In this case the setup times also appear only when

processing a switch from a job in a batch to a job in another batch, but the time depends on

the batch of the previously scheduled job.

4. Sequence-dependent setup times. This is the most general and complex case, where there

exist a setup time between any pair of jobs that depends on the sequence.

Hoogeveen et al. (1997) and Lawler et al. (1993) present a review of the main

contributions to the area deterministic scheduling problems, with emphasis on the classical

models. Most of the references are on theoretical work, and with respect to setup times, the

only references are on sequence-independent batch setup times for the single-machine

scheduling problem. There is no reference to sequence-dependent setup times for the single-

machine and job-shop scheduling problems.

For the single-machine scheduling problems with sequence-independent batch setup times

several works have been published where different performance measures are considered. See

Bruno and Downey (1978), Monma and Potts (1989), Zdrzalka (1992), Williams and Wirth

(1996), Mason and Anderson (1991) and Gupta (1988).

Kim and Bobrowski (1994) present a computer simulation model for a limited machine job-

shop scheduling problem with sequence-dependent setup times. They study the influence of

setup times and due dates information in priority rules performance for job-shop problem with

setup times.
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Ovacik and Uzsoy (1994) present a family of rolling horizon heuristics to minimize the

maximum lateness on a single machine in the presence of sequence-dependent setup times.

They also present a survey on the work done on this scheduling problem.

Laguna (1997) presents an heuristic procedure to a realistic production and inventory

control problem with sequence-dependent setup times. The heuristic is based on a simple

short-term tabu search coordinated with a linear programming and traveling salesperson

solvers to guide the search.

Ríos-Mercado and Bard (1997) present a branch-and-bound enumeration method scheme

for the makespan minimization of the flow-shop scheduling problem with sequence-dependent

setup times.

3. Single-machine problem with sequence-dependent setup times

The single-machine scheduling problem with sequence-dependent setup times can be

described as follows: a set of jobs J1,...,Jn have to be scheduled on one machine; each job

{ }J j N nj , , ,∈ = 1K has a release date rj, a processing time pj, and a delivery time qj. Each job

cannot be processed before its release time. Whereas at most one job can be processed at a

time, all jobs can be simultaneously delivered; if Cj denotes the time at which job J j

completes processing, then it is delivered at time L C qj j j' = + . Finally, between the

completion time of J j , Cj,  and the starting time of the next job in the sequence J k , Sk, there

must exists a time interval, the setup time, s jk ≥ 0 , i.e C s Sj jk k+ ≤ . During this setup time,

no other job can be processed in the machine. The objective is to minimize the maximum

delivery date, i.e. L L
j N

j' max 'max =
∈

.

The single-machine scheduling problem with sequence-dependent setup times can be

denoted by 1/rj,sij/L’max, and can be considered as a generalization of the usual single-machine

scheduling problem, i.e. the setup times are all equal to zero. The problem is NP-Complete,

even if no setup times are considered, Lenstra, Rinnooy Kan and Brucker (1977).

The Horn’s algorithm, Horn (1974)  solves to optimality the standard single-machine

problem if preemption is allowed. If no preemption is allowed the Carlier branch-and-bound
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algorithm, Carlier (1982), solves the standard single machine problem. Schrage (1971)

presented an efficient  heuristic for the same problem, that will be presented in section 5.1.

4. Job-shop problem with sequence-dependent setup times

The classical job-shop scheduling problem, J//Cmax, is defined as follows: we are given a set

of m machines {M1,...,Mm} and a set of n jobs {J1,...,Jn}. Each job Jj, j=1,...,n, consists of a

sequence of mj operations O1j,..., Omj,j, where Oij is an operation of job Jj to be processed on

machine µij for a given uninterrupted processing time pij, where  µ µij i+ j≠ 1 , for i=1,...,mj,

j=1,...,n.

The operations of each job must be processed in the given sequence. Each machine Mi,

i=1,...,m, can process at most one operation at a time, and at most one operation of each job

Jj, j=1,...,n, can be processed at a time. Let Cij be the completion time of operation Oij. The

objective is to get a schedule that minimizes the maximum completion time Cmax=max i,j Cij.

A schedule is an allocation of a single time interval for each operation.

The job-shop scheduling problem is NP-hard in the strong sense, Garey and Johnson

(1976). Furthermore, most of the special cases of this problem are NP-hard or strongly NP-

hard.

