
Minimizing the sum of flow times
with batching and delivery in a

Supply Chain

A Thesis submitted for the degree of Doctor of Philosophy

by
Mohammad Mahdavi Mazdeh

School of Engineering and Design, BruneI University.

May 2005

Acknowledgement

I have to indicate my best thankfulness to Professor Khalil Hindi with whose

supervision I started my PhD. Although he left the UK but, always felt responsible

about my work and I used his ideas and comments throughout this work.

I also have to indicate my best thankfulness to Professor Mansoor Sarhadi, who

kindly accepted the supervision of this project after Professor Hindi left. He supported

and encouraged me in the all aspects of my work.

In addition, I would like to thank Professor Malcolm Irving, my second supervisor

for his support and kindness.

I would finally like to appreciate Mr. Habib Nehzati who did a great deal of help in

coding of the algorithms and was always there for me.

I

Abstract

The aim of this thesis is to study one of the classical scheduling objectives that is of

minimizing the sum of flow times, in the context of a supply chain network. We

consider the situation that a supplier schedules a set of jobs for delivery in batches to

several manufacturers, who in tum have to schedule and deliver jobs in batches to

several customers.

The individual problem from the viewpoint of supplier and manufacturers will be

considered separately. The decision problem faced by the supplier is that of minimizing

the sum of flow time and delivery cost of a set of jobs to be processed on a single

machine for delivery in batches to manufacturers. The problem from the viewpoint of

manufacturer is similar to the supplier's problem and the only difference is that the

scheduling, batching and delivery decisions made by the supplier define a release date

for each job, before which the manufacturer cannot start the processing of that job.

Also a combined problem in the light of cooperation between the supplier and

manufacturer will be considered. The objective of the combined problem is to find the

best scheduling, batching, and delivery decisions that benefit the entire system

including the supplier and manufacturer.

Structural properties of each problem are investigated and used to devise a branch

and bound solution scheme. Computational experience shows significant improvements

over existing algorithms and also shows that cooperation between a supplier and a

manufacturer reduces the total system cost of up to 12.35%, while theoretically the

reduction of up to 20% can be achieved for special cases.

II

Table of contents

Introduction: 1

1 Supply Chain Management 4

1.1 Introduction and definition 4

1.1.1 Definition 6

1.1.2 Internal and external Supply Chain 7

1.1.3 Global supply chain 8

1.2 Supply chain decisions area 9

1.2.1 Classification based on temporal consideration 9

1.2.2 Classifying based on functional consideration 10

1.3 Supply Chain Modelling-mathematical approach 10

1.3.1 Taxonomy of Supply Chain-Modelling
Mathematical approach 11

1.4 Literature Survey 12

1.5 The aim of this thesis 15

2 Scheduling 17

2.1 Definition 17

2.2 Scheduling Models: mathematical approach 18

2.2.1 Dynamic Programming 18

2.2.1.1. Evaluating a problem 19

III

2.2.1.2 Basic terms and variables 19

2.2.1.3 Formulation 20

2.2.1.4 Forward and Backward DP 21

2.2.1.5 Deterministic and Stochastic DP 21

2.2.2 Branch and Bound method 22

2.2.2.1 General idea and terminology 22

2.2.2.1 Breadth-first search and
Depth-first search methods 23

2.3 Framework and notation 24

2.3.1 Standard scheduling problem form 26

2.3.1.1 Machine environment (a) 26

2.3 .1.2 Job characteristics (f3) 27

2.3.1.3 Objective function (y) 27

2.4 Scheduling with batching 28

2.4.1 Family scheduling model 28

2.4.2 Batch processing model 29

2.5 Algorithms and Complexity 30

2.5.1 Definition 30

2.5.2 Easy and hard problems 31

2.5.3 Decision problems 31

2.5.4 Problem reduction 32

2.5.5 Complexity classes 33

2.5.5.1 Class P 33

2.5.5.2 Class NP 33

2.5.5.3 Class NP -complete andNP - hard 34

IV

2.6 Literature review

2.6.1 Single machine without release date

2.6.2 Single machine with release date

2.6.3 two-machine flow-shop

2.6.4 Combined problem

3 Minimizing the sum of flow times (completion time)
from the view point of supplier

3.1 Introduction

3.2 Problem Definition

3.3 Structural Properties

3.4 Branch and Bound Scheme

3.4.1 Branching and ordering of variables

3.4.2 Fathoming and backtracking

3.4.3 Upper bounds

3.4.4 Lower bounds

3.4.5 Numerical example

3.5 Computational Results

3.6 Conclusion

4 Minimizing the sum of flow times (completion time)
from the view point of manufacturer

4.1 Introduction

4.2 Problem Definition

4.3 Structural Properties

4.4 Branch and Bound Scheme

4.4.1 Branching and ordering of variables

4.4.2 Fathoming and backtracking

v

34

34

37

39

42

45

45

48

48

53

53

53

53

54

55

57

72

73

73

75

76

83

83

83

4.4.3 Upper bounds

4.4.4 Lower bounds

4.4.4.1 Optimum value at Leaf nodes

4.4.5 Numerical example

4.5 Computational Results

4.6 Conclusion

5 Minimizing the sum of flow times (completion times)
for the combined problem

5.1 Introduction

5.2 Problem Definition

5.3 Structural Properties

5.4 Branch and Bound Scheme

5.4.1 Branching and ordering of variables

5.4.2 Fathoming and backtracking

5.4.3 Upper bounds

5.4.4 Lower bounds

5.4.5 Optimum value at leaf nodes

5.4.6 Numerical example

5.4.7 Benefit of cooperation

5.5 Computational Results

5.6 Conclusion

6 Benefit of cooperation

6.1 Practical application

6.2 Mechanism of cooperation

6.3 Computational Results

VI

83

85

86

87

93

103

104

105

107

110

119

120

120

120

121

122

123

128

129

134

135

136

140

141

6.4 Conclusion

7 Conclusion and further works

7.1 Conclusion

7.2 Recommendation for further work

8 Appendix 1

9 References

VII

146

147

147

150

152

158

Introduction

Supply chain management (SCM) has attracted a great deal of interest in the last

few decades. SCM is referred to as an integrated system which coordinates a series

of inter-related business processes. The key concept that distinguishes it from its

constitutive components is integration across the chain. Although the general

literature on SCM is extensive, there is a lack of literature on supply chain

scheduling models, i.e. the literature that consider the benefit of coordination

between different stages of a SC network from the viewpoint of scheduling models.

The aim of this thesis is to study one of the classical scheduling objectives that is

of minimizing the sum of flow times (completion times), in the context of a supply

chain network. We consider the situation that a supplier schedules a set of jobs for

delivery in batches to several manufacturers, who in tum have to schedule and

deliver jobs in batches to several customers.

We first consider the problem from the viewpoint of supplier. Here the objective

is to minimize the total flow times (completion times) plus delivery costs. This is a

natural extension of the problem of minimizing total flow times to cater for

coordination between scheduling and distribution in a supply chain network. The

problem contains an additional term, which is the delivery cost for each

manufacturer.

Then, we consider the problem from the viewpoint of manufacturer. The batching

and delivery decisions made by the supplier define a release date for each job before

which time the manufacturer cannot process any jobs. Therefore, from the viewpoint

of manufacturer the objective adopted is that of minimizing the sum of flow times

(completion times) and delivery costs in presence of release dates. Here, the

additional term is the delivery cost for each customer.

Batching and delivery decisions made by the supplier may not be ideal from the

viewpoint of manufacturer. He may prefer to receive some batches earlier to achieve

better utilization of machines, or to receive some batches later for reducing inventory

1

costs. Then, manufacturer may suggest a new schedule for accepting the batches, but

it is not guaranteed that the supplier accepts the manufacturer's suggestion. The

supplier may refuse the suggested schedule due to the resulting high delivery or

inventory cost. This is a controversial issue, which is better handled through solving

a combined problem that leads to the benefit of both parties in light of cooperation.

Therefore, a combined problem in the context of cooperation between the supplier

and manufacturer is also considered. The gain of the combined problem is to find the

best scheduling, batching, and delivery decisions that benefit the entire system

induding the supplier and manufacturer.

Structural properties of each problem are investigated and used to devise a branch

and bound solution scheme. Computational experience shows significant

improvements over existing algorithms and also shows that cooperation between a

supplier and a manufacturer reduces the total system cost of up to 12.35%, while

theoretically the reduction of up to 20% can be achieved for special cases.

The outline of this thesis is as follows:

Chapter 1: This chapter presents a picture of the supply chain management and

mathematical models in SCM, and briefly surveys the related literature from SCM

perspective.

Chapter 2: Scheduling, its definition, framework, notation and standard problem

forms will be reviewed in this chapter. Furthermore, dynamic programming and

branch and bound methods are discussed and the literature relevant to the problems

considered in this thesis are surveyed.

Chapter 3: In this chapter, the problem from the viewpoint of supplier, which is the

problem of scheduling a set of jobs to be processed on a single machine by supplier

for delivery in batches to manufacturers, will be considered.

Chapter 4: This chapter considers the problem from the viewpoint of manufacturer.

This problem is similar to the supplier's problem and the only difference stems from

the fact that batching and delivery decisions made by the supplier define a release

date for each job.

2

Chapter 5: A combined problem in the light of cooperation between the supplier and

manufacturer will be considered in this chapter.

Chapter 6: This brief chapter compares the results of total flow times plus delivery

cost over the system, before and after cooperation between the supplier and

manufacturer.

Chapter 7: Conclusions and further works will be presented in this chapter.

3

Chapter 1

1. Supply Chain Management
Supply chain management (SCM) has attracted a great deal of interest in last

decades. Many businesses, manufacturers and suppliers seek to organise their work

in accordance with the principles of SCM. Considerable research works have been

focused in various aspects of SCM and it is likely that this trend will continue in the

foreseeable future. It is noted that SCM is "at the cutting edge of reengineering" [50].

What exactly is SCM then and why it is so important? This is a question we try to

survey briefly in section 1.1, where we consider some definitions and important key

words of SCM. In section 1.2, we will focus on mathematical modelling in SCM and

finally in section 1.3, a literature survey related to the subject of this dissertation will

be offered.

1.1 Introduction and definitions

Traditionally, the various stages of supply chain such as procurement, production

and distribution have been organized independently. Furthermore, the different

functions of an organisation, including assembly, storage, and dispatching of finished

product have traditionally focused their efforts on making effective decision within

their own facilities. The reasons for this treatment stemmed from the facts that:

1-The obj ecti ves of different facilities or organizations are most often in conflict. For

example, marketing objective of achieving maximum sales and high customer

service can be in conflict with manufacturing objectives. Also, manufacturing

4

objectives can be in conflict with distribution centre objectives because many

manufacturing operations are designed to derive maximum benefit through

maximizing throughput and lower costs while the impact of their output on inventory

levels and distribution centre may not be considered fully [42].

2- The complexity of making decision is reduced when each component is treated

independently [87]. It is obvious that developing models for multi-echelon systems is

more complex than single-echelons (see section 1-3).

Despite its simplicity, this treatment can have costly results. The costs of poor

coordination, especially in global marketing, can be extremely high. Using the

traditional way, companies require inventory at various locations throughout the

chains while the costs of maintaining inventory are very high. In addition, the cost of

holding inventory at any locations also means that most companies cannot provide a

low cost product when their funds are tied up in inventory. More importantly, it

should be noted that producing a quality product is not enough. "Getting the products

to customers when, where, how, and in the quantity that they want, in a cost-effective

manner, constituted an entirely new type of challenge" [51].

However, in today's marketplace, managers have realized that actions taken by

one member of the chain influence profitability of the all others in the chain [59].

The most successful manufacturers seem to be those that have made a tough linkage

between their internal processes and external suppliers (upstream) and customers

(downstream). Firms have found that it is no longer enough to manage their own

organization; they must also be involved in the management of the network of all

upstream firms that provide inputs (directly or indirectly), as well as the network of

downstream firms responsible for delivery and after-market services of the product

to the end customer [51]. Hence, if the supply chain is defined as a network that

begins from supplier and finishes with the customer and includes the flow of raw

materials to firms, the processes of production, warehousing and distribution,

afterwards there is a need to a system that tries to tie these activities together on the

basis of good relationships among the parties concerned. The term Supply Chain

Management (SCM) which was originally introduced by consultants in the early

1980s [17] is a response to this need.

5

1.1.1 Definition

Unfortunately, the term SCM has been used for different purposes in the

literatures and there is not an explicit definition that covers all applications of supply

chain management [74] and [86]. The APICS Dictionary has described the supply

chain as:

- The processes from the initial raw materials to the ultimate consumption of the

finished product linking across supplier-user companies; and

- The function within and outside a company that enable the value chain to make

products and provide services to the customer [68].

The Supply Chain Council describes the supply chain as:

The supply chain, a term increasingly used by logistic professionals, encompasses

every effort involved in producing and delivering a final product from the supplier's

supplier to the customer's customer. For basic processes-plan, source, make,

deliver- broadly define these efforts, which include managing supply and demand,

sourcing raw materials and parts, manufacturing and assembly, warehousing and

inventory tracking, order entry and order management, distribution across all

channels, and delivery to customers[68].

For a review to the different definitions and activities of SCM see [29], [32], [86]

and [17]. Among these different definitions we select the definition reported by

Lambert and Cooper [63] which is based on the definition suggested by Global

Supply Chain Forum (GSCF). The definition of SCM as developed and used by them

is as follows:

Supply Chain Management is the integration of key business processes from end user

through original suppliers that provides products, services and information that add

value for customers and other stakeholders.

In this definition, a supply chain management is referred to as an integrated

system, which coordinates a series of inter-related business processes. These

processes make a network which begins from the extraction of raw material from the

earth, transporting of raw materials to firms, transforming these materials into

6

finished products, warehousing these products and finally distributing these products

to retailers or customers. In addition, information exchange among various

businesses (e.g. suppliers, manufacturers, stock clerks, distributors, retailers) is also

one part of these processes. Figure 1 shows the procedure of these processes in

different chains.

Miners/

The:-+- Raw
earth Material

Extractors
M:a.1ltllacturers

Physical Distribution
& Warehousing .~~' ____ --'

_. J"~"l ..
Component FInal Product . I\V'holesalers ~".! Retailers L ... Fwal

Manufucturers Manufacturers· " r Consumer<;

~
Fig 1-1: Activities and finns in a supply chain. Source: New and Payne [75].

1.1.2 Internal and external Supply Chain

Better understanding of supply chain management reqUIres us to distinguish

between internal and external supply chains.

The internal supply chain is that portion of a given supply chain that occurs within an

individual organization, whereas the external supply chain extends to the key

suppliers and customers [51]. In fact, the internal supply chain is a structure that

could be seen in many businesses and it is not uncommon for an organization to have

multiple links that span in different locations and different responsibilities. However,

the external SC is more complex; a business organization has typically linkages to a

wide range of suppliers, who supply a number of products and services and purchase

materials for it, and also to multiple customers. Treatment and managing of these

different organizations together in a whole SC on the basis of good relationships

among the parties concerned is not easy. There are several issues that should be

noticed for selecting external members. First, the competitive situation that exists

between prospective SCM members has to be identified. The task of enhancing

cooperation between two companies that are members of one supply chain, while

being competitors in other markets, seems difficult if not impossible. In other words

7

the SCM organization will be more productive when the participants are not direct

competitors in other markets. Secondly, all companies and their representatives that

wish to participate in a SCM must follow similar goals. It is worth noting that

'similar goals' do not mean that members should have identical goals, but "their

respective goals must be compatible with the overall SCM initiative". Thirdly, SCM

have a great potential when all organisations involved with the chain feel their

involvement is beneficial to their own business. In an internal supply chain one part

of organisation may not benefit from a process but still cooperate to follow the goals

of the organisation, while in an external supply chain such cooperation is

meaningless [51].

1.1.3 Global supply chain

Astonishing developments in the computer and information technology has led to

the development of the global marketplace. It is believed that "the emergence of

global marketplace necessitates that SCM must be refocused in a global network

context. In this context, the term used to capture the integration of activities and

processes among organizational entities is referred to as global supply chain

management (GSCM)" [53]. Clearly the aim of SCM and GSCM is the same with

the only difference stemming from their context.

More concisely a global supply chain (GSC) is an extension of the external supply

chain. Global supply chain occurs when some of the external portions of the supply

chain (key supplier and/or customers) are abroad and the business has linkages to

them. It is worth noting that there is difference between an internal supply chain

within an individual organisation that has some links abroad and a GSC that links

several organisations [51]. However, the GSCM are more difficult and complex than

domestic SCM. Different taxes and duties, differential exchange rates, trade barriers,

transfer prices, sources of uncertainty such as government stability and general

infrastructure of particular country, are critical issues that should be considered when

designing any global supply chain [89].