In this work we will consider an extension of the classical job-shop scheduling, in the

presence of sequence-dependent setup times. We will denote this problem by J/sij/Cmax. For

each pair of operations, Oij and Okl processed in the same machine, define a setup time sij,kl

such that if Oij is processed just before Okl then there must exist a time interval of value sij,kl

where no other operation can be processed. Note that to define the sequence-dependent setup

times, we need m n n×  matrices. The performance measure is again the makespan.

5. Heuristics Methods for 1/rj,sij/L’max

In this chapter, we will present the priority dispatching heuristics for the single-machine

scheduling problem with sequence-dependent setup times. But, first, we will describe the

Schrage heuristic for the problem without setup times.
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5.1. Schrage Heuristic

Schrage (1971) presented a polynomial heuristic to solve the single-machine scheduling

problem with release dates and delivery times. The heuristic does not guarantee the optimal

solution, but obtains very good results in reasonable times. The strategy adopted by the

Schrage heuristic is to schedule the available job not yet scheduled with the longest delivery

time at any time.

Consider the job sequence ))(),...,1(( nσσσ =  created by Schrage heuristic. Then, there

exist a set of jobs that are scheduled in sequence an such that the associated performance

measure (L’max) is as follows:

( ) ( ) ( )
L r p q i j ni h

h i

j

j
'max = + + ≤ ≤ ≤

=
∑σ σ σ

for 1 .

The sequence )(),...,( ji σσ  is designated by critical sequence, and the last job in sequence

is the critical job. The output schedule of the above heuristic below to the class of non-delay

schedules, which is characterized  by the no existence of available jobs to be scheduled if a

machine is idle (Conway, Maxwell et al. 1967). Therefore we can guarantee that: )()( hi rr σσ ≤

for jih  ..., ,1+= . It is well known that if ( ) ( )q q
j hσ σ≤  for h=i,..., j-1, then the schedule is the

optimal for the problem 1/rj/L’max .

In a certain way, the strategy adopted by the Schrage heuristic is similar to Earliest Due

Date which obtains the optimal solution for the scheduling problem 1//Lmax, where due dates

are considered instead of delivery times. The problems are symmetric and equivalent, Lageweg

et al. (1978).

5.2. Adapted Schrage Heuristic

The problem 1/rj,sij/L’max is more complex due the presence of the sequence-dependent

setup times. If we the apply the Schrage Heuristic, updating the release dates to guarantee the

feasibility with respect to the setup time constraints, the new value of L‘max is as follows:

( ) ( ) ( ) ( ) ( )
L r p s q i j ni h

h i

j

h h
h i

j

j
'max = + + + ≤ ≤ ≤

=
−

= +
∑ ∑σ σ σ σ σ1

1

1for

The extra expression in the formula is associated with the setup times, however these

values are not taking in account when selecting the next job to be scheduled. Therefore the

schedule obtained by the heuristic Schrage can lead to high values of the setup times and
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consequently to high values of L‘max. On the other hand, if we only take in account the setup

times, can lead to solutions where the delivery time of the critical job is too high.

The objective is to develop an heuristic that will consider both elements, the delivery times

and the setup time, when selecting the next job to be scheduled. Therefore, the major change

done in the adapted Schrage heuristic is related with taking in consideration the setup times in

the selection of the next job to be schedule from the subset of available jobs not yet scheduled.

Please note that the release times must be updated to verify the setup times constraints.

The main idea of the new heuristic is, first, select a subset of the available jobs that have

small setup time with respect of the last job scheduled, and afterwards, among these ones,

select the job with longest delivery time. So, a job is selected if the difference between its

setup time and the minimal setup time of all available and not scheduled jobs is less or equal

than a percentage of the difference between the larger and smaller setup time of all available

jobs. This percentage is measured by a parameter P.

This procedure looks for a reduction of the new expression in the performance measure.

A value of P allows us to control the equilibrium between selecting the jobs only

considering the setup times, or selecting the jobs with respect of the delivery times or taking in

account both times. The value of the control parameter P can vary between 0 and 100 %. If P

is equal to 100%, then we are applying the original Schrage Heuristic, and not considering the

setup times at all. On the other hand if P is equal to 0%, we are selecting for scheduling the

job with smallest setup time with respect of the last job scheduled and ignoring the delivery

times. Any intermediate value will take in account both times, such that, if the value is close to

zero means than the setup times have more importance and in a opposite way, if the value is

close to 100% means that the delivery time play a more important role for selecting the next

job to be scheduled.