8

1.2 Supply chain decisions area

There are two approaches in the literature for classifying supply chain decision

area: (1) classification based on temporal consideration and, (2) classification based

on functional consideration.

1.2.1 Classification based on temporal consideration

Generally, SCM decisions based on temporal consideration can be classified into

2 broad categories: strategic and operational. Strategic decisions are concerned with

how to link the essential parts that affect the process of SCM, while operational

decisions focus on one part of the process. Strategic decisions are long term;

normally more than one year, and make SCM policies, whereas operational decisions

are short term and active day to day. Strategic decisions are global and try to

incorporate all aspects of SCM, while operational decisions are local and organise

each part [90].

Accepting this classification, Ganeshan and Harrison [42] believe that there are

four major decision areas in supply chain management including location, production,

inventory, and transportation (distribution). They note that there are both strategic

and operational elements in each of these decision areas.

Thomas and Griffin [87] define three categories of operational coordination that are:

buyer-vendor, production- distribution, and inventory-distribution. For the strategic

issues, they consider that it may include: "plant or distribution centre openings and

closings, allocation of equipment to manufacturing facilities, selection of a location

or locations for manufacturer of raw product, and evaluation of changes in the flow

of particular product through the supply chain."

Another possible classification differentiates among strategic, tactical, and

operational decisions [9]. Tactical planning usually handles more variables than

operational planning and less than strategic planning and extends over 3 to 12 month.

According to Min and Zhou [71]"the classes of supply chain problems encountered

in strategic analysis include location-allocation decisions, demand planning,

distribution channel planning, strategic alliances, new product development,

outsourcing, supplier selection, information technology (IT) selection, pricing, and

network restructuring." They emphasise that although most supply chain issues are

strategic in nature, there are also some tactical problems. These issues include

9

"inventory control, production/distribution coordination, order/freight consolidation,

material handling, equipment selection, and layout design". And finally the problems

encountered with operational decisions include "vehicle routing/scheduling,

workforce scheduling, record keeping, and packaging."

1.2.2 Classifying based on functional consideration

Johnson and Pyke [59], without clearly distinguishing between strategic and

operational decisions, have divided SCM into twelve areas: location, transportation

and logistics, inventory and forecasting, marketing and channel restructuring,

sourcmg and supplier management, information and electronic mediated

environments, product design and new product introduction, service and after-sales

support, reverse logistics and green issues, outsourcing and strategic alliances,

metrics and incentives, and global issues. For each of these twelve areas, they have

provided a brief description of the basic content and referred the reader to some

published articles.

Biswas and Narhari [14] have divided supply chain into four major decision areas:

procurement, manufacturing, distribution, and logistics. They suggest that there are

strategic, tactical, and operational questions in each of these areas and refer to

Shapiro [83] for details.

1.3 Supply Chain Modelling-mathematical approach

Although the literature dealing with decision models in SCM are extensive, only a

few articles have tried to create a topology or taxonomy of mathematical models.

Traditionally, decision variables of different stages in supply chain have been

optimized separately and in this way the complexity of models were reduced. The

idea of coordinated decision between different stages began about 1960 by Clark and

Scarf when they studied the multi-echelon inventory/distribution systems [87]. Since

that time many researches have investigated the multi-echelon inventory and

distribution systems. Some of these notable efforts have been addressed in sections

1.4 and 2.6. It is obvious that developing models for multi-echelon systems is more

complex than a single-echelon. Some of the most important reasons for this

complexity according to Biswas and Narhari [14] are: "large scale nature of the

10

supply chain networks, hierarchical structure of decisions, randomness of various

inputs and operations, dynamic nature of interactions among supply chain elements."

However, the key concept in SCM that discriminates it from the traditional

activities (e. g. marketing, manufacturing, etc.) is the integration between different

chains, horizontally or vertically. Significant efforts have to be devoted to creating

such models. Since the supply chain management is a widespread and

interdisciplinary subject, no model can cover all aspects of supply chains. Clearly,

each of the strategic, tactical and operational categories requires a different model.

Models, which are able to describe strategic decisions, are huge and need a

considerable amount of data and therefore these models often provide approximate

solution to the decisions they describe. On the other hand, operational decisions are

short term, and focus on activities on a day-to-day basis. Therefore these models due

to their perspective often consider great details and provide optimal or near optimal

solutions for the operational decisions [42].

However, model performances vary from chain to chain and from business to

business. As a result, numerous mathematical models have been developed to cater

for the various problems encountered.

1.3.1 Taxonomy of Supply Chain Modelling-mathematical

approach

In this section we try to give a taxonomy of mathematical models that can be

applied to performing and analysing SCM problems. It should be noticed that this

taxonomy is different from Operational Research (OR) models on SCM. For a

review on OR/SCM models, the reader is referred to Shapiro [82], Arns et al. [7],

Huan et al. [56].

Generally, mathematical models can be divided into two broad categories:

deterministic and stochastic [10] and [54]. In deterministic models, the parameters -

are known exactly; while in the stochastic models there is at least one parameter that

is assumed to follow a particular probability distribution.

According to Beamon [11] the supply chain design and analysis can be divided

into four categories of mathematical modelling approach. These four categories are:

deterministic analytical models, stochastic analytical models, economic models, and

simulation models.

11

Shapiro [83] and [82] has highlighted the role of infonnation technology (IT) for

the purpose of integrated supply chain. He has distinguished between transactional

IT and analytical IT and then supposed that analytical IT involves the

implementation and application of two types of mathematical models: descriptive

models and normative models. Descriptive models are models that should be

developed to clear functional relationships in each chain and outside the chain. These

models include forecasting models, cost relationships, resource utilization

relationships and simulation models. Normative models are models that help the

manager to make better decisions, while the tenn 'normative' refers to processes for

identifying nonns that the company should try to achieve. He supposes that

normative models and optimization models are synonyms for mathematical

programming models, while mathematical programming models include linear

programming, mixed integer programming, non linear programming, stochastic

programming and all other classes and methods that have been studied in field of

operations research. He remarked that "descriptive models are necessary but not

sufficient for realizing effective decision making and similarly, an accurate

management accounting model of manufacturing process costs is necessary but not

sufficient to identify an optimal production schedule"[82].

Min and Zhou [71] by referring to Budnick et al. [15] , Silver [84] and Zipkin [96]

noted that "some supply chain models based on inventory theory and simulation

contain both deterministic and stochastic elements and consequently should be

treated as hybrids". They also suggest that another category called 'IT-driven

models' has to be added to the taxonomy to reflect the current advances in IT for

improving supply chain efficiency. Therefore, by their taxonomy the supply chain

models are divided into four major categories: deterministic (non-probabilistic),

stochastic (probabilistic), hybrid, and IT-driven.

1.4 Literature Survey

Although the general literature on SCM is extensive, there is a lack of literature

on supply chain scheduling models, i.e. the literature that consider the benefit of

coordination between different stages of a SC network from the viewpoint of

scheduling models. There appears to exist only one paper that has explicitly

12

addressed the type of problem, being considered in this thesis. We will consider this

paper and also some papers with similar spirit to our work will be considered.

Vidal and Goetscha1ckx [89] offer an extensive survey of strategic production­

distribution models on global supply chain. Their special attention is focused on

considering the efficiency of mixed integer programming (MIP) models for solving

these kinds of problems. They conclude that although there is not a consensus on the

efficiency of MIP, the important role of MIP models for considering global supply

chain process cannot be relinquished. Moreover, they mention that the factor of

uncertainty is not considered in the most formulation and also some international

factors such as exchange rates, taxes and duties are not perfectly described by the

existing models.

Weng [93] considers the situation in which one manufacturer and one distributor

mutually share all relevant information to make the decision policies that maximize

their individual expected profits. They operate to meet random demand for a product,

which has a short product life cycle. He shows that neglecting coordination,

especially when random demand is very sensitive to distributor's sales prices, or

when the manufacturer's unit sales price is much higher than the manufacturer's unit

cost, can be very costly. Weng [94] has extended his work by analyzing the same

problem in confronts of risk. In this part, he shows that how by decreasing the risk,

the expected benefit decrease and vice versa.

Sarmiento and Nagi [81] offer a review on integrated production-distribution

systems. Based on previous studies they point out some substantial benefits of

production-distribution integration with commenting that many aspects of such

integration are not yet considered.

Erenguc, Simpson and Vakharia [41] survey the similar problem with some

different formats. They emphasise on the role of information technology for further

research and point out that since from individual chain perspective, sharing the

information might reduce the competitive efficiency of company, then there is a need

to investigate different aspects of such sharing information and provide a mechanism

for it. They also mention the need of simulation models that optimize three stages of

a supply chain network, i.e. supplier, distributor and manufacturer, simultaneously.

Croom, Romano and Giannakis [32] present an analytical survey with the aim of

giving a framework for classification and analysis of major issues on SCM and also

describing and evaluating the methodologies that are already used in SCM literature.

13

Their literature review shows that 83% percent of literature is empirical while only

17% of them are theoretical. In the empirical literature 27% is prescriptive and 56%

is descriptive, while in the theoretical literature these percentages are 6% and 11 %

respectively. Accordingly they suggest the need for more research in the theoretical

aspects of SCM.

Krajewski and Wei [62] have investigated the value of production schedule

integration in supply chain. They have provided a model for evaluating the effect of

some factors such as holding costs, supplier lead times, forecasting effectiveness, and

schedule change costs on the value of sharing an integrated production schedule in a

supply chain. Their study is based on performing the model on two supply chains

involving 10 plants. One of their significant results is that schedule integration is not

always beneficial and for some environments it is better to perform production

schedule independently. These situations are discussed in the paper in detail.

Lee and Kim [65] in response to Erenguc et al. [41] provide a hybrid model in

which the analytical and simulation models are combined for considering the

problem of production-distribution. They hold the view that disregarding operation

times, which is normally assumed in analytical models, decreases the reality of

problem. To solve this problem they develop a simulation model which has a general

production-distribution characteristic. Therefore, the machine operation time and

distribution operation time constraints can be considered as stochastic factors by that

model and the results will be adjusted by analytical model which is developed

independently. Based on experimental result, they report that adjusted operation time

of the system can have a significant impact on the production-distribution plan.

Chen and Paulraj [17]offered an extensive survey of over 400 articles on SCM to

identify the constructs and measurement for supply chain management.

Elmahi et al. [40] consider the problem of batch delivery optimization in a supply

chain under the just-in-time condition. They provide a genetic algorithm that

minimizes the global advance time of the whole demand and moreover, maintains a

minimal level of product in process. Based on experimental result, their algorithm

provides the optimal solution in more than 80% of cases.

The explicit problems we will explore in this dissertation have been investigated

by Hall and Potts [49]. Hall and Potts consider a variety of scheduling, batching and

delivery problems that arise in an arborescent supply chain, where a supplier makes

deliveries to several manufacturers, who also make deliveries to customers. The

14

objective is to minimize the overall scheduling and delivery costs, using several

classical scheduling objectives. For each problem, they either derive an efficient

dynamic programming algorithm (DP), or demonstrate that it is intractable. They

demonstrate that cooperation between manufacturer and supplier can reduce the total

system cost by at least 20% or 25% or even by up to 100%, depending on the

scheduling objective. The details of each problem, appropriate to the problem that we

will explore in this thesis, are explained in the next chapter.

1.5 The aim of this thesis

According to our best knowledge, the only paper that considers the benefit of

cooperation between different stages of a supply chain network from the viewpoint

of scheduling models is that of Hall and Potts [49]. They have highlighted it too that

"the benefit and challenges of coordinated decision making within supply chain

scheduling models have not been studied" before. Therefore, the most important

feature of their work is that they have introduced a new class of research in the filed

of supply chain management. They have provided a DP algorithm for each problem

under consideration. Dynamic programming algorithm, as will be explained in the

next chapter, takes advantage of overlapping sub-problems by solving each of them

once, however it cannot handle large-scale problems. Although, the authors have not

coded and tested their algorithms, it can be clearly observed that the complexity of

their algorithms are such that by increasing the number of jobs manufacturers and

customers the computing running time increases.

In this thesis we attempts to solve the problem of minimizing the sum of flow

times with batching and delivery in different steps of a supply chain that includes a

supplier, several manufacturers and several customers. Our approach for solving the

problems is to provide a branch and bound methods rather than DP algorithms of

Hall and Potts. Furthermore, the DP algorithms of Hall and Potts for the same

problems are coded. The significant advantage of branch and bound algorithms over

DP will be considered. It will be also discussed that for a combined problem, DP can

only handle the problem instances with only a few customers and very restricted

number of jobs. Since the main idea of coordination between different stages of

supply chain can be found in the combined problem, improving the algorithms that

15

can handle the problems with more combination of manufacturers, customers and

jobs is very essential.

16

2. Scheduling

2.1 Definition

Chapter 2

"Scheduling concerns the allocation of limited resources to tasks, over time. It is a

decision making process that has the goal of optimizing one or more objectives" [78].

Scheduling problems are very common. They exist whenever there is a choice of

selecting a number of tasks. The problem could be one of sequencing jobs in a

machine shop, aircraft waiting for landing, programs to be run at a computing centre

or usual tasks faced every day. Resources may be machines in workshop, runways at

an airport, and so on. Each task could have a different priority, restriction for starting

time, and due date. The objective function in a scheduling problem may take many

forms, such as minimization of the completion time of the last job, or minimization

of the number of tardy jobs and so on.

Scheduling is a decision making process that arises in most manufacturing and

production systems, as well as in transportation and distribution settings. The

scheduling functions have to interface with many other functions. These interfaces

differ from one situation to another and also depend on system organization. For

instance, the scheduling function is affected by the production planning process,

which handles medium to long term planning for the entire organization. This latter

process must consider inventory levels, forecasts, and resource requirements to

optimize at a higher level the product mix and long term resource allocation. Clearly,

decisions made by the planning function have an impact on scheduling.

17

2.2 Scheduling Models: mathematical approach

Sequencing and scheduling theory is primarily concerned with the development of

mathematical models and techniques. Generally, mathematically based scheduling

models are divided into two categories: deterministic models, and stochastic models.

Deterministic models are models in which job data such as processing times, release

dates and due dates are known and it is assumed that there are a finite number of jobs

to be scheduled and a single objective to be minimized. In stochastic models, there

are also a finite number of jobs to be scheduled, but jobs data are given in terms of

probability distributions. In these models, a single objective has to be minimized.

There are a number of mathematical approaches for solving scheduling problems.

Linear and nonlinear programming, integer and mixed integer programming, network

analysis, dynamic programming, branch and bound method, game theory, etc. are

some common mathematical tools that can be applied to solve a scheduling problem.

Choosing a best method for solving a problem, which may be solvable in different

ways, is a challenge that needs experience and insight. This challenge becomes more

important, especially when it is proved that a problem cannot be solved in a

polynomial time (see section 2.5). Appropriate with the materials of this thesis, in the

next two subsections we introduce two important methods, which are dynamic

programming and branch and bound methods.

2.2.1 Dynamic Programming

Dynamic Programming (DP) is a mathematical theory or a technique that was

developed further by Bellman for solving multistage decision problems first time in

1950s. Since then, DP algorithm has had various applications in the areas of

engineering, economics, commerce, management, etc.

What distinguishes dynamic programming from other optimization techniques,

and particularly linear programming, is that although it cannot handle large scale

problems, it is suitable for solving problems with more complexity than linear

programming when the size is not large [24]. This method is usually used in

optimization problems in which a set of decisions must be taken for determining an

optimal solution. In the process of making decision, sub-problems of the same form

often appear. The solution of each of the sub-problems will be stored. The efficiency

18

of DP stems from the fact that given sub-problems may arise more than once. Since

the given sub-problem is solved and its solution is stored, the need for repeated

calculation is therefore removed. This procedure reduces the amount of computation

required [30].

Dynamic programming algorithm usually consists of 4 steps:

1. Characterize the structure of an optimal solution.

2. Recursively defines the value of an optimal solution.

3. Compute the value of an optimal solution in bottom-up fashion.

4. Construct an optimal solution from computed information.

2.2.1.1. Evaluating a problem

The following two observations are helpful in determining if a problem can be

solved using dynamic programming:

1. Optimal substructure

If an optimal solution to a problem contains optimal solutions to sub-problems,

we say that this problem exhibits optimal substructure. Whenever a problem exhibits

optimal substructure, it is a good clue that dynamic programming might apply [30].

2. Overlapping sub-problems

When we develop a recursive algorithm to solve the problem, instead of always

generating new sub-problems, the same sub-problems may arise over and over. We

call these sub-problems "overlapping sub-problems". Dynamic programming

algorithm takes advantage of overlapping sub-problems by solving each of them

once and then storing the solution in a table where it can be looked up when needed.

However, the space of sub-problem must be relatively "small" so that dynamic

programming is applicable [30].