6. Priority Rules for the Problem J/sij/Cmax

In this chapter, we present the classical dispatching priority rules and the two new rules for

the job-shop scheduling problem with sequence-dependent setup times.
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6.1. Classical priority rules

The most well-known and simple heuristic to solve the job-shop scheduling problem are the

priority dispatching rules, also known by list scheduling. These heuristics are greedy heuristic,

where at each iteration an operation is selected between the available ones and scheduled as

soon as possible in the respective machine. The choice of the  next operation to be scheduled

is done following a priority function or rule.

Several priority rules have been proposed for the job-shop scheduling, and also, several

works have been done to compare the performance of these rules. See for example: Jeremiah,

Lalchandani et al. (1964) , Lawrence (1984), Morton and Pentico (1993) and Barman (1997) .

The most common rules used are the following ones:

SPT (Shortest Processing Time) : select the available job with shortest processing time.

FCFS (First Come First Served) : select the available job with larger time waiting in the

system.

MWKR (Most Work Remaining) : select the available job with most work remaining.

LWKR (Least Work Remaining) : select the available job with least work remaining.

MOPNR (Most Operations Remaining) : select the available job with larger number of

operations remaining to be scheduled.

RANDOM : randomly select the next job.

6.2. New priority rules

None of the above rules takes in account the sequence-dependent setup times. Therefore,

we propose two new priority rules. Note that, the presence of sequence-dependent setup times

have a high impact in the makespan of the final schedule, so these values must be considered in

some way when deciding the next operation to be scheduled.

As in the previous chapter, the new rules are mix rules which consider the classical priority

rules and the setup times when selecting the next operation to be scheduled, and can be

defined as follows:

SPST (Shortest (Processing+ Setup Time)) : Select the operation with smaller value of the

sum of the setup time with the processing

time. The setup time is related with the
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previous operation scheduled in the

corresponding machine.

MWKRST (Most (Work Remaining - Setup Time)) : Select the operation with the

greatest difference between the

work remaining and the setup time

related with the last operation

scheduled in the correspondent

machine.

Designate these rules by SPT2 e MWKR2 respectively. The motivation to use these rules is

related with the observation that SPT and MWKR  usually perform well for the classical job-

shop scheduling.

Finally, we define a rule that only considers the sequence-dependent setup times:

SST (Shortest Setup Time) : Select the operation with shortest setup time with respect of

the last operation scheduled in the corresponding machine.

In the next chapter, we will present the computational experiment realized to evaluate the

performance of the heuristics proposed for the single-machine and job-shop scheduling

problems with sequence-dependent setup times.

7. Computation experiment for the problem 1/rj,setups/Lmax

7.1. Computational Experiment

The test problems proposed Grabowski, Nowicki et al. (1986) for the problem 1/rj/Lmax

were extended to the problem 1/rj,sij/L’max. For each instance of the problem 1/rj/Lmax we

associated a n×n matrix related with the sequence-dependent setup times. These problems

have the propriety that the values of the release times and delivery times range between a large

set and consequently allows us to study the influence of these values in the performance of the

heuristics.
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The set of test problems consists in 400 instance, divided in 5 groups of 80 instances

characterized by the number of jobs (n = 20, 40, 80, 150 e 200).

The data was generated randomly following the uniform distribution with an interval

between the unit and a maximal value rmax , pmax  and qmax for the delivery times, the processing

times and the delivery times respectively.

Each group of 80 instance is again divided in 16 subgroups of 5 instances each for different

values of rmax, pmax and qmax. The 16 groups were obtained by 4 combinations of two

parameters { }nn, ., , .QR ××∈ 250250,  that are used to calculate the previous values as

follows: Rr ×= 50max , 50max =p , Qq ×= 50max .

For the setup times, we assume that the maximum setup time is at most 20% of the

maximum processing time. The motivation to assume this is frequent relation between setup

times and processing times, Kim and Bobrowski (1988). The setup times also are obtained

randomly following a uniform distribution with interval between the unit and max2.0 p× .

All heuristics where implement in C and the tests where done in a PC Pentium a 120Mhz.

7.2. Analyses of the results

One of main objectives of the computational experiment is to perform a comparative study

on the results for different values of P.  We considered 6 different heuristic where the value of

P is: heu0 ( 0P = %), heu20 ( 20P = %), heu40 ( 40P = %), heu60 ( 60P = %), heu80

( 80P = %) e heu100 ( 100P = %). We also pretend to evaluate the performance of the

heuristic with respect of the dimension of the problem (n= number of jobs) and the different

values of the data, as the release times, the processing times and the delivery times.