2.2.1.2 Basic terms and variables

Now let's introduce the basic terms and variables of dynamic prograrmmng

algorithm:

1. Stage

The problem may be divided into a set of stages, with each stage requiring a

policy decision. Any dynamic programming problem requires a set of interrelated

decisions, where each decision corresponds to one stage of the problem.

19

2. State

Each stage contains a number of states. The states are the vanous possible

situations at any given stage. The value assigned to each state can be interpreted as

the intermediate contribution to the objective function. These values show the cost of

transferring from one state of given stage to next stage and have to be stored

somewhere for all states of each stage. In most problems, the objective is finding the

minimum or maximum value through the problem. Then, the minimum or maximum

value for transferring the problem from the current state of given stage to the next

stage is crucial.

3. Decision

As cited above at a gIven state of each stage, there are different options to

determine the next stage. Hence, a decision must be made for determining the best

options. This decision is independent of the previous stage, i.e. it is not important

how we have got to the current state. "For dynamic programming in general,

knowledge of the current state of the system conveys all the information about its

previous behaviour necessary for determining the optimal policy henceforth. This

property is "Marcovian property" [54]".

4. Recursive relationship

The same decision logic applies to any given state in all stages. This gives this

opportunity to create a recursive relationship that given the information of previous

stages provides the optimal policy for the current stage.

2.2.1.3 Formulation

Formulating a dynamic programming problem may differ from case to case.

However the essential idea is the same and the problem can be formulated as follows

according to Hillier and Liberman [54]. Let:

N = Number of stages.

n = Label of current stage ((n = 1,2, ... ,N) .

S n = Current state for stage n .

x = Decision variable for stage n . n

x: = Optimal value of x n (givens n).

20

f (S n ,x n) = Contribution of stages n, n + 1, ... ,N to objective function if system starts

in state S n at stage n , immediate decision is x n ' and optimal decisions are made

thereafter.

f n* (S n) = f n (S n ,x:) .

The recursive relationship will always be of the form

f n* (S n) = max {f n (S n ,x n) }
Xn

or f n* (S n) = min {f n (S n ,x n)} ,
Xn

where f (s n ,x n) would be written in terms of S n ,x n ,f n*±l (s n±l) , and probably some

measure of the immediate contribution of x n to the objective function.

Writing f n* (s n) in term of f n*±l (s n±l) implies that they make a recursive relationship.

2.2.1.4 Forward and Backward DP

A choice can be made between forward and backward dynamic programming

corresponding to how we approach the solution to the problem.

There is a forward dynamic programming method when the solution procedure starts

from the first stage (n = 1) and moves forward stage by stage. In this case f (s n ,x n)

would be written in terms of fn*-l(Sn-l) (other elements don't change). In contrast, it

is a backward dynamic programming when the solution procedure starts at the end

(n = N) and moves backward stage by stage. In this case f (s n ,x n) would be

written in terms of f n*+l (s n+l) (other elements don't change).

2.2.1.5 Deterministic and Stochastic DP

A Dynamic programming problem is deterministic when at each state of the

problem, the next state of the problem can be completely determined by policy

decision at the current stage. In contrast, the probabilistic or stochastic dynamic

programming happens where there is a probability distribution for what the next state

will be.

2.2.2 Branch and Bound method

Branch and Bound (B&B) method belongs to the class of implicit enumeration

methods that was first proposed by Land and Diog in 1960 for linear programming

21

[1]. B&B algorithm is one of the efficient tools and exact methods that can be

applied for solving various problems, especially NP - hard (see section 2.5) discrete

optimization problems. The main idea in B&B stems from the fact that the entire

enumeration search for a problem is impossible due to exponentially increasing

number of potential solution space. Hence, the use of bound for the function to be

optimized enables B&B method to search some parts of the solution space implicitly

[26]. One of the most powerful aspects of B&B can be viewed in performance of

Mixed Integer Programming. The details of B&B method can be found in most

mathematical optimisation books, for example see Minux [72]. The general idea and

terminology of this method will be described in the following section.

2.2.2.1 General idea and terminology

Assume K 0 is a set of feasible solutions for minimizing problem! (K). The

general idea of B&B can be compressed in two concepts; Branching and Bounding.

1. Branching

First concept is that during B&B, set K 0 can be partitioned into some simpler

subsets while, each subset includes a set of feasible solutions. This is called

Branching. The strategy chosen for solving a problem, and also given the type of the

problem, the number of branches derived from the original problem might change.

However, since the procedure will be repeated recursively, i.e. each subset of the

original problem will be divided into new subset and so on, then the origin problem

and all its subsets form a tree structure, called search tree.

Based on tree data structure terminology, the original problem is placed at root node.

A root node is a specific node in a tree structure from which all operations start.

Each node will have many children, which will be generated in accordance to the

branching strategy. A node with children is called parent node, then root node is a

node that has some children but has no parent. A node with no children is called lea!

node. Leaf nodes are the farthest from the root node while all variables at leaf nodes

are fixed. A child node or descendant node is a node that is linked to by a parent

node, i.e. node B is a child of node A if and only if node B is a successor node of A .

2. Bounding

Another concept of B&B is bounding, which is a way for pruning some parts of

solution space without searching. This way is completely interrelated to the structure

22

of problem and is different form situation to situation. In a minimization problem

such asf (K), it is not usually difficult to find an initial value that is greater than or

equal to every feasible solutions of set K o. This value is called initial upper bound.

Whenever a new node is generated, using the strategy, which is tightly dependent on

the structure of problem, a lower bound will be calculated. Lower bound is defined as

opposite of upper bound and it is the minimum value that f (K) may have at each

considering point of the problem. Calculating lower bound follows the strategy that

one chooses for solving the problem and will be implemented in a different way for

different problems. The core idea in B&B is that for each current node, if lower

bound is grater than or equal to upper bound, this node will be pruned. It is worth

noting that when a node is pruned, i.e. discarded, all subsets (children) that could be

derived from this node will be discarded. This is the most important property of B&B

method that allows decreasing the number of enumeration. Hence, providing good

upper bound and lower bound is crucial and the merits of B&B method are entirely

related to proper choices of upper and lower bounds.

A node is fathomed if:

1. It is a leaf node, i.e. all variables are fixed.

2. The lower bound exceeds or equals the upper bound.

In the process, the lower bound strategy may actually produce a minimum value at

leaf node. This value has to be compared with the upper bound; if it is less than

upper bound then the value of upper bound must be replaced by it. This value is

called incumbent upper bound.

2.2.2.1 Breadth-first search and Depth-first search methods

There are several schemes for traversing or searching a tree. Breadth-first search

and depth-first search are two of most important schemes that will be described here:

Breadth-first search is an uninformed search scheme that considers all nodes of a

tree systematically. In this method we consider systematically all nodes on a given

level of the tree before going deeper. For the following graph:

23

Figure 2-1.

a breadth-first search starting at A, and assuming that at each level we start from the

node which is placed at the left side, will result in the following order: A, B, C, E, D,

F,G.

In contrast to the breadth-first search, the depth-first search is an uninformed

search that progresses by expanding the first child node of the search tree that

appears and thus going deeper and deeper until a goal state is found, or it hits a node

that has no children. Then the search backtracks and starts off on the next node.

Hence, in depth-first search method we go deep before going wide. We start at the

root node and go as far as possible along a branch before backtracking. For the above

graph a depthe-first search starting at A, if assuming that at each level we start from

the node which is placed at the left side and also assuming that the search remembers

previously-visited nodes and will not repeat them, will result in the following order:

A, B, D, F, E, C, G [1].

2.3 Framework and notation

In this section we introduce some fairly standard notations that are used

throughout this thesis. Let there be a finite number of jobs, n , and a finite number of

machines, m . Subscript i refers to a machine and subscript j refers to a job.

Normally, the pair (i, j) refers to the operation of job j on machine i .

Processing time (Pi,j). The Pi,j represents the processing time of job j on

machine i . The index i can be omitted if the processing time of job j is

independent of the machine or when the job is processed only on one given machine.

24

Release date (rj). The release date, or ready date or ready time rj , is the earliest

time that job j can start its processing and is the time that the job arrives at the

system.

Due date (d j). The due date is the time that is promised to customer for the

processing of the job to be completed. If a job is completed after its due date, a

penalty is incurred.

Weight (w j). This is a priority factor, which refers to job j to show its importance

or its cost relative to the other jobs in the system.

Completion time (C i ,j). The completion time of job j on machine i is the time at

which the processing of job j on machine i is finished. Similarly, the completion

time of job j in a system is the time at which job j can exit the system and is denoted

byC j •

Flow time (Fi ,j). The flow time of job j is the amount of time job j spends on

machine i . Similarly, the flow time of job j on system is the amount of time job

j spends in the system. It is worth noting that flow time is equivalent to completion

time when release time is zero.

Makespan (C Max). The makespan is the completion time of the last job to leave the

system.

Lateness (L j). The lateness of job j is defined as L j = C j -d j . The lateness is

positive when completion time of job j is grater than its due date and it is negative

when job j is completed early.

Tardiness (T j). The tardiness of job j is defined as T j = Max (C j -d j ,0)

= Max (L j ,0) . The difference between lateness and tardiness is that tardiness is

never negative, but lateness may be positive or negative.

25

2.3.1 Standard scheduling problem form:

The standard scheduling problem form, according to Graham et al [46], is a 1/31 r ,
where a describes the machine environment and contains a single entry, /3 defines

the job characteristics or restrictive requirements and may contain no entries, a single

entry, or mUltiple entries and r indicates the objective function to be minimized and

usually contains a single entry.

2.3.1.1 Machine environment (a)

There are many possible machine environments, specified in a:

Single machine (1); The case of a single machine is the simplest of all possible

machine environments. Consideration of single machine problems is important

because the results not only are usable in the single machine, but also provide a basis

for heuristics for parallel machines or series machines. In fact, scheduling problems

in more complicated environments often decompose into sub-problems that are

single machine problems.

Identical machines in parallel (Pm); In this case there are m identical machines in

parallel and job j requires a single operation which is possible to be processed on any

one of the m machines. This is an important case from the practical point of view,

since it is a common problem in the real world.

Flow shop (lm); There are m machines in senes and each job reqUIres one

operation on each one of the m machines. All jobs have the same routing, i.e., each

job should be processed from the first machine to the second machine and so on.

Open shop (Om); There are m machines and each job has to be processed on each

of the m machines. The difference between the flow shop and the open shop is that

in the open shop the processing time of some jobs may be zero and different jobs

may have different routes.

Job shop (1m); There are again m machines and each job has its own route. Each

job visits each machine and in some cases it is allowed for a job to visit a machine

more than once.

There is many other possible machine environments in the field of a which is cited

in standard scheduling books.

26

2.3.1.2 Job characteristics (fJ)

There are also possible entries in respect of fJ. In the following some important

possible entries in the fJ field that are used throughout this thesis are introduced:

Release date (rj); When symbol rj' i.e. release date, is presented in the fJ field, it

means that the processing of job j cannot be started before its release date.

Preemptions (prmp); When symbol prmp, so called pre-emption, is presented in the

fJ field, it means that it is allowed to interrupt the processing of a job at any time and

put a different job on the machine. When a preempted job is put back on the machine,

it only needs the machine for its remaining processing time.

Precedence constraints (prec); This situation may appear in single or parallel

machine environments and imply that some jobs have predecessors. A job that has

predecessors is not allowed to start its processing before the process of its

predecessors is completed.

Breakdowns (brkdwn). When this symbol is presented in the fJ field, it implies that

machine or machines are not available continuously.

Permutation (prmu). This symbol may appear in flow shop problems. When this

symbol is presented in fJ field, it implies that the order in which the jobs meet the

first machine will be maintained for other machines throughout the system.

2.3.1.3 Objective function (r)

The objective to be minimized (r) is always a function of completion time and

depends on the schedule. The following are some examples of objective functions we

will address through the thesis:

Minimizing Makespan (C Max). As cited above the makespan is equivalent to the

completion time of the last job to leave the system. Minimizing makespan is one of

the most common objective functions in the literature and implies the high utilization

of the machine.

Minimizing Maximum Lateness (LMax). The maximum lateness shows the worst

delay in respect to due dates.

Minimizing Total Completion time (IC j)' As the term shows, the aim in this

objective function is to minimise the sum of the completion times of all jobs in the

27

schedule. Minimizing the sum of the weighted completion times (LW .C .) is defined
J J

similarly.

Minimizing Total Flow time (L Fj). In the literature, the problem of minimizing

sum of flow time is called the total flow time problem or F problem. Similarly the

problem of scheduling to minimize weighted flow time is called F;v problem.

2.4 Scheduling with batching

Scheduling with batching is a subject that has recently received growing interest.

The cause of this attention is that the processing of jobs in a batch or delivery of

them in batch form may be cheaper or faster than processing or delivering them

individually. The batching problem may occur in different domains. To state

different types of batching problems we first introduce family scheduling model.

2.4.1 Family scheduling model

The number of jobs may be grouped to form a family based on their similarity. In

fact in some cases these division of jobs to groups is necessary or worthwhile. One

such case may occur where machines require setup times for processing jobs with

different characteristics. The setup may be needed for washing the machine or for

changing a tool. Consider the following example described in Monna and Potts [73].

An example is the process of production of different colours of paint on the same

machine. A setup time is necessary for cleaning the machine whenever there is a

colour change. It should be noted that here the setup time depends on both the colour

being removed and the colour for which the machine is being prepared.

Classifying jobs into families gives the opportunity that just one setup time IS

required for a number of jobs belonging to the same family. However, a setup time is

necessary when the schedule starts and every time the machine exchanges from

processing jobs in one family to jobs in another family.

In family scheduling model, a batch is the maximum set of jobs that could be

scheduled contiguously on a machine with one setup time. It is worth noting that

large batches i.e. batches with too many jobs, give the advantage of high machine

utilization because of the small number of setup time. On the other hand, processing

28

a large batch can delay the processing of important jobs that may belong to other

families.

Batch delivery. Another situation where batching may produce efficiency is when

the processed jobs have either to be delivered to another machine for further

processing or to be delivered to customers. If there is a cost for dispatching jobs, then

delivery of jobs in batch can reduce the total cost of transporting. In this situation a

job may be processed but stays in the system to be delivered with other jobs which

belong to one batch. It should be noted again that large batches have the advantage of

reducing total delivery cost because the number of deliveries is small, but on the

other hand, existing jobs in the system can increase the total flow time of system.

There are two types of family scheduling models depending on when the jobs

become available: batch availability andjob availability models.

Batch availability model is a model in which a job only becomes available when the

complete batch to which it belongs has been processed. For example, this situation

arises when the jobs in a batch are placed on a pallet, and the pallet is only moved

from that machine when all the jobs are processed [79].

In contrast to batch availability, job availability, which is known in the literature

as item availability, is a situation in which a job can be available immediately after

it's processing is completed.

2.4.2 Batch processing model

Usually, in scheduling problems, it is assumed that a machine can process at most

one job at a time. However, there are some machines that can process more than one

job simultaneously. Hence, another situation for batching problem occurs when a

group of jobs could be processed together. A group of jobs that could be processed

together is called a batch and the machine that can process several jobs

simultaneously is called batching machine or batch processing machine. Bum-in

operations in semiconductor industries or heat treatment operations in metalworking

are examples encountered with this situation [38]. The completion time of all jobs,

which are processed together in a batch, is the same and it is equal to the greatest

processing time of jobs within batch.

29

2.5 Algorithms and Complexity

Full treatment of the complex theory is outside the remit of this thesis. Here, we

give a general definition of the theory and describe aspects relevant to the work in

this thesis.

2.5.1 Definition

"An algorithm is a method for solving a class of problems. The complexity of an

algorithm is the cost, measured in running time, or storage, or whatever units are

relevant, of using the algorithm to solve one of these problems" [95].

More specifically, the time complexity of an algorithm is measured by running time

while, the running time is the number of elementary operations required for

implementation of the algorithm. The running time can be expressed as a function of

the size of the input data, while the size of data usually measured in bits. Let n be a

parameter that shows the size of problem and T be the function that shows the

running time of an algorithm. By definition we say Tw (n) is the worst-case running

time of an algorithm if for any instance of problem with size n the running time is

less than or equal toTw (n). The worst-case time complexity is usually stated by

theO, 0, e, ~, and .Q notation.

Let I (n) and g (n) be two functions of n . Each of the five notations cited above is

intended to compare the rate of growth of I and g , or in other words they are some

mathematical notations used to describe the asymptotic behaviour of functions.

The meaning of first two notations, which are used throughout this thesis, IS

described below:

o Notation, which is read "big 0 notation". We say I(n) = O(g(n)) or I (n) is

O(g(n)) if and only if there exist positive constants c and no such that

I (n) ~ cg (n) for all n ~ no where n -7 00 • When we say I(n) = O(g(n)) , informally

we are saying that g grows faster thanI .

o Notation which is read "little 0 notation". We say I (n) = o(g (n)) or I (n) IS

o(g (n)) if and only if I (n}; (n) exists and is equal to 0 for all n ~ no where n -7 00
•

30

When we say f (n) = o(g (n», informally we are saying that g grows much faster

thanf .

2.5.2 Easy and hard problems

The theory of time complexity leads us to classify problems III respect of

complexity into two broad classes: easy problems and hard problems.

Easy problems are those that can be solved by polynomial-time algorithms. More

clearly if the running time is at most a polynomial function of the amount of input

data, then the calculation is an easy one" [95]. In contrast, the hard problems are

those that are not likely to be solved in polynomial time and for which all known

algorithms require exponential running time. In other words hard problems are

problems for which there are no guaranteed solutions in the form of a polynomial

function of the amount of input data.

It is worth noting that computation of some easy problems may take a very long time.

But they are still in the group of easy problems from this point of view that there is at

least a polynomial function of the amount of input data for these types of problems.

2.5.3 Decision problems

To classifying the complexity of problems in detail, we first need to introduce the

decision problem. A decision problem is one where the required answer is either

YES or NO. Therefore the decision problems are also called YES-NO problems. For

every optimization problem one can create a decision problem [78]. Consider the

following example. In problem 111 C max the makespan has to be minimized. Standard

optimization form of this problem is given below:

Makespan-Optimization problem) a set of jobs is to be scheduled on a single machine

while a processing time is associated to each job. The objective function is to find a

sequence to minimize makespan, i.e. to minimize the completion time of the last job

that leaves the machine.

We can transfer this problem to a decision problem in the following way:

Makespan-Decision problem) a set of jobs is to be scheduled on a single machine

while a processing time is associated to each job. Does a schedule with a makespan

less than given value K * exist?

31

It is easy to see that if an optimization problem is solvable in a polynomial time

then its decision problem is also solvable in a polynomial time. To do so, it is enough

to create an algorithm for the makespan-optimization problem to determine an

optimal value for makespan. We then can check to see whether the optimal value is

less than K * or not. The important point is that the converse is also true, i.e. it is

proved that if decision problem of a given problem is solvable then its optimization

problem is also solvable in a polynomial time [95].

2.5.4 Problem reduction

One of the most important rules in complexity theory is the concept of problem

reduction. It is natural that very often one problem is a special case of another

problem or equivalent to it or perhaps more general than it. Thus, an algorithm that

works for one problem may also work with some minor change for another problem.

"It is said that problem p reduces to problem p' if for any instance of p , an

equivalent instance of p' can be constructed [78]".

For example it is obvious that problem 111 L C is a special case of

problem 1" LW jC j , meaning that if we can solve problem 1" LW jC j then

problem 1" LC is also solvable with the same procedure. Using the terminology of

complexity theory we say that problem 1" L C reduces to problem 1" L W jC j and

it is denoted by 1" L C DC 1" L W jC j . It is worth noting that based on this concept a

number of problems can be reduced to others. In addition, it implies that if we prove

that a polynomial time algorithm exists for a problem, then the proof is extendable to

all problems that can be reduced to that problem. However, it should be noted that

the converse is not true. More specifically, if p DC p' and it is proved that a

polynomial time algorithm exists for p' , then certainly a polynomial time algorithm

exists for p , but if it is proved that a polynomial time algorithm exists for p , there

is no guarantee that problem p' can be solved in polynomial time. On the other hand

if it is proved that p is not solvable in a polynomial time, then p' is not certainly

solvable in a polynomial time. However if p' is not solvable in a polynomial time it

does not mean that we cannot find a polynomial time algorithm for p .

32

2.5.5 Complexity classes

As cited above the optimization problem and its decision problem are strongly

related together. The complexity of problems according to related decision problem

can be divided into four classes: classes P ,NP ,NP -complete andNP - hard.

2.5.5.1 Class P

It is said that a problem belongs to class P if its related decision problem is in this

class. Furthermore, A decision problem belongs to class p if there is an algorithm

A that can solve every instance of the problem in a polynomial time.

2.5.5.2 Class NP

We define this class of problems according to Wilf [95]. It is said that a problem

belongs to class NP if its decision problem belongs to class NP . Furthermore, a

decision problem Q belongs to class NP if there is an algorithm A that satisfies the

following:

1) For every YES instance I for which the answer is 'Yes', there is a polynomial

length certification C (l) such that when the pair (l ,C (l)) are input to algorithm A it

recognizes that I belongs to Q .

2) If I is some instance for which the answer is 'No' then there is no choice of

certificate that will cause A to recognise I as a member of Q .

To understand this class more clearly it can be said "class NP is the class of

decision problems for which it is easy to check the correctness of claimed answer

with the aid of a little extra information [95]". Hence, it should be noted that in this

definition we are not considering a method of solving the problem, but only

indicating a method for checking the solution. More specifically, class P contains

problems for which easy solutions could be found while class NP contains problems

the solution of which can be easily checked, but for which the actual solutions may

be very difficult to find.

33

2.5.5.3 Class NP -complete andNP - hard

Like other classes, a problem belongs to class NP -complete if its decision

problem belongs to this class. Furthermore, a decision problem belongs to class

NP -complete if:

1) It belongs to class NP and,

2) Every problem in NP can be quickly reduced to it.

A problem that satisfies condition 2 but not necessarily condition 1 is said to

beNP - hard. Thus, as a result the class NP - hard can be introduced as a class of

problems that are as hard as class NP -complete or even harder still.

2.6 Literature review

In this section we consider briefly the relevant literature related to the work on the

scheduling and batching problem. In the first section, the literature on single machine

scheduling problem in absence of release date will be considered. In accordance with

the first problem of this thesis the focus is on the batch availability problems while

the objective function is minimizing the sum of weighted or in-weighed flow time

(completion time). The second section, corresponding to the second problem of this

thesis, considers the problem of minimizing the sum of flow time (completion time)

in presence of release date. The literature on the problem of minimizing the sum of

completion time on two-machine flowshop, appropriate to the third problem of this

thesis, are surveyed in the third section. Finally, in the last section, the literature with

the gain of scheduling with batch delivery are reviewed. It should be noted that there

are only a few of papers with the same objective function of our work. Hence, in the

last subsection we review papers on a combined problem, even their objective

function is somehow different to that considered in this thesis.

2.6.1 Single machine without release date

One important class of batch availability models occurs when a machine requires

setup time. There are two types of problems with setup time (cost). The first type is

sequence-independent, under which setup depends only on the job to be processed.

Under the second possible assumption, which is sequence-dependent, setup depends

on both the job to be processed and the immediately preceding job. Such models

34

apply when jobs are partitioned into the families according to similarity, so that there

is no need for setup or changeover when one job follows another of the same family;

i.e., a setup is required only between different families and at the start of the schedule.

Coffman et al. [27] consider the problem of minimizing total completion time with

common setup time and prove that there exists an optimal schedule where the jobs

are sequenced in Shortest Processing Time (SPT) order. Furthermore, they show that

in the case where all families have a common setup time and the jobs are re-indexed,

i.e. there is only one family and jobs are sequenced in SPT order, the problem is

solvable by a backward dynamic programming algorithm that requires O(n) time,

where n is the number of jobs. However, most works on family scheduling under the

batch availability assumption is concerned with minimizing the total weighted flow

time. Albers and Brucker [3] have proved that this problem, even with common

setup time for all families, is NP-hard but is solvable in O(n log n) time in the special

case where all jobs have the same processing time and are sequenced in the non­

increasing order of weights.

Masson and Anderson [70] propose a number of properties of the structure of the

optimal solution of the problem of family scheduling under the batch availability.

Furthermore, they derive a branch and bound algorithm for solving the problem of

total weighted flow time. One of the most important aspects of their algorithm is to

prove that in the optimal sequence batches are in order of non-decreasing WPT.

Computational results imply that their algorithm is sufficient to handle problems up

to 30 jobs.

Cheng, Chen and Oguz [18] consider a problem in which n jobs of T different

types are to be processed on a single machine. The items are to be batched, such that

the jobs in each batch are of the same type. A setup time is incurred between batches.

The batches and the jobs within them are then to be sequenced to minimize the total

T+II
weighted flow time. A dynamic programming algorithm that runs in o(n ITT-I) is

offered.

Webster and Baker [92] consider the problem of scheduling groups of jobs on a

single machine. In respect of the problem of minimizing total flow times with batch

availability, in a case when there is only one family, they analyse properties that are

already established in the literature. They point out that the problem of minimizing

35

total flow times with multiple families is more complicated and the computational

complexity of F problem remains an open question.

Liaee and Emmons [67] considered a variety of family scheduling problems with

setup times under group technology assumption (GTA). Under GTA the job in a

family must be scheduled contiguously. In the case when the objective function is

minimizing total weighted completion times, they have shown that when the number

of families IS fixed, the optimal order of jobs can be found In

If=10 (nk lognk)~O(nlogn). They have also investigated a case when the

number of families is not fixed. In this case the problem is solvable only when the

setup times are sequence independent, otherwise using the proof established by

Rinnooy Kan [80] they have proved that even when each family contains only one

job and all jobs have the same weight, problem is NP - hard.

Crauwels et al [31] propose a branch and bound algorithm for solving the problem.

A lower bounding scheme based on a Lagrangian relaxation of the machine capacity

constraint is derived that improves their algorithm in respect of the branch and bound

algorithm which was provided by Masson and Anderson [70]. Also, a multiplier

adjustment method to find values of the multipliers is used. They report that the

computational experience with instances having up to 50 jobs shows that the lower

bounds are effective in restricting the search.

A branch and bound algorithm based on a new lower bound is provided for the

problem of minimizing weighted flow time of a set of jobs, which are divided into

F families on a single machine by Dustall, Wirth and Baker [37]. The problem is

considered under condition in which there is no need for setup time between jobs

belonging to the same families, however a setup time is necessary whenever machine

switch from processing a job in one family to a job in another family. Also an initial

setup time is required when machine starts its processing, which is equal to the setup

time of relevant family. They have also assumed that the setup times are sequence

independent, that is the setup time between batches depends only upon the family

being switched to. They have shown that their algorithm can solve instances with up

to 70 jobs.

Potts and Kovalyov [79] offer a review of the scheduling with batching problem.

Their special attention is focused on considering the efficiency of dynamic

programming algorithms for solving this type of problems.

36

2.6.2 Single machine with release date

The classical problem of minimizing the sum of flow time in presence of release

dates, i.e. Ih I l:Fj is unary NP-complete [66] and the preemptive version of the

problem, i.e. Ih, prmpll: Fj can be solved in polynomial time by the Shortest

Remaining Processing Time (SRPT) rule [8]. Where all the jobs have identical

release dates, the problem can be solved in O(nlogn) time by applying the well-

known Shortest Processing Time (SPT) [85]. The complexity of this problem has

motivated the development of heuristic method [25], or some branch and bound

based algorithms, for solving the problem [36]and [35]. Also for the same problem

when the objective function is minimizing the total weighted completion time,

Bianco and Ricciardelli [13], Dyer and Wolsey [39], Belouadah et al [12], Hariri and

Potts [52]explored various branch and bound based algorithms.

Kellerer, Tautenhahn and Woeginger [61] have provided an approximation

algorithm for solving the problem of scheduling n jobs with release date on a single

machine to minimize the total flow time. Their algorithm is based on resolving of the

preemption of the corresponding optimum preemptive schedule. They have presented

the first approximation algorithm with a sublinear worst-case performance guarantee

of 0 (J;;) . Then they have derived a lower bound for the problem and have proved

that no polynomial time algorithm can have a worst-case performance guarantee of

o (wJi-c
) with c > o.

Hall et al. [48] consider a variety of NP - hard scheduling problems in which the

objective function is minimizing the weighted sum of completion times. They

suggest two techniques to obtain a p - approximation algorithm for this class of

problems. The first technique is based on this observation that the lower bound

given by the linear programming relaxation is always guaranteed to be a constant

factor of the optimum value. The second technique is a generalization of designing

on-line algorithms for minimizing total weighted completion time in presence of

release dates. Their on-line algorithm relies "only on the existence of an (off-line)

approximation algorithm for a problem that is closely related to finding a minimum­

length schedule in that environment". In off-line algorithms the number of jobs and

37

their information are known in advance while in on-line algorithms the processing

and release time of any job is known only after the job arrives [69]. The value of

p facto, for several of scheduling problems is reported.

Philips, Stein and Wein [77] have explored an algorithm that converts preemptive

schedule to non-preemptive schedule. They have reported that applying this

algorithm to the problem of minimizing total completion time with release dates

gives a 2-approximation algorithm for it. They have used the algorithm in a variety

of problems including total weighted completion time in the presence of release dates

on single and parallel machines.

The literature on improving p factor for the problem of minimizing the sum of

completion times with release dates is extensive. In one of the latest articles on this

topic, Goemans et al. [44] have reported the development of a randomized online

algorithm whose worst-case bound is equal to 1.6853. Finally and more recently

Chou [22] considers this problem under condition in which the processing time and

weight of each job is a bounded positive number. In this case he proves that the

asymptotic performance ratio of a simple online algorithm is one.

Kaminsky and Levi [60] consider the same problem and provide an algorithm that

processes the jobs in order of shortest processing time among available jobs such that,

at the completion time of any job, the next job to be scheduled is the shortest job

among all those jobs that are released but not yet processed. They have shown that

such an algorithm provides an asymptotic optimum value for the problem.

Ng, Cheng and Liu [76] have considered a serial batching scheduling problem in

presence of release date and setup times to minimize the total completion time. They

have investigated the situation in which the processing times of jobs are identical,

there are precedence relations -< between jobs, and the jobs are to be processed in

batches. A batch includes the number of jobs that have to be schedule on machine

contiguously. The completion time of the last job in the batch is equal to completion

time of the batch. A constant setup time will incur only when a new batch starts and

it is assumed that a batch cannot be started before the maximum release date of the

jobs within batch. They have provided a forward dynamic programming algorithm

that solves the problem in an 0 (n 5) time.

38

2.6.3 two-machine flow-shop

In respect of two-machine scheduling problem Garey, Johnson, and Sethi

[43]have shown that the classical version of the problem, i.e. F211 IF
j

or

F211 Ie j is NP-complete. The flow time and completion time are equivalent when

the jobs are ready at time zero. This problem was first studied by Ignall and Schrage

[58]. They presented a branch and bound approach based on two lower bounds. The

first lower bound is obtained by relaxing the constraint that does not allow the

second machine to process more than one job at time, while the second lower bound

is obtained by a similar relaxation on the first machine and also by relaxing the

constraint that does not allow starting any processing on the first machine before

time O. Furthermore, for the second lower bound they use a redundant constraint

which implies that the completion time of each job on the second machine is grater

than or equal to processing time of that job on the second machine plus the shortest

processing time of jobs on the first machine.

Conway, Maxwell and Miller [28] have shown that at least one optimal solution

for this problem is permutation schedule without any idle time on the first machine.

Van de Velde [88] developed a branch and bound method based on applying the

Lagrangian relaxation on the constraint that requires for each job the second

operation starts after the completion of the first operation, and showed that his lower

bound dominated both bounds suggested by Ignall and Schrage.

Della Croce, Narayan and Tadei [34] consider several known lower bounds and

present a new lower bound based on some new criteria. Computational result for

instances up to 30 jobs indicate that when the new bound suggested by them applies

jointly with the Van de Velde's lower bound, it gives the best performing lower

bounding procedure.

Hoogeveen and Kawaguchi [55] analyse the worst-case behaviour of an algorithm

presented by Gonzalez and Sahni [45] for the m-machine flowshop problem and in

the case of two machines present a heuristic with the worst case bound of 2/3/ a + /3 ,

where a and fJ are defined as the minimum and maximum processing time of all

operations respectively. Furthermore, they consider four special cases of the

problem. In the case when all jobs on the first machine have equal processing time,

they prove that problem is still NP - hard and then they present an approximation

39

algorithm with worst-case bound 4/3 that requires O(nlogn) time, where n is the

number of jobs. For three special cases, first: when the processing times of all jobs

on the second machine are equal, second: when processing a job on the first machine

takes no more time than its processing on the second machine, and third: while

processing a job on the first machine takes no less time than its processing on the

second machine, they prove that problem are solvable in polynomial time.

Della Croce, Ghirardi and Tadei [33] present a branch and bound method with

offering two new dominance criteria for pruning some parts of solution space. They

also present an enhancement of Van de Veld's lower bound by exploring sufficient

conditions for the optimality of a given sequence when maximizing the Lagrangian

dual problem. Computational tests on problems with up to 45 jobs are reported.