The results are presented in a aggregate format, to give a better understand of the overall

performance of the heuristics.

The Table 1 presents the number of times the best solution was obtained for each heuristic

and the average running time (in milliseconds)

 
num tempo heu0 heu20 heu40 heu60 heu80 heu100
400 78 216 134 144 146 162 165

 Table 1 - 1/rj,sij/L’max: Global results.
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 From the results obtained, the first conclusion is that the 5 heuristics heur20, heur40,

heur50, heur80 and heur100 had a similar behavior, and were outperformed by the heuristic

heu0.

 For a detailed analysis of the results, we present next the results aggregated in different

ways to emphasis the influence of the data in the heuristics performance.

 In Table 2 we present the results aggregated in function of the dimension of the problem (n

= 20, 40, 80, 150 e 200).

 

 

num n time heu0 heu20 heu40 heu60 heu80 heu100
80 20 6 36 32 31 32 39 37
80 40 22 39 30 25 33 32 31
80 80 37 49 23 29 31 29 32
80 150 123 45 23 31 25 31 36
80 200 202 47 26 28 25 31 29

 Table 2 - 1/rj,sij/L’max: Results aggregated by dimension (n).

 

 The analysis of the results permits to detect to opposite trends in the performance of the

heuristics. As the dimension of the problem increases the efficiency of heur0 increases, i.e. the

number of times the heuristic obtains the best results increases. In the opposite way, the

efficiency of the remaining heuristics decreases.

The explanation for this behavior is related with the fact that, as the number of jobs

increases, the importance of the sequence-dependent setup times also increases since it will

have a large weight in the value of the performance measure. Therefore, we can expect that

the heur0 will perform better for large instances.

As expected the running times increase with the dimension of the problem.

In Table 3 we present the results but separated by the values of rmax, pmax and qmax.
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num rmax pmax qmax time heu0 heu20 heu40 heu60 heu80 heu100
25 25 50 25 104 23 3 0 0 0 0
25 100 50 25 112 22 3 0 0 0 0
25 500 50 25 52 20 3 1 2 1 0
25 2.000 50 25 37 22 22 22 22 22 25
25 25 50 100 118 20 3 2 0 0 0
25 100 50 100 122 22 3 0 1 1 0
25 500 50 100 44 10 11 3 3 3 0
25 2.000 50 100 10 25 25 25 25 25 25
25 25 50 500 116 0 4 10 5 5 1
25 100 50 500 125 0 0 13 5 6 2
25 500 50 500 55 2 5 1 6 6 9
25 2.000 50 500 33 22 22 22 22 22 25
25 25 50 2.000 106 2 3 11 12 20 24
25 100 50 2.000 111 0 0 5 15 17 20
25 500 50 2.000 44 2 3 5 4 10 9
25 2.000 50 2.000 27 24 24 24 24 24 25

Table 3 – 1/rj,sij/L’max: Results aggregated by rmax, pmax and qmax.

The 400 instances are grouped in 16 groups of 25 instances each which were generated

using the same input data for the release dates (rmax), the processing times (pmax) and the

delivery times  (qmax).

For the large value of the maximum release date ( nr ×= 100max ), almost all heuristics

obtained good results, since these are easy problems because the jobs are rarely release at the

same time. Therefore, at many time, there is at most one job available to be scheduled.

For the remaining instances, the performance of the heuristics are related with the values of

the delivery times. The heuristics with small value for the parameter P (heu0, heu20 and

heu40) perform better when the maximum delivery time ( 25max =q  and 100max =q ) is similar

to the maximum processing time ( 50max =p ), and so similar to the setup times. The

explanation for this behavior in this set of instances is since the delivery times are similar, the

setup times play an important role in the construction of the good solutions.

On the other hand, the heuristics for large values of P (heu60, heu80 and heu100) have a

better behavior when the delivery times ( nq ×= 25max and nq ×= 100max ) are of greater

dimension then the setup times, and the processing times ( 50max =p ). These heuristics give a

greater importance to the delivery times than to the setup times, when selecting the next job to

be scheduled, and since the first ones have higher values the performance of these heuristics

can be easily explained.



13

The running times decrease as the value of the maximum release dates increase (rmax), since,

as mentioned before, these instance result to be easy to solve.

8. Computational experiment for the problem J/sij/Cmax

8.1. Computational Experiment

The test problems for the problem J/sij/Cmax can be divide in two groups:

• 82 classical problems (available in the OR library : http://www.ms.ic.ac.uk/info.html)

• 80 problems proposed by Taillard (Taillard 1993).