Can Akkan and Selcuk Karabati [2] present a new lower bound calculation

scheme, which when integrated into a branch and bound algorithm that uses

dominance criteria already established in the literature, can solve problems more

efficiently. They have reported solving instances with as many as 60(45) jobs when

processing times are uniformly distributed in the [1,10]([1,100]) range.

In respect of two-machine flowshop problem where setup times are separated

from the processing time of jobs Aldowaisan and Allahverdi [4] consider a no-wait

two-machine flowshop problem. The problem is characterized by a no-wait

constraint where the jobs have to be processed continuously without waiting between

or on consecutive machines. They provide some theorems and show that the problem

with the objective of minimizing total flowtime for two special cases is optimally

solvable. Both cases occur in the zero-buffer problem, i.e. the problem for which

there is no intermediate buffers between machines. In the zero-buffer problems,

when the processing of a job is finished on machine 1 but machine 2 is still busy, the

job stay on machine 1 until machine 2 finishes the earlier job. The first special case

occurs, when the setup of the next job on machine 1 cannot be started before the

current job releases machine 1, while in the second case, the setup of the next job can

be started immediately after the processing of the current job on machine 1 is

completed. They also provide and test a heuristic algorithm for the generic problem.

Allahverdi [5] considers the problem of minimizing mean flow time in a two­

machine flowshop with sequence-independent setup times. He shows that for two

special cases the problem is optimally solvable. Let S j ,m and t j ,m identify the setup

40

time and processing time of job j for j = 1,2, ... , n , respectively. For the first case,

i.e. when S j,l + t j,l ~ S j,2 for all jobs, he shows that sequencing the jobs in non­

decreasing order of S j,2 + t j,2 minimizes the mean flow time. For the second case, i.e.

when the largest processing time for every job occurs on the second machine and

S j,1 + t j,l ~ S h,l + t h,l for all j and h , he shows that sequencing the jobs in non-

decreasing order of S j,l + t j,l minimizes the mean flow time. He also develops a

heuristic and branch and bounds for the general case.

Allahverdi, Gupta and Aldowaisan [6] present an extensive survey of scheduling

problems involving setup.

In recent work on this topic, Wang and Cheng[91] consider a variety of special

cases and show the optimal solutions of two cases. The first case occurs when the

processing times of all jobs on both machines are equal to a constant t , and each job

setup time on the second machine is less than that on the first machine. They show

that for this case there exists an optimal schedule in which each batch consists of all

jobs of a class, and the batches are sequenced in non-decreasing order of S[il,1 / n i •

The second case appears when all jobs on both machines are equal to a constant t ,

and each job setup time on the second machine is no less than the sum of t and the

setup time on the first machine. They show that for the second case there exists an

optimal schedule in which each batch consists of all jobs of a class, and the batches

are sequenced in non-decreasing order of s[il,2 / n i • In the last 2 cases s[il,l' s[il,2 show

setup time of the i th batch on machine 1 and 2 respectively and ni shows the number

of jobs in the i th batch. Based on the optimal properties of two last special cases and

some other special cases they develop a heuristic and a branch and bound algorithm

for the general case.

In another approach, by observing that in many practical situations scheduling

problems may be involved with multiple objectives some authors have considered

the problem of minimizing total flow time in a two-machine flowshop with minimum

makespan. [23],[47].

41

2.6.4 Combined problem

Scheduling problems involving both machine scheduling and delivery cost appear

to be rather complex, although they are more practical than those which involve just

one of those factors. These types of combined optimization are often encountered

when a real-world supply chain management is considered. Although there is a large

body of research on the classical version of the problems, only a few articles address

the combined optimization problem that seeks to coordinate machine scheduling with

delivering jobs in batches. The complexity of some combined problems, such as

makespan and completion times when the jobs are to be delivered after their

processing time to customer or warehouse, is measured by Lee and Chen [64].

Hurink and Knust [57] consider a flow shop problem for minimizing makespan with

transportation times, but they have assumed that a single robot, which can shift only

one job at a time, does all the transportations.

Cheng and Covalyov [21] have considered a supply chain scheduling problem

under the following situation. There is a supplier that has to produce some

components for several manufacturers. The components are to be produced by the

supplier serially on a production line. During non-productive breaks or shift changes,

setup time can be ignored. However, each setup incurs a cost associated with the

setup operations. The components are the same for each manufacturer and are

deli vered to them in batches of the same size. The batch deli very time depends on the

manufacturer to whom the batch is delivered. The objective is to find a sequence of

components such that the total setup cost is minimized, subject to maintaining

continuous production for each manufacturer. The time at which the manufacturers

start their production is given in advance. These times are equal to the production

completion times of the previous production periods. It is proved that the problem is

NP - hard. They have reduced the problem to a single machine scheduling problem

with deadlines and job belonging to F families and developed an

o (N log F) algorithm to find a feasible schedule for the problem, while N is the

number of delivery batches. They have also provided a dynamic programming

algorithm with 0 (N h F - 2) running time to find the optimum schedule. In the case

42

where F = 2 and setup costs are unit, the time complexity of their algorithm reduces

to 0 (N) time.

Chang and Lee [16] have considered coordination of machine scheduling problem

with job delivery. They investigated the situation in which jobs require different

amount of storage space during delivery, a particular transportation time is associated

with each delivery and all jobs delivered in one shipment to one customer have the

same completion time. Furthermore there is only one vehicle available to deliver the

finished jobs. They have shown that minimizing C max for this problem, even in a

simplified version i.e. when there is a single machine and the only one customer area,

is intractable. In this paper C max is defined as "the time when the vehicle finishes

delivering the last batch to the customer site and return to the machine". Then they

have provided heuristic method for the problem with the worst-case performance of

7j and with a tight bound. Another heuristic is also provided for the case in which

the finished jobs have to be delivered to two customers. It is proven that the error of

their heuristic is no grater than 100% in any problem instance.

Hall and Potts [49] consider a variety of scheduling, batching and delivery

problems. One of the problems identified by Hall and Potts is that of batching and

sequencing on a single machine under the batch availability assumption in order to

minimize the sum of flow times plus delivery costs. Using the idea of Albers and

Brucker [3] for a similar problem, Hall and Potts provide a forward dynamic

programming algorithm that has O(nT
+

1)complexity, where T is the numbers of job

families.

Another problem identified by Hall and Potts is that of batching and sequencing

on a single machine under the batch availability assumption in order to minimize the

sum of flow times plus delivery costs in presence of release date. Hall and Potts

derive a forward dynamic programming algorithm for the problem under the

assumptions of batch consistency. A supplier's batch schedule and a manufacturer's

batch schedule are batch consistent if for each pair of jobs (i , h) and (j , h) that are

processed by the supplier S and manufacturer M where 1 ~ h ~ H , 1 ~ i, j ~ nh and

i -::j:. j , whenever job (i, h) is in a strictly earlier batch than job (j, h) in the

supplier's batch schedule, then job (i ,h) is in an earlier batch or in the same batch as

job (j , h) in the manufacturer's batch schedule. They also make the further

43

assumption of SPT-batch consistency, in which jobs with the same release dates (that

is, jobs delivered in one batch by the supplier) and for the same customer are

processed by the manufacturer in SPT order. Hall and Potts have proved that the

overall time complexity of their algorithm for finding an optimal schedule is O(n3H)

time while n, and H identify the number of jobs and customers respectively.

The third problem identified by Hall and Potts is that supplier and one

manufacturer cooperate to solve a combined problem of minimizing the total system

cost. Hall and Potts derive a forward dynamic programming algorithm for the

problem under the assumptions of total SPT within groups. This implies that two

stage-jobs for each customer are sequenced by both i.e. supplier and manufacturer, in

SPT order according to the total processing time on supplier's machine and

manufacturer's machine. They also make the further assumption than total SPT

within groups, in which jobs for each of the manufacturersM 2, ... ,M g are sequenced

in SPT order according to processing time on supplier's machine. They have proved

that the overall time complexity of their algorithm for finding an optimal schedule is

o (n 2G +7H -2) time while n, G and H identify the number of jobs, manufacturers

and customers respectively.

44

Chapter 3

3. Minimizing the sum of flow times (completion times)

from the view point of supplier

In this chapter we consider the problem of scheduling a set of jobs to be processed

on a single machine by a supplier for delivery in batches to manufacturers for further

processing. The problem is a natural extension of minimizing the sum of flow times

by considering the possibility of delivering jobs in batches and introducing batch

delivery costs. The scheduling objective adopted is that of minimizing the sum of

flow times and delivery costs. The extended problem arises in the context of

coordination between machine scheduling and a distribution system in a supply chain

network.

Structural properties of the problem are investigated and used to devise a branch

and bound solution scheme. Computational experience shows significant

improvements over an existing algorithm.

3.1 Introduction

Scheduling groups of jobs on a single machine is a subject that has recently

received growing interest, due to the desire for exploiting economies of scale. The

relevant models are called family scheduling models, for which two alternative

assumptions may apply. The first is batch availability, under which all the jobs

forming a batch become available for later processing or dispatch only when the

45

entire batch has been processed. Under the second possible assumption of job

availability, a job becomes available once it has been processed. This work adopts

the first assumption.

An extensive survey of family scheduling models is available in Webster and

Baker [92]. Potts and Kovalyov [79] present a review of scheduling with batching.

Their work is particularly focused on considering the efficiency of dynamic

programming algorithms for solving this type of problems.

One important class of batch availability models occurs when a machine requires

setup time. Such models apply when jobs are partitioned into families according to

similarity, so that there is no need for setup or changeover when a job follows

another of the same family; i.e., a setup is required only between different families

and at the start of the schedule. In the case where there is just one family, the

problem of minimizing total flow time (F) is solvable by a backward dynamic

programming algorithm that requires 0 (n log n) time, where n is the number of jobs

[79]. However, most work on family scheduling under the batch availability

assumption is concerned with minimizing the total weighted flow time (Fw). Albers

and Brucker [3] have proved that this problem is NP-hard, but is solvable in

o (n log n) time in the special case where all jobs have the same processing time and

are sequenced in the non-increasing order of weights.

Mason and Anderson [70] propose a number of properties of the structure of the

optimal solution of the problem of family scheduling under the batch availability

with minimizing total weighted flow time and derive a branch and bound algorithm

for finding it. One of the most important aspects of their work is the proof that in the

optimal sequence, batches are in order of non-decreasing Weighted Processing Time

(WPT). Computational results show that their algorithm can deal efficiently with

problems of up to 30 jobs.

Also a branch and bound method is provided by Crauwels et al. [31] that can solve

problems of up to 50 jobs. The special feature of their algorithm, which is an

improvement upon that of Masson and Anderson, is the use of a lower bound based

on lagrangian relaxation of the machine capacity constraint.

Cheng, Chen and Oguz [18] consider a problem in which n jobs of T different

types are to be processed on a single machine. The items are to be batched, such that

46

the jobs in each batch are of the same type. A setup time is incurred between batches.

The batches and the jobs within them are then to be sequenced to minimize the total

weighted flow time. A dynamic programming algorithm that runs in O(nT+1/TT-1)is

offered. All ahverdi , Gupta and Aldowaisan offer an extensive survey of scheduling

involving setup time [6].

Another important class of batch availability models occurs when the jobs are to

be delivered to different customers or transferred to other machines in batches. In

this case, no setup time is needed, but a delivery cost (delivery time) that depends on

the customer is required for each batch. The problem is to batch and sequence

batches and the jobs within them such that the sum of flow times plus delivery costs

is minimized. As is cited in the last section this class of problems is important within

the framework of supply chain management, and yet few works address it.

Cheng, Gordon and Kovalyov [19] consider a problem that arises when the

objective is to minimize the sum of a function of the number of batches and job

earliness penalties. Here the earliness of a job is defined as the difference between

the batch delivery date and the job completion time. A relation between this problem

and parallel machine scheduling is established, which in tum makes it possible to

establishment of complexity results for the former problem based on known results

for the latter problem.

Hall and Potts [49] consider the problem of batching and sequencing on a single

machine under the batch availability assumption in order to minimize sum of flow

times plus delivery costs. Using the idea of Albers and Brucker [3] for a similar

problem, Hall and Potts provide a forward dynamic programming algorithm that has

o (nT
+
1) complexity, where T is the numbers of job families, each of which consists

of all jobs destined for a particular customer.

In this chapter, we consider the problem of minimizing the sum of flow times plus

delivery costs on a single machine under the batch availability assumption, study its

structural properties, derive upper and lower bounds, offer a branch and bound

scheme for solving it, and provide comparative results on efficiency.

47

3.2 Problem Definition

Let there be n jobs, which are to be delivered in batches to m manufacturers.

These jobs are processed on a single machine that can process, at most, one job at a

time and the processing time of a job i is Pi. Each job is produced for one

manufacturer. A group of jobs forms a batch if they are all delivered to the

appropriate manufacturer at the same time. Let D j denote the non-negative cost of

delivering a batch to manufacturer j . The objective is to minimize the total flow time

or completion time plus delivery costs. This is a natural extension of the problem of

minimizing total flow time to cater for coordination between scheduling and

distribution in a supply chain network. The problem contains an additional term,

which is the delivery cost for each manufacturer. Thus, using the standard

classification scheme for scheduling problems [46], the objective function is

111 IF + ID jk j , where k j denotes the number of deliveries for manufacturer j .

3.3 Structural Properties

In this section, structural properties of the problem, used subsequently to derive

upper and lower bounds, are analyzed.

Proposition 3.1. For a set of batches, the sequence ordered by the Shortest Effective

Batch Time (SEBT) is optimal in tenns of total flow time, with batch effective

timeTb = Ab . Here Ab is the total processing time of the batch and Jb is the batch
Jb

size (number of jobs in the batch), which could be equal to 1.

Proof: (by contradiction). Consider a schedule S formed from a sequence that is not

ordered by SEBT. In this schedule there must be at least two adjacent batches, say x

followed by y, such that

A Ay -:L>_
Jx Jy

Now consider the schedule S' formed by exchanging the positions of the two

batches. Clearly, the flow times of all the batches preceding the pair under

consideration will remain unaffected and so will the flow times of all the succeeding

48

batches. It is, therefore, sufficient to compare two total flow times: x followed by y

with y followed by x.

For S: Axb'x + (Ax +Ay)b'y

ForS
/
: Ayb'y +(Ax +Ay)b'x

Comparing terms, it is clear that the total flow time of S I is smaller than that of S.

Thus, exchanging the positions of x and y reduces overall flow time. Proceeding in

this manner, carrying out any beneficial pairwise exchanges will ultimately yield a

schedule based on a sequence ordered by SEBT. D

Proposition 3.2. Assume a partial schedule, where some batches have been formed

on each machine, but no decision has yet been taken on batching the remaining 'un­

batched' jobs. Here a lower bound on the sum of job flow times of an optimally

completed schedule corresponds to the sum of job flow times in a schedule formed by

considering each un-batched job as a single-job batch and sequencing all batches in

the order of SEBT.

Proof: When completing the schedule any batching of un-batched jobs will

necessarily delay some jobs. Hence, considering each such job as a single-job batch

ensures no delay. Thereafter, SEBT sequencing ensures that the resulting schedule

minimizes total flow time by virtue of proposition 3.1. D

Since the jobs in a batch are all delivered at the batch delivery time, the order of

the jobs within a batch is immaterial. However, further development of problem

properties is simpler, if it is assumed that these jobs are ordered according to SPT.

We will, therefore, make this assumption in what follows.

Proposition 3.3. In an optimal solution, any batch destined for a

manufacturer j that hasJb > 1 jobs will have the property that(Jb -l)Pl < D j'

where 1 is the last job in the batch.

Proof: (by contradiction). Consider a batch that does not have the indicated property.

Removing the last job and delivering it in a batch of its own will decrease the overall

49

objective function by (8b -l)pz - D j , no matter where the batch happens to be in the

sequence of batches. D

The following corollary then follows immediately.

Corollary 3.4. In an optimal solution, any job that has a processing time greater

than the batch delivery cost to the corresponding manufacturer, i.e., such

that Pi> D j , will form a single-job batch.

Proposition 3.5. If batches belonging to the same manufacturer are concatenated in

the same order with which they occur in the optimal schedule, then the jobs will

appear ordered by SPT.

Proof: (by contradiction) Consider a schedule S that does not have the indicated

property. Such a schedule will have two jobs i and k such that Pk < Pi and k starts

later than i . If both jobs belong to the same batch, then exchanging them will not

affect the total flow time. However, if they belong to two separate batches, then

exchanging them will reduce the flow time of the batch containing i and the flow

times of all batches succeeding that of i and preceding that of k . This clearly

reduces total flow time. Proceeding with carrying out any beneficial pairwise

exchanges will ultimately yield a schedule that has the indicated property. It is also

worth noting that the exchanges may yield opportunities for further batching, thereby

reducing total delivery cost as well. D

The above proposition makes it possible to derive a lower bound on the number of

batches destined for a manufacturer; a result that we present in the next proposition.

Proposition 3.6. A lower bound on the number of batches destined for a

manufacturer in an optimal solution can be found by the following greedy maximum

batching algorithm: take the jobs destined for the manufacturer concerned in SPT

order; if the job may be added to the current batch by virtue of proposition 3.3, then

add it; else start a new batch.

50

Proof: In accordance with proposition 3.5, jobs have to be taken in SPT order. Since

each batch is augmented until it can take no more jobs, the number of batches is

minimized. Moreover, since this is done while relaxing (forgetting) the constraints of

interaction with jobs for other manufacturers due to batching, the number found is a

lower bound, as claimed. 0

In carrying out the search, we will be continually evaluating the worth of moves

that add a job to a preceding batch for the same manufacturer. It is, therefore,

important that this evaluation is carried out in a computationally efficient way. The

following proposition helps to achieve that aim.

Proposition 3.7. Let a job k be in position s r to the right of a batch b, which is in

position s z in a SEBT sequence (in which job k constitutes a single-job batch). If k

may be added to b by virtue of proposition 3.3, then the change in the sum of job flow

times resulting from doing so, could be found by updating the contribution of the

batches between s z and s r inclusive.

Proof: Upon forming it, the new batch may have to be moved to restore the SEBT

property. If it does not have to be moved, then the flow time of its old jobs, as well as

the flow times of the batches in positions Sz + 1, ... , sr -1, will increase by Pk' in

addition to the decrease in the delivery time of k itself. If it has to move, then it will

move to the right, since its effective batch time has increased, but to the left of

position s r + 1, since its new effective batch time is ~ Pk . Thus, in this case also the

contribution of batches in positions I + 1, ... ,sz -1, and batches in positions s r + 1, ...

remains unchanged. 0

In consequence of the above proposition, evaluating the worth of a job joining an

earlier batch can be calculated efficiently, provided the delivery time, the number of

jobs and the contribution of each batch to total flow time are kept updated.

Proposition 3.8. In completing a partial schedule, where some batches have been

fonned, but no decision has been taken yet on batching the remaining 'un-batched'

51

jobs, a 'batching penalty' 11k ' attaches to each un-batched job. This is because if the

job is added to the last formed batch for the manufacturer concerned, total flow time

will increase, and if a new batch is started with it, an additional batch delivery cost

will be incurred. Moreover, 6[P k ~ 11k ::; D j' where 6[is the number of jobs in the

batch that it may join and D j is the appropriate batch delivery cost.

Proof: Consider a partial schedule. Add the jobs that have not been scheduled and

order all in SEBT sequence. Let job in position k of the sequence be the first

unscheduled job to the right of the last batch in position l for the same manufacturer.

If the job in position k may not be added to batch in position l by virtue of

proposition 3.4 or is not added to it, then a penalty equal to D j will be incurred.

Otherwise, total flow time will increase. To assess this increase, Recall from

proposition 3.1 that:

and that batches or jobs to the left of batch l and the right of job k will not be

affected.

Four cases need to be distinguished:

Case 1 Job in position k follows batch in position l directly (k = l + 1):

11k =6[Pk

Case 2 k > l + 1 and the newly formed batch remains in position l:

11k =6[Pk + (6[+1 + ... 6k-1) Pk - (A[+1 + ... +Ak-1»l'zPk

Case 3 k > l + 1 and the newly formed batch moves to the end of the subsequence,

i.e., after the batch that was in position r - 1:

11k = l'zPk + (A[+1 + ... +Ak-1) 6[- (6[+1 + ... 6k-1) A[>6[Pk

Case 4 k > l + 1 and the newly formed batch moves to a position in between, say,

after the batch that used to be in position l + a:

11k =6[Pk +(A[+1 + ... +Al+a) l'z + (6a+1 + ... 6k - 1) Pk

- (6[+1 + ... 61+a) A[-(Aa+l + ... +Ak-1»6[Pk .

Thus in each case 11k ~ 61 Pk which completes the proof. D

52

3.4 Branch and Bound Scheme

Search of the solution space is structured as a bivalent 0-1 search tree, where each

node is partitioned into two, one indicating that a job is added to the last batch for the

manufacturer concerned (l) and the other indicating the start of a new batch that

could be a single-job batch (0). The tree is constructed in a depth-first fashion.

At the beginning, all jobs that have to form single-job batches by virtue of corollary

3.4 are identified and all their corresponding variables are set to 0 once.

Other components of the branch and bound scheme are presented in the following

subsections.

3.4.1 Branching and ordering of variables

Variables are ordered in accordance with the SPT of the corresponding jobs. At

each node of the decision tree, two tasks are performed. First, variables that have to

be set to zero, because no batch for the manufacturer concerned has been formed or

by virtue of proposition 3.3, are set to zero. Secondly, the first free variable (free

variables are those that have not yet been committed to either zero or one) in the SPT

sequence is set to one.

3.4.2 Fathoming and backtracking

A node is fathomed if:

1. It is a leaf node, i.e., all variables are fixed.

2. The lower bound exceeds or equals the incumbent upper bound.

Fathoming initiates backtracking to the first node associated with a variable

whose value is 1; the value of this variable is then set to O. If no such node is found,

the search terminates.

3.4.3 Upper bounds

Providing a sharp, i.e., low, initial upper bound is critically important for

enhancing the exclusion rate of the branch and bound algorithm, i.e., the rate with

which nodes are fathomed. Hence, it is worth expending some computational effort

to achieve that end. A number of upper bounds are, therefore, calculated and the

sharpest is adopted.

53

UBI --- Batch maximization heuristic: Form single-batch jobs from all jobs that

have to form such batches (proposition 3.3) and set them aside. Assemble all other

jobs into batches corresponding to the minimum number of batches possible for each

manufacturer, using the maximum batching algorithm (proposition 3.6). Arrange all

batches in SEBT to minimize the corresponding total flow time (proposition 3.1).

The total cost of the schedule thus formed then constitutes the incumbent upper

bound, UB*.

UB2 -- Multi-start greedy heuristic:

For each manufacturer in tum do

Begin

Form all jobs into single-job batches and sequence the batches in SEBT

order (which, in this case, is equivalent to SPT).

Treating the sequence as a circular array, start with the first batch

belonging to the current manufacturer;

repeat

Scan forward until the first batch that may profitably be joined

with the current batch is found. If found, join the two batches.

Move the newly formed batch forward to restore SEBT order, if necessary.

Move to the next job.

until a complete scan of all batches results in no improvement.

If the upper bound found is less than the incumbent, the former replaces the latter.

end.

3.4.4 Lower bounds

It is worth recalling that at each node of the decision tree, if, in view of the

batching decisions already taken, a job has to start a new batch, then the partial

solution is immediately augmented by a batch starting with that job.

At each node of the decision tree, a lower bound on total flow time is calculated in

accordance with proposition 3.2. Additionally, batch delivery costs are added for

each batch already formed.

Furthermore, a lower bound on the batching penalties is calculated by applying

the logic of proposition 3.8 in the following way. The first un-batched job of a

manufacturer, k, will either start a new batch or join the last batch. It would,

54

therefore, attract a lower bound on its batching penalty = lSI Pk ' where ~ is the

number of jobs in the last batch of the manufacturer concerned. Since for each

subsequent job, we do not know the number of jobs in the batch that it may join in

the optimal completion of the current partial solution, each such job would attract a

lower bound on its batching penalty = Pk (i.e., the lowest batching penalty that it

may incur would be if it joined a single-job batch).

At the initial stages of the search, opportunities arise for tightening the overall

lower bound still further by considering proposition 3.6. Assume that the number of

batches already formed for a particular manufacturer in the current partial solution is

bk and that the minimum number of batches is bmin . It would then be possible to raise

the sum of lower bounds on batching penalties by identifying the bmin -bk highest

individual lower bounds on batching penalties and replacing each by the batch

delivery cost.

The overall lower bound is then the sum of the lower bound on the total flow

time, batch delivery costs of the batches already formed and the sum of the lower

bounds on the batching penalties for the un-batched jobs.

3.4.5 Numerical example

Consider the following two- manufacturer problem, with delivery costs of 11 and

8 respectively:

Manufacturer 1
Manufacturer 2

Job Processing Times
Job 1 Job 2 Job 3
3 4 5
2 6 7

Job 4
10

Let (ij) denote the ith job destined for the jth manufacturer.

Initial lower bound:

The lower bound on total flow time, LBF, corresponding to flow time under SPT

= 114. Batch delivery costs, LBD, is 19 (we have to start a batch for each

manufacturer).

The lower bound on batching penalties, LBB is: (4+5+11) + (6+8) = 34, where the

numbers within the first (second) bracket correspond to the penalties incurred by

55

each job of the first (second) manufacturer in tum. Note that the 11 for the first

manufacturer and the 8 for the second manufacturer result from substituting the

initial lower bounds on the batching penalty, which are equal to 10 and 7

respectively, by the batch delivery costs, by virtue of the fact that the minimum

number of batches for either manufacturer is two.

LB = LBF + LBD + LBB = 114 + 19 + 34 = 167

Initial upper bound:

Applying SEBT to the 4 batches yielded by maximum batching (proposition 3.6)

leads to the following schedule: 1 (12) (22) I, 1 (11) (21) (31) I, 1 (32)1,1 (41) I, with a

total flow time of 140. Adding total batch delivery costs gives UB* = 178.

Applying the multi-start heuristic starting with manufacturer 2 yields an inferior

upper bound.

Applying the multi-start heuristic starting with manufacturer 1 yields the

following schedules, successively:

1 (12) 1 (11) 1 (21) 1 (22) 1 (32) 1 (31) I,
1 (12) 1 (11)(21) 1 (31) 1 (22) 1 (32) 1 (41) I,
1 (12) 1 (11)(21) (31) 1 (22)1 (32) 1 (41) I,

Attempting to add (41) to the last batch for manufacturer 1 proves unprofitable,

Attempting to batch (12) and (22) proves unprofitable,

1 (12) 1 (11)(21) (31) 1 (22) (32) 1 (41) I,

The last schedule has an objective function value of 173. Therefore, UB* = 173.

Branch and Bound

Each item below represents a decision node. Search of the decision tree is carried

out depth first. S denotes the partial solution (batching decisions) at each node.

o. So = 1(11) I, 1 (12)1; LBF = 114, LBD = 19, LBB = 4+5+ 11 +6+8=34, and LB

= 167.

56

1. S1 = 1(12)1, 1 (11) (21) I; LBF = 118, LBD = 19, LBB = 2*5+11+6+8=35 ,
and LB = 172.

2. S2 = 1(12)1,1 (11) (21) (31) I, 1(41)1; LBF = 128, LBD = 30, LBB = 6+8=14,
and LB = 172.

3. S3 = 1(12) (22)1,1 (11) (21) (31) I, 1 (32)1, 1(41)1; LBF = 140, LBD = 38, LBB
=0, and LB = 178. Since LB > UB*, backtrack.

4. S4 = 1(12)1,1 (11) (21) (31) I, 1(22)1, 1(41)1; LBF = 128, LBD = 38, LBB = 7,
and LB = 173. Since LB = UB*, backtrack.

5. S5 = 1(12)1,1 (11) (21) 1,1 (31)1; LBF = 118, LBD = 30, LBB = 10+6+8=24,
and LB = 172.

6. S6 = 1 (11)(21) I, 1(12) (22)1, 1(13)1, 1(32)1; LBF = 128, LBD = 38, LBB = 10,
and LB = 176. Since LB > UB*, backtrack.

7. S7= 1(12)1, 1 (11)(21)1, 1(31)1, 1 (22)1; LBF = 118, LBD = 38, LBB =

10+7=17, andLB = 173. SinceLB =UB*, backtrack.

8. S8 = 1(12)1, 1 (101, 1(21) I; LBF = 114, LBD = 30, LBB = 5+10+6+8=29, and
LB = 173. Since LB = UB *, backtrack.

9. Search Completed.

Thus the initial upper bound is optimal.

3.5 Computational Results

In the absence of benchmark test problem instances we resorted to generating two

sets of problem instances to test the branch and bound algorithm (B&B).

Furthermore, we compared the performance of B&B algorithm with the dynamic

programming algorithm (DP) of Hall and Potts, which is the only other available

algorithm for the problem under consideration.

For each set, three subsets were generated; one with 4 manufacturers, another with

8 and the third with 12. In each subset, the number of jobs was varied up to a total of

50. For the first set, in each instance, jobs were divided equally among

manufacturers, with any remainder assigned to as many manufacturers as needed.

For the second set, jobs were randomly distributed among manufacturers, with each

57

being assigned at least two jobs. For both sets, processing times were randomly

generated integers from the uniform distribution defined on [1,100], To ensure that

results were representative, 5 instances were generated for each combination of

number of jobs-number of manufacturers. Each of the running times in tables below

represents the average over the appropriate five instances.

Since interaction between batch delivery costs and job processing times may

affect problem hardness, we generated two classes of problems. In class A, all job

processing times are less than the delivery cost of the relevant manufacturer, while in

class B it is possible randomly that some jobs have a processing time greater than the

delivery cost.

The computational experiments were run on a Pentium 4 computer with 2.40 GHz

of CPU and 512 MB of RAM. Both B&B and DP were coded in C++.

Comparative results are shown in tables 1 to 12. Tables 1 to 6 show the results for

problem instances when the jobs are uniformly distributed among manufacturers and

tables 7 to 12 show the results for problem instances when the jobs are randomly

distributed among manufacturers.

As can be clearly seen, the DP algorithm has advantage over B&B only for some

class A problem instances having 4 manufacturers. For all other instances, B&B is

more efficient by far. This is due to the time complexity of the DP algorithm, which

can be clearly observed in the escalation of computing time with the increase in the

number of jobs. On the other hand, the efficiency of the B&B, which enables it to

solve most of problem instances in less than one second, is attributable to the

effectiveness of the initial upper bound and the sharpness of the lower bounds.

Careful analysis of the structural properties of the problem proved crucial in forging

both sub-algorithms (upper bound and lower bound).

Furthermore, the complexity of the dynamic programming algorithm is such that

for the same number of jobs, problem instances with a larger number of

manufacturers are more difficult. Interestingly, the opposite is true for the branch­

and-bound algorithm, as revealed by the solution times. This is so because when the

number of manufacturers is large, the algorithm is in effect searching over a larger

number of smaller subsequences, with much smaller numbers of possible

permutations. However, it is expected that by increasing the number of jobs for the

same number of manufacturers the running times increase. In this regard, we define a

58

critical point (CP), which shows the number of jobs for which the B&B algorithm

can still solve problem instances efficiently. It is worth noting that CP is not the

maximum number of jobs that can be solved by B&B, but only the number of jobs

after which the running time increases critically. The CP for each combination of

manufacturer-jobs is shown in the caption of diagrams 1 to 12.

59

Table 1: Running times for problem instances with jobs uniformly distributed among

4 Manufacturers, Class A.

Number of Number of Running time (ms)
Manufacturers jobs DP 8&8

4 13 10 12
4 18 10 16
4 23 20 18.2
4 28 30 44
4 33 70 77.5
4 38 120 268.4
4 43 200 1390
4 48 330 11470.6
4 49 360 12295.25
4 50 391 17837.6

Diagram 1: Running times versus number of jobs for problem instances with jobs

uniformly distributed among 4 Manufacturers, Class A. CP = 45.

20000

G.I 15000
E

~ 10000
I:
I:

~ 5000

o -
o 10

4 Manufacturers

III

f
/

I-:-DP I __ 8&8

- - - - j~ -
20 30 40 50 60

Number of jobs

60

Table 2: Running times for problem instances with jobs uniformly distributed among
8 Manufacturers, Class A.

Number of Number of Running time (ms)
Manufacturers jobs DP B&B

8 16 60 14
8 21 260 14
8 26 1122 32
8 31 4016 34.2
8 36 11908 88
8 41 32547 302.6
8 46 79064 1019.4
8 47 93454 1618.4
8 48 111110 5181.4
8 49 129466 1370
8 50 150837 2551.6

Diagram 2: Running times versus number of jobs for problem instances with jobs
uniformly distributed among 8 Manufacturers, Class A. CP = 63.

8 Manufacturers

200000

CI)
160000

E
; 120000
C)
s::::
s:::: 80000 s::::

I-:-DP I __ 8&8

::s
a:

40000

0
0 10 20 30 40 50 60

Number of jobs

61

Table 3: Running times for problem instances with jobs uniformly distributed among
12 Manufacturers, Class A. *: Computer gives up for lack of sufficient.