Again, we had to adapt the above problems to take in account the sequence-dependent

setup times. We need to generate m square n × n matrix, one for each machine.

The 82 classical problems are the following ones, and have dimensions between 6×6 and

20×20:

• Problems 1 - 5 (Adams, Balas et al. 1988)

• Problems 6 - 8 (Fisher and Thompson 1963)

• Problems 9 - 48 (Lawrence 1984)

• Problems 49 - 58 (Applegate and Cook 1991)

• Problems 59 - 78 (Storer, Wu et al. 1992)

• Problems 79 - 82 (Yamada and Nakano 1992)

The 80 problems proposed by Taillard have larger dimension which goes from ( 1010× ) to

( 20100× ).

The generator of random number used to generate the last set of problems was the

congruential linear generator,  )12mod()16807( 31
1 −×=+ ii XX , Bratley, Fox et al. (1983).

The data that needs to be generated for the problem J//Cmax are the processing times of

each job in each machine, and the order of processing by the machines. The processing times

are generated following an uniform distribution with values between 1 and 99. The uniform

distribution is also used to find the order of the machines for each job. For more details, see

Taillard (1993).
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8.2. Analyses of the results

The objective of the computational experiment for the problem J/sij/Cmax is to study the

behavior and performance of 5 priority rules described before, and to analyze the influence of

the dimension  of the problem ( mn × ) in the results.

Table 4 presents the global results for the Taillard instances, and indicates the number of

times each heuristic had obtained the best result. Table 5 presents the same information for the

classical instances.

num SPT MWKR SST SPT2 MWKR2
80 13 8 41 17 8

Table 4 – J/sij/Cmax: Global results for the Taillard’ instances.

num SPT MWKR SST SPT2 MWKR2
82 7 14 45 12 16

Table 5 – J/sij/Cmax: Global results for the classical instances.

The priority rule based only in the setup times SST (Shortest Setup Time) outperformed the

remaining ones, for all instances.

The results aggregated by dimension of the problem are presented in tables 6 and 7.

num n m SPT MWKR SST SPT2 MWKR2
10 15 15 2 2 4 2 2
10 20 15 2 2 4 2 2
10 20 20 6 0 2 2 0
10 30 15 0 2 6 2 1
10 30 20 3 1 4 2 1
10 50 15 0 0 6 4 0
10 50 20 0 1 5 3 2
10 100 20 0 0 10 0 0

Table 6 - J/sij/Cmax: Aggregate results by dimension ( mn × ) (Taillard’ problems).



15

num n m SPT MWKR SST SPT2 MWKR2
1 6 6 0 0 1 0 0
5 10 5 0 0 2 3 0
5 15 5 0 2 3 0 1
6 20 5 0 1 4 1 0

18 10 10 3 3 6 5 4
5 15 10 0 0 4 1 0

10 20 10 0 1 9 0 1
5 30 10 0 0 5 0 0
5 15 15 0 4 1 0 4
8 20 15 0 2 4 1 3
4 20 20 3 1 0 0 1

10 50 10 1 0 6 1 2

Table 7 - J/sij/Cmax: Aggregate results by dimension ( mn × ) (classical problems).

When the number of jobs is bigger than the number of machines, we can observe that the

rule SST (shortest setup time) performs better than the remaining ones. The reason for this

behavior is the fact that  in presence of a large number of jobs, the sequence-dependent setup

times have a large impact in the output solution.

9. Analyze of results related with the setup times

Since the new elements introduced in this work are the sequence-dependent setup times, we

present in this section a more detailed analyses of the influence of these ones in the behavior of

the new heuristics.

9.1. Adapted Schrage heuristic for the problem 1/rj,sij/L’max

To study the impact of the sequence-dependent setup times in the results, we decide to

generate new setup times larger than the previous ones, where the maximum value of a setup

time are maxmax1 2.0 ps ×= and maxmax2 3.0 ps ×= . Therefore, now we have two set of 400

instances each one with different setup times interval.

In tables 8 and 9 we present the global results to each set ( maxmax1 2.0 ps ×= and

maxmax2 3.0 ps ×= ) and for each of the 6 adapted Schrage heuristics. The results are measured

in terms of the number of times the heuristic had obtained the best results overall.

num tempo heu0 heu20 heu40 heu60 heu80 heu100
400 78 216 134 144 146 162 165
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Table 8 -  1/rj,sij/L’max: Global results for instances ( maxmax1 2.0 ps ×= ).

num tempo heu0 heu20 heu40 heu60 heu80 heu100
400 81 219 131 141 142 150 161

Table 9 - 1/rj,sij/L’max: Global results for instances ( maxmax2 3.0 ps ×= ).