Number of Number of Running time (ms)
Manufacturers jobs DP B&B

12 24 7681 14
12 26 14681 26
12 28 27900 24
12 30 52825 34
12 32 100074 24
12 34 188250 54
12 36 353428 52
12 38 578622 74.2
12 40 952931 106.2
12 42 1618528 154.2
12 44 2742203 170.2
12 46 4908498 344.6
12 47 6504713 576.8
12 48 8697186 536.8
12 49 * 739.6
12 50 * 647

Table 3: Running times versus number of jobs for problem instances with jobs
uniformly distributed among 12 Manufacturers, Class A. CP = 78.

12 Manufacturers

10000000

8000000 r
Q)

E 6000000 :;::
C)

.!:
c: 4000000 c:
:::J
II:

2000000

0

)

f
J !

--
L __

----- ---

I-:-op I
_8&8

o 10 20 30 40 50 60

Number of jobs

62

Table 4: Running times for problem instances with jobs uniformly distributed among
4 Manufacturers, Class B.

Number of Number of Running time (ms)
Manufacturers jobs DP B&B

4 13 10 6
4 18 20 8
4 23 20 12
4 28 40 24
4 33 70 24
4 38 120 52
4 43 200 68.2
4 48 340 230.25
4 49 361 95.25
4 50 401 118.2

Diagram 4: Running times versus number of jobs for problem instances with jobs
uniformly distributed among 4 Manufacturers, Class B. CP = 90.

4 Manufacturers Class B

500

CI)
400

E
:;; 300
C)
t:
t: 200
t:

I-:-DP I
-8&8

:1
a: 100

0
0 10 20 30 40 50 60

Number of jobs

63

Table 5: Running times for problem instances with jobs uniformly distributed among
8 Manufacturers, Class B.

Number of Number of Running time (ms)
Manufacturers jobs DP B&B

8 16 60 4
8 21 251 8
8 26 1151 6
8 31 3756 32
8 36 10845 22
8 41 31195 34.2
8 46 74637 50
8 47 91381 54
8 48 101086 64.2
8 49 127874 76.2
8 50 137888 124.2

Diagram 5: Running times versus number of jobs for problem instances with jobs
uniformly distributed among 8 Manufacturers, Class B. CP = 110.

8 Manufacturers Class B

160000 ~~~W~·''''''''"'

120000
CI)

E
:;::
C)

80000 I: ·c
I:

I • DP I
-8&8

::l
a:

40000

0
0 10 20 30 40 50 60

Number of jobs

64

Table 6: Running times for problem instances with jobs uniformly distributed among
12 Manufacturers, Class B. *: Computer gives up for lack of sufficient.

Number of Number of Running time (ms)
Manufacturers jobs DP B&B

12 24 6680 8
12 26 13199 12
12 28 24486 8
12 30 52976 12
12 32 96809 18
12 34 167281 16
12 36 309455 12
12 38 536131 12
12 40 859496 28
12 42 1479187 26
12 44 2514616 24
12 46 4674362 38.2
12 47 6206715 50
12 48 7383347 34
12 49 * 74.2
12 50 * 134.2

Diagram 6: Running times versus number of jobs for problem instances with jobs
uniformly distributed among 12 Manufacturers, Class B. CP = 140.

CP
E
;::

8000000

6000000

.~ 4000000
r::::
r::::
:::J
a:

2000000

o
o 10

12 Manufacturers Class B

~

L

J
j

/ -
20 30 40

Number of jobs

65

,,"-- .,

50

'" ""--1

I

I

I
I

60

~
~

Table 7: Running times for problem instances with jobs randomly distributed among
4 Manufacturers, Class A.

Number of Number of Running Time (ms)
Manufacturers jobs DP B&B

4 13 16.2 12
4 18 18 18.2
4 23 28 24
4 28 44 74
4 33 76.2 118.2
4 38 130.2 562.8
4 43 210.4 2317.4
4 48 346.4 11030
4 49 366.6 17252.8
4 50 388.6 10749.4

Diagram 7: Running times versus number of jobs for problem instances with jobs
randomly distributed among 4 Manufacturers, Class A. CP = 48.

4 Manufacturers Class A

20000

CI) 15000
E

:;:::;

.~ 10000
I-:-op I __ B&B

c
C
::J
a: 5000

0
0 10 20 30 40 50 60

Number of jobs

66

Table 8: Running times for problem instances with jobs randomly distributed among
8 Manufacturers, Class A.

Number of Number of Running Time (ms)
Manufacturers jobs DP B&B

8 16 74.2 20

8 21 284.4 20

8 26 1089.6 26

8 31 3947.8 32.2

8 36 10825.4 82

8 41 27485.4 382.6

8 46 61096 2067

8 47 79007.6 987.4

8 48 89288.4 2411.4

8 49 110617 1896.8

8 50 126720.2 5373.8

Diagram 8: Running times versus number of jobs for problem instances with jobs
randomly distributed among 8 Manufacturers, Class A. CP = 65.

8 Manufacturers Class A

160000

en 120000 Q)

E
;;
C) 80000 c
'2

I : DP I __ B&B

c
:::l 40000 a:

0
0 10 20 30 40 50 60

Number of jobs

67

Table 9: Running times for problem instances with jobs randomly distributed among
12 Manufacturers, Class A. *: Computer gives up for lack of sufficient.

Number of Number of Running Time (ms)
ufacturers jobs DP 8&8

12 24 8512.4 28.2
12 26 16163.2 30
12 28 30179.4 24
12 30 54314 34
12 32 95926 32.2
12 34 163098 54
12 36 291997.8 54
12 38 476263 50
12 40 646781.8 100.2
12 42 1414776 206.4
12 44 1882855 436.4
12 46 2903481 528.8
12 47 4269381 380.6
12 48 6298261 660.8
12 49 * 1019.6
12 50 * 1650.4

Diagram 9: Running times versus number of jobs for problem instances with jobs
randomly distributed among 12 Manufacturers, Class A. CP = 83.

12 Manufacturers Class A

7500000 -r-----

CI) 6000000 -/----­
E
;, 4500000 -+-------------

t:

§ 3000000 --l--------------~~---_______j
I-:-op I __ 8&8

:::l

a: 1500000 -+--------------.II~

o 10 20 30 40 50 60

Number of jobs

68

Table 10: Running times for problem instances with jobs randomly distributed
among 4 Manufacturers, Class B.

Number of Number of Running Time (ms)
Manufacturers jobs DP B&B

4 13 16 12
4 18 24.2 16
4 23 28 14
4 28 46 24.2
4 33 80.2 28
4 38 130 56
4 43 210 186.4
4 48 302.6 68
4 49 332.4 124
4 50 392.6 360.75

Diagram 10: Running times versus number of jobs for problem instances with jobs
randomly distributed among 4 Manufacturers, Class B. CP = 90.

4 Manufacturers Class B

500

400
CI)

E .. 300
C)
c
c 200 c

I-:-op I
-11-8&8

j

a:
100

0
0 10 20 30 40 50 60

Number of jobs

69

Table 11: Running times for problem instances with jobs randomly distributed
among 8 Manufacturers, Class B.

Number of Number of Running Time (ms)
Manufacturers jobs DP B&B

8 16 72.2 6
8 21 248.4 10
8 26 879.2 10
8 31 2693.8 34
8 36 9285.4 18
8 41 24162.8 26
8 46 54394.2 140.2
8 47 67236.8 150.2
8 48 82596.6 414.6
8 49 92390.8 130.2
8 50 114985.4 150.2

Diagram 11: Running times versus number of jobs for problem instances with jobs
randomly distributed among 8 Manufacturers, Class B. CP = 112.

8 Manufacturers Class B

120000

Q) 90000
E

:;:0
C)

60000 c
c

I-:-DP I _8&8
c
::s
a:: 30000

0
0 10 20 30 40 50 60

Number of jobs

70

Table 12: Running times for problem instances with jobs randomly distributed
among 12 Manufacturers, Class B. *: Computer gives up for lack of sufficient.

Number of Number of Running Time (ms)
Manufacturers jobs DP B&B

12 24 6916 8
12 26 13239 8
12 28 24223 12
12 30 43027.8 6
12 32 81238.8 20
12 34 133303.8 12.2
12 36 248445.2 22
12 38 427685 22
12 40 662110.2 18
12 42 1006627 44
12 44 1958536 26
12 46 3027516 70.2
12 47 3871723 32
12 48 4864320 34
12 49 6327414 62
12 50 * 94.2

Diagram 12: Running times versus number of jobs for problem instances with jobs
randomly distributed among 12 Manufacturers, Class B. CP = 150.

12 Manufacturers Class B

8000000 ~~~ .. , .. , .. _.'

CD 6000000
E -
g' 4000000
t:
t:

I-:-op I
-11-8&8

::::J 2000000 a:

0
0 10 20 30 40 50 60

Number of jobs

71

Effectiveness of the upper bound makes it possible to use it as a fast heuristic.

Table 13 shows that on average it produces solutions that are within 0.23% of the

. (1' (UB optimum re attve error = . -1)). Moreover, the error is smaller for larger
Optlmai

instances. However, it may be argued that the efficiency of the B&B obviates the

need for a heuristic solution.

Table 13: Average percentage Relative Error.

Uniform Distribution of Jobs Random Distribution of Jobs
Manufacturers Class A Class B Class A Class B

4 0.15 0.07 0.23 0.08
8 0.09 0.02 0.09 0.03
12 0.04 0.01 0.05 0.01

3.6 Conclusion

A branch and bound algorithm for scheduling a set of jobs to be processed on a

single machine for delivery in batches to manufacturers, or to other machines, for

further processing has been presented. This problem is a natural extension of

minimizing the sum of flow times by considering the possibility of delivering jobs in

batches and introducing batch delivery costs. The scheduling objective adopted is

that of minimizing the sum of flow times and delivery costs. The extended problem

arises in the context of coordination between machine scheduling and a distribution

system in a supply chain network.

The branch and bound algorithm proved to be very efficient. Indeed, it proved to be

far more efficient than the only existing algorithm for solving the problem, which is

based on dynamic programming. This efficiency is attributable to the sharpness of

the lower bounds derived, in addition to the high quality of an initial upper bound

found using an effective heuristic.

Both lower bound and the upper bound were derived from a careful analysis of the

structural properties of the problem.

72

Chapter 4

4. Minimizing the sum of flow times (completion times)

from the view point of manufacturer

In the last chapter we considered the situation that supplier processes the jobs and

delivers them in batches to manufacturers. The time at which each job is delivered to

manufacturers defines a release time within which manufacturers cannot start

processing of the jobs. Hence, in this chapter we consider the problem of scheduling

a set of jobs to be processed on a single machine by manufacturer for delivery in

batches to customers, while the jobs are available for processing at their release times.

The problem is a natural extension of minimizing the sum of flow times with job

release times by considering the possibility of delivering jobs in batches and

introducing batch delivery costs. The scheduling objective adopted is that of

minimizing the sum of flow times and delivery costs. The extended problem arises in

the context of coordination between machine scheduling and a distribution system in

a supply chain network.

Structural properties of the problem are investigated and used to devise a branch and

bound solution scheme. Computational experience shows significant improvements

over an existing algorithm.

4.1 Introduction

Single-machine scheduling has been studied extensively with different objective

functions. In this chapter, we describe a model for minimizing total flow times plus

73

delivery cost for a set of jobs that are to be processed on a single machine for

delivery in batches to customers when each job is available at its release time. This

situation may arise in a supply chain networks when jobs arrive at different times to a

manufacturer who processes them for delivery to some customers or transfer them in

batches to other machines for further processing. In this model, the time at which

each job, j, is delivered from supplier to manufacturer defines a release time from the

viewpoint of manufacturer. This IS the recognition version of the

11 rj I I Fj classical problem with an additional term. The classical problem is unary

NP-complete [66] and its preemptive version, 11 rj ,pnnp I IFj , can be solved in

polynomial time by the Shortest Remaining Processing Time (SRPT) rule [8]. Also,

where all the jobs have identical release times, the problem can be solved in

O(nlogn) time by applying the well-known Shortest Processing Time (SPT) [85].

The complexity of this problem has motivated the development of a heuristic method

[25] or some branch and bound based algorithms for solving the problem [36], and

[35]. Also for the same problem when the objective function is minimizing the total

weighted completion time, various branch and bound based algorithms are explored

[13], [39], [12] and [52].

Problems that address an optimal value that includes both machine scheduling and

delivery costs appear to be rather complex, though they are more practical than those

that involve just one of these two factors. These types of combined optimizations are

often encountered when a real-world supply chain management is considered.

However, although there is a large body of research on the classical version of the

problem, a few articles only address combined optimization problems that seek to

coordinate machine scheduling with delivering jobs in batches. Cheng et al. [20]

consider a problem that arises when the objective is to minimize the sum of a

function of number of batches and earliness penalties, where the earliness of a job is

defined as difference between batch delivery time and the job completion time, but

they have not considered the problem in presence of release times (all jobs are

available at time 0). The complexity of some combined problems such as: makespan

and completion times, when the jobs are to be delivered after their processing time to

a customer or warehouse are measured by Lee and Chen [64]. Hurink and Knust [57]

considered a flow shop problem for minimizing makespan with transportation times,

74

but they assume that a single robot which can shift only one job at a time does all

transportation.

As cited in last chapters one of the problems identified by Hall and Potts is that of

batching and sequencing on a single machine under the batch availability assumption

in order to minimize sum of flow times plus delivery costs in presence of release

time. Hall and Potts derive a forward dynamic programming algorithm for the

problem under the assumptions of batch consistency.

A supplier's batch schedule and a manufacturer's batch schedule are batch

consistent if for each pair of jobs i and j that are processed by the supplier and the

manufacturer, whenever job i is in a strictly earlier batch than job j in the supplier's

batch schedule, then job i is in an earlier batch or in the same batch as job j in the

manufacturer's batch schedule [49]. They also make the further assumption of SPT­

batch consistency, in which jobs with the same release times (i.e., jobs delivered in

one batch by the supplier) and for the same customer are processed by the

manufacturer in SPT order. Hall and Potts have proved that the overall time

complexity of their algorithm for finding an optimal schedule is O(n 3H), where nand

H identify the number of jobs and customers respectively.

In this chapter we consider the similar problem under the assumptions that for

each pair of jobs i and j , whenever Pi :::; P j then r i :::; rj • This assumption may appear

restrictive at first sight. However, within the framework of supply chain management

this condition may be enforced as part of the coordination between the supplier

(upstream stage) and the manufacturer.

In what follows, we study its structural properties, derive upper and lower bounds

and offer a branch and bound scheme for solving this problem.

4.2 Problem Definition

Let {l,,,.,n} denote the set of jobs to be scheduled on a single machine that can

process at most one job at time. Each job is available at its release time and no

preemption is allowed. Each job starts processing on the machine either at its release

time if the machine is ready, or immediately after another job. Each job is produced

for one customer and jobs are delivered to customers in batches. We denote the

processing time and release time of job j by P j and rj respectively. A group of jobs

75

forms a batch if all are delivered to their respective customer at the same time. Two

alternative batch formation strategies are allowed. The first is that of continuous

batching, under which the jobs that form a batch are processed continuously; i.e., no

job that belongs to another customer is processed between them and there is no idle

time. The second strategy is that of discontinuous batching, where the jobs that form

a batch are processed separately but delivered together, in which case at least one job

that belongs to another customer is processed in between or there is idle time

separating the two jobs. Let Rk denote the ready time of a continuous batch such that

if processing of the first job of the batch is started at time Rk (or later), then all the

others jobs of the batch can be processed continuously; i.e., at least the first job of the

batch is ready at time R k and other jobs are either already ready or become ready

during the processing of earlier jobs. Let Dc denote the non-negative cost of

delivering a batch to customer c. The objective function that we consider is to

minimize the total flow time plus delivery cost. This is a natural extension of

1/ r) / I F) problem to cater for coordination between the scheduling and distribution

systems. The problem contains an additional term, which is delivery cost for each

customer. Thus, using the standard classification scheme for scheduling problems

[46], the objective function is 1/ r) / IF) + IDckc ' where kc identifies the number

of batches delivered to each customer. As described in the last section, the classical

problem is NP-complete in the strong sense, even without the additional term that

refers to batch delivery costs, and it is easy to show that recognition of problem is

also NP-complete. However, by making some assumptions, we provide a branch and

bound algorithm for solving the problem. These assumptions are that for each pair of

jobs, ri :::; r) whenever Pi :::; p) and that the jobs for each customer are to be processed

in the shortest processing time (SPT) order.

4.3 Structural Properties

In this section, structural properties of the problem, used subsequently to derive

upper and lower bounds, are analyzed. It is worth noting that since any result that is

proved for completion time applies also to flow time, we state and prove the

76

following propositions and properties in terms of flow time, when in fact they are

based on completion time considerations.

Proposition 4.3.1. For a set of jobs, the sequence ordered by SPT is optimal in

terms of total flow time.