As it can be observed, for the instance with larger setup times, the heur0 outperformed the

remaining ones, and also it obtains more times the best results than for the instances with

smaller setup times. This behavior was expected, since as the setup times increase, these ones

play a more important role in finding a good solution.

9.2. Priority rules for the problem J/sij/Cmax

As done for the single machine scheduling problems, we generate a second set of instance

with larger setup times to analyze the impact of this ones in the results obtained by the priority

rules. Therefore, we have two set where all data is equal, except for the sequence-dependent

setup times which were generated with different maximum values: ( maxmax1 2.0 ps ×= e

maxmax2 3.0 ps ×= ).

num SPT MWKR SST SPT2 MWKR2
80 13 8 41 17 8

Table 10 - J/sij/Cmax: Global results (Taillard’ problems) ( maxmax1 2.0 ps ×= ).

num SPT MWKR SST SPT2 MWKR2
80 8 5 48 18 6

Table 11 - J/sij/Cmax: Global results (Taillard’ problems)  ( maxmax2 3.0 ps ×= ).

num SPT MWKR SST SPT2 MWKR2
82 7 14 45 12 16

Table 12 – J/sij/Cmax: Global results (classical problems) ( maxmax1 p2.0s ×= ).
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num SPT MWKR SST SPT2 MWKR2
82 5 9 46 18 10

Table 13 – J/sij/Cmax: Global results (classical problems) ( maxmax2 p3.0s ×= ).

The results are presented in tables 10 to 13. The mix rule SPT2, that considers the

processing times and the setup times, and the priority rule SST obtain better results as the

maximum setup time increases. Since the other rules, SPT and MWKR,  do not consider the

setup times, as expected, they do not performed well.

The mix rule MWKR2, that combines the remaining processing time and the setup times,

had a similar behavior as the classical rules SPT and MWKR, so the inclusion of the setup

times in this rule does not lead to better results.

10. Conclusion and future  research

In this work, we considered two production scheduling problems: a single-machine and a

job-shop scheduling problems with sequence-dependent setup times.

We present several priority dispatching rules for both problems, followed by a study of

their performance.

The computational results were designed to analyze the sensibility of the efficiency of the

heuristic with respect to: problem dimension and data of the problem.

 We can conclude that the Adapted Schrage Heuristic for the  single machine scheduling

problem, only based on the setup times (P=0%) outperform the remaining ones as the

dimension of the problem increases.

In general, the Adapted Schrage heuristic for the problem 1/rj,sij/L’max have proved to be

useful since it obtains better results than the Schrage heuristic.

 For the data of the problem, we can conclude that:

• the value of P is indifferent to the high values of the release dates.

• for similar values of the processing times, setup times and the delivery times, the

heuristic that perform better where for ( 0P = , 20P = , 40P = ).

• for high values of the delivery time, with respect to the remaining data, the heuristics

with 60P = , 80P = , 100P =  performed better.
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Therefore, we can conclude that to determine the best value of P we should take in account

the setup times and the release times. The heur0 perform better as the setup times increases,

and the remaining heuristic perform worst.

For the job-shop scheduling problem with sequence-dependent setup times J/sij/Cmax, the

computational experiment was designed to evaluate the behavior of the dispatching priority

rules with classical rules and some new ones, where the setup times where considered when

deciding the next job to be scheduled.

We can conclude that the new priority rule only based in setup time (SST) performs better

than the remaining ones. As the setup times increase, this rule performs better. The remaining

rules have the opposite behavior, except the SPT2 that also performs well as the setup times

increase.

In relation with the dimension of the problem, the SST rule obtains good results as the

dimension increases.

As future work, we would like to develop more complex heuristics to improve the quality

of the results. We pretend to apply metaheuristics, since the present heuristics can be used to

obtain initial solutions. Since several metaheuristics, as the genetic algorithms, tabu search and

simulated annealing have been applied successful to other classical scheduling problems, we

intend to continue our research by developing such methods to the single-machine and job-

shop scheduling problems with sequence-dependent setup times.

We also intend to extend our research, by considering another practical aspect, such as teh

existence of several identical machines in the job-shop, as a multiprocessor job scheduling in a

job-shop environment with sequence-dependent setup times.
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