Proof (by contradiction): Consider a schedule formed from a sequence, S, that is not

ordered by SPT. In this schedule there must be at least two adjacent jobs, say

j followed by i , such that P i ~ P j and ri ~ rj . Assume that the machine is ready for

processing the two jobs at time t . Two situations need to be considered:

• t ~ rj , in which case the total flow time of partial schedule composed of the

two jobs concerned is

F;. = (t + P j) + (t + P j + Pi) = 2t +2 P j + Pi

• t < rj in which case

F2 = (rj + P j) + (rj + P j + Pi) = 2 rj +2 P j + P j

Now perform adjacent pairwIse interchange on jobs j and i to form a new

sequence, S / , with all other jobs remaining in their original positions. The

completion times of all preceding jobs remain unchanged. However, the completion

times of the two jobs interchanged and all succeeding jobs need to be considered.

• t ~ rj and certainly t > r; . Therefore,

F;.' = (t + P j) + (t + P j + P j) = 2 t +2 P j + P j .

The completion time of jobs i and j combined does not change, nor as a result do

the completion times of succeeding jobs. However, F;.' < F;. , and therefore total flow

time decreases.

• t < r· . Here one of four cases may arise:
1

o t < rj , (rj + Pj) ~ rj ; in which case F; = (rj + Pi) + (rj + Pi + P j)

o t ~ ri , (t +Pi)<rj ; in which case F; = (t +Pi) + (rj +Pj)

77

In each case, F; < F2 and the completion time of jobs i and j combined is

earlier. Hence, the completion times of all succeeding jobs are earlier. Due to

both reasons, total flow time decreases.

Thus, interchanging the positions of j and i reduces overall flow time.

Proceeding in this manner, carrying out any beneficial pairwise interchanges will

ultimately yield a schedule based on a sequence ordered by SPT. 0

The following corollary then follows immediately.

Corollary 4.3.2. For a set of discontinuous batches with job release times, the

sequence ordered by SPT is optimal in terms of total flow time. 0

Property 4.3.3 When two jobs with processing times Pi and p j and release times

1j and rj form a continuous batch, b, with a total processing time Pb , ready for

processing time, R
b , and machine ready time, t, one of the following four states

occurs:

• ~ ~ t and rj ~ ri + Pi: Pb = Pi + P j and R b = 1j .

The above property is easily extendable to more than two jobs.

Proposition 4.3.4. For a set of continuous batches with constrains on the ready

times R such that whenever T. < T. then R. < R. , where T is the batch effective
, , I J I J

time defined as Tb = ~ . with At, being the total processing time of the batch and Ob

the batch size (number of jobs in the batch), which could be equal to 1, the sequence

78

ordered by the Shortest Effective Batch Time (SEBT)is optimal in terms of total flow

time.

Proof: (by contradiction). Consider that a schedule S, which is not ordered by the

SEBT rule, is optimal. In this schedule, there must be at least two adjacent batches,

say Y and X such that Y is followed by X when R x < Ry and T x <Ty .

Assume that the machine is ready for processing the two batches at time t. Two

situations need to be considered:

• t ~ Ry , in which case the total flow time of the partial schedule composed of

the two batches concerned is

• t < Ry , in which case

Now perform adjacent pairwise interchange on batches Y and X to form a new

sequence, S' , with all other batches remaining in their original positions. The

completion times of all preceding batches remain unchanged. However, the

completion times of the two batches interchanged and all succeeding batches need to

be considered.

• t ~ Ry and certainly t ~ R x . Therefore,

The completion time of batches X and Y combined does not change, nor as a

result do the completion times of succeeding batches. However ~'< ~ and

therefore, total flow time decreases.

• t < Ry . Here one of four cases may arise:

o t <Rx' (Rx +Ax)<Ry; in which case F; = (Rx + Ax)£5x +

(Ry + Ay)£5y

o t < Rx ' (Rx + Ax) ~ Ry ; in which case F; = (Rx + Ax)£5x +

(Rx + Ax + Ay)£5y

79

o t '? R x ,(t + Ax) < Ry ; in which case F; = (t + Ax)J
x

+ (Ry + Ay)Jy

o t '? R x ' (t + Ax) '? Ry ; in which case F; = (t + Ax)J
x

+

(t + Ax + Ay)Jy

In each case, F; < F2 and the completion time of batches X and Y combined

is earlier. Hence, the completion times of all succeeding batches are earlier.

Due to both reasons, total flow time decreases.

Thus, interchanging the positions of X and Y reduces overall flow time.

Proceeding in this manner, carrying out any beneficial pairwise interchanges will

ultimately yield a schedule based on a sequence ordered by SEBT. 0

Proposition 4.3.5. For a set of continuous batches, in the absence of any constraints

on the inter-relationships among job release times, if preempt-resume is allowed

then the sequence ordered by the Shortest Effective Remaining Batch Time (SERBT)

is optimal in terms of total flow time, with batch effective time being T = ~ .
Jb

Proof: Generalizing the idea from Baker [8] for minimizing the sum of flow times

for a set of jobs and in light of proposition 4.3.4, we can show that when preempt­

resume prevails the optimal rule for a set of batches is to always keep the machine

assigned to the available batch with minimum remaining Effective Batch time. 0

Proposition 4.3.6. Assume a partial schedule, where some batches have been formed

on each machine, but no decision has yet been taken on batching the remaining 'un­

batched' jobs. Here, a lower bound on the sum of job flow times of an optimally

completed schedule corresponds to the sum of job flow times in a schedule formed by

considering each un-batched job as a single-job batch and sequencing all batches in

the order of SEBT or SERBT.

Proof: When completing the schedule, any batching of un-batched jobs will

necessarily delay some jobs. Hence, considering each such job as a single-job batch

ensures no delay. Thereafter, SEBT sequencing for the case that ready times, R ,

satisfies the constraint cited in proposition 4.3.4 ensures that the resulting schedule

minimizes total flow time by virtue of proposition 4.3.4. Otherwise SEBRT

80

sequencing ensures that the resulting schedule minimizes total flow time by virtue of

proposition 4.3.5. D

In addition to the propositions, corollary and property that are proved in above,

some of the propositions and corollaries cited in the last chapter have also dominance

on the structure of this problem. These propositions are modified and rewritten in the

following.

Proposition 4.3.7. In an optimal solution, any batch destined for a customer j that

has 0b > 1 jobs will have the property that (Ob -1) pz < Dc, where I is the last job in

the batch.

Proof: See the proof of proposition 3.3 in chapter 3. D

The following corollary then follows immediately.

Corollary 4.3.8. In an optimal solution, any job that has a processing time greater

than the batch delivery cost to the corresponding customer, i.e., such that Pi> Dc'

will fonn a single-job batch.

Proposition 4.3.9. If batches belonging to the same customer are concatenated in the

same order with which they occur in the optimal schedule, then the jobs will appear

ordered by SPT.

Proof: See the proof of proposition 3.5 in chapter 3. D

Proposition 4.3.10. A lower bound on the number of batches destined for a customer

in an optimal solution can be found by the following greedy maximum batching

algorithm: take the jobs destined for the customer concerned in SPT order; if the job

may be added to the current batch by virtue of proposition 4.3.7, then add it; else

start a new batch.

Proof: See the proof of proposition 3.6 in chapter 3. D

Proposition 4.3.11. Let a job k be in position s r to the right of a batch b, which is ill

position s I in a SEBT sequence (in which job k constitutes a single-job batch). If k

may be added to b by virtue of proposition 4.3.7, then the change in the sum of job

81

flow times resulting from doing so could be found by updating the contribution of the

batches between s 1 and s r inclusive.

Proof: See the proof of proposition 3.7 in chapter 3. D

Proposition 4.3.12. In completing a partial schedule, where some batches have been

formed, but no decision has been taken yet on batching the remaining 'un-batched'

jobs, a 'batching penalty' 11k , attaches to each un-batched job, since if the job is

added to the last formed batch for the customer concerned, total flow time will

increase, and if a new batch is started with it, an additional batch delivery cost will

be incurred. Moreover, 61 Pk ~ 11k ~ Dc' where 61 is the number of jobs in the batch

that it may join and Dc is the appropriate batch delivery cost.

Proof: See the proof of proposition 3.8 in chapter 3. D

Subsequently, we will use proposition 4.3.5, which is based on preempt-resume.

Using preempt-resume for finding lower bound ensurs that if the lower bound is still

less than the upper bound we are allowed to prune the branch, but on the other hand,

since the lower bound is not bonded perfectly and furthermore, we are not allowed to

use preempt-resume, the value that we will find at leaf node must be considered

again without using proposition 4.3.5. The following proposition will help to reduce

the search space area for the given sequence at leaf nodes.

Proposition 4.3.13 For a set of batches that have been established under the

conditions defined in section 2, the optimum sequence in terms of total flow time is a

sequence that if sorted in SEBT order gives the release dates of batches as:

A) Either sorted in non- decreasing order,

B) Or if for the partial schedule of the sequence the order of the release dates

conflict with the order of the batches, i.e. the batches are ordered in SEBT but the

release dates are not in non-decreasing order, then for the given partial schedule we

can claim that Rx + Px ~ Ry ' while Rand P show the ready time and total processing

time of batches and x and y identify the index of any given batch in the partial

schedule being considered.

Proof: See appendix 1. D

82

4.4 Branch and Bound Scheme

Search of the solution space is structured as a trivalent 0-1-2 search tree, where

each node is partitioned into three: one indicating that a job is added to the last batch

for the customer concerned continuously (1), another indicating that a job is added to

the last batch for the customer concerned discontinuously (2), and a third indicating

the start of a new batch that could be a single-job batch (0). The tree is constructed in

a depth-first fashion. At the beginning, all jobs that have to form single-job batches

by virtue of corollary 4.3.8 are identified and their corresponding variables are set to

o once for all. Other components of the branch and bound scheme are presented in

the following subsections.

4.4.1 Branching and ordering of variables

Variables are ordered in accordance with the SPT of the corresponding jobs. At

each node of the decision tree, two tasks are performed. First, variables that have to

be set to zero, because no batch for the customer concerned has been formed or by

virtue of proposition 4.3.7, are set to zero. Secondly, the first free variable (free

variables are the ones that have not yet been committed to either zero or one) in the

SPT sequence is set to one.

4.4.2 Fathoming and backtracking

A node is fathomed if:

Either, it is a leaf node, i.e., all variables are fixed.

Or, the lower bound exceeds or equals the incumbent upper bound.

Fathoming initiates backtracking to the first node associated with a variable

whose value is either 1 or 2. If the value of this variable is 1 then it is set to 2; else it

is set to zero. If no such node is found, the search terminates.

4.4.3 Upper bounds

As cited in the last chapter, providing a sharp, i.e., low, initial upper bound is

critically important for enhancing the exclusion rate of the branch and bound

algorithm, i.e., the rate with which nodes are fathomed. Hence, it is worth expending

some computational effort to achieve that end. It is worth noting that finding a good

83

heuristic upper bound for the problem in presence of release times is more difficult

than the problem in which all jobs are ready at time zero. However, two algorithms

are provided, the first one finds an initial upper bound and the second one improves

it.

Algorithm UBI-initial upper bound

Begin

• Form all jobs into single-job batches and sequence the batches in SEBT

order (which, in this case, is equivalent to SPT), and call it original sequence.

For i =1 to number of batches do

• Select the first single-job batch in the sequence, which is not selected yet.

For j = i + 1 to number of batches do

• Scan forward until the first single-job batch with the same customer to

the selected batch, i.e. batch i , is found and call it k .

• Move the newly found single-job batch, i.e. batch k , to the position

of batch i , and join them to make a bigger batch, if they will join

profitably .

• Continue the interior loop until no improving move is found .

• Continue the exterior loop until a complete scan of all batches.

end.

Algorithm UB2-improving upper bound

Moving a job is defined as either moving it to the preceding batch for the same

customer if it is the first job in the batch under consideration or to the succeeding

batch if it is the last job in the batch under consideration.

Begin

Start with a given schedule that is found by algorithm UBI and is sequenced

in SEBT.

Repeat

84

For i = 1 to number of batches do

Take 1 st job of batch. If it has not been moved in the current iteration and it

can be moved profitably, move it and adjust the schedule.

Take last job of batch. If it has not been moved in the current iteration and it

can be moved profitably, move it.

until no improving move is found.

Repeat

Find a job that can be moved profitably. Move it and adjust schedule.

until; no improving move is found.

end.

4.4.4 Lower bounds

The structure of lower bound on total flow time and batch delivery costs at each

node is the same as implemented for the last problem in chapter 3. However, for

clarification we adopt and rewrite it as follows.

It is worth recalling that at each node of the decision tree, if in view of the

batching decisions already taken, a job has to start a new batch, then the partial

solution is immediately augmented by a batch starting with that job.

At each node of the decision tree, a lower bound on total flow time is calculated in

accordance with proposition 4.3.6. It should be noted that proposition 4.3.6 implies

that if the sequence which is sorted in SEBT satisfies the constraint cited in

proposition 4.3.4, i.e. whenever Ti <Tj thenRi < R j , then lower bound on total flow

time will be calculated by virtue of this proposition, otherwise, lower bound on total

flow time will be calculated by virtue of proposition 4.3.5. Additionally, batch

delivery costs are added for each batch already formed.

Furthermore, a lower bound on the batching penalties is calculated by applying

the logic of proposition 4.3.12 in the following way. The first un-batched job of a

customer, k, will either start a new batch or join the last batch. It would, therefore,

attract a lower bound on its batching penalty = ~ P k ' where ~ is the number of jobs

in the last batch of the customer concerned. Since for each subsequent job, we do not

know the number of jobs in the batch that it may join in the optimal completion of

the current partial solution, each such job would attract a lower bound on its batching

85

penalty = Pk i.e. the lowest batching penalty that it may incur would be if it joined a

single-job batch.

At the initial stages of the search, opportunities arise for tightening the overall

lower bound still further by considering proposition 4.3.10. Assume that the number

of batches already formed for a particular customer in the current partial solution is

bk and that the minimum number of batches isbmin • It would then be possible to raise

the sum of lower bounds on batching penalties by identifying the b
min

-b
k

highest

individual lower bounds on batching penalties and replacing each by the batch

delivery cost.

The overall lower bound is then the sum of the lower bound on the total flow time,

batch delivery costs of the batches already formed and the sum of the lower bounds

on the batching penalties for the un-batched jobs.

4.4.4.1 Optimum value at Leaf nodes

Since we are not allowed to use preempt-resume, the value that we find at leaf

node must be considered again without using proposition 4.3.5 as follows.

If the obtained value for the lower bound at leaf nodes is calculated without

using preempt-resume and this value is less than upper bound then, this value

is certainly an optimum or at least a local optimum. It is worth noting that it is

immaterial if we have used preempt-resume at some earlier stages.

If the obtained value for the lower bound at leaf nodes is calculated with

using preempt-resume, then we have to consider all possible options that may

lead us to the minimum value. For achieving this objective the sequence has

to be ordered in SEBT and the partial schedules in which the total processing

time and ready time of batches conflict together must be recognized. The total

processing time and ready time of batches in a partial schedule conflict

together when the batches are ordered in SEBT but the release times are not

in non-decreasing order.

We start the process of a given sequence from the first batch in the sequence

and whenever we faced a partial schedule in which the batches conflict

together, consider all possible options and select the best one. It is worth

86

noting since the jobs for each customer should be processed in SPT order,

and also in the light of proposition 4.3.13, the number of extra states that

should be considered for each partial schedule is less than or equal to the

number of customers. In fact, proposition 4.3.13 ensures that for a given

partial schedule, when the processing of a batch is completed, all of the

remaining batches of the partial schedule will be ready for processing. In

other words, it means that the remaining batches satisfy the constraints cited

in proposition 4.3.4.

4.4.5 Numerical example

Consider the following two-customer problem, with delivery costs of 200 and 100

respectively:

Processing time
Release date

Customer 1

Job 1 Job 2 Job 3
10 65 160
o 50 60

Customer 2

Job 1 Job 2
20 60
15 40

Let (ij) denote the i th job destined for the j th manufacturer.

Initial lower bound:

The lower bound on total flow time, LBF, corresponding to flow time under SPT

= 635. Batch delivery costs, LBD, is 300 (we have to start a batch for each customer).

The lower bound on batching penalties, LBB is: (65+200) + (60) = 325, where the

numbers within the first (second) bracket correspond to the penalties incurred by

each job of the first (second) customer in tum. Note that the 200 for the first

customer results from substituting the initial lower bound on the batching penalty,

which is equal to 160, by the batch delivery cost, by virtue of the fact that the

minimum number of batches for the first customer is two.

LB = LBF + LBD + LBB = 635 + 300 + 325 = 1260

Initial upper bound:

Applying algorithm UBI to the 5 single-job batches leads to the following

schedule: 1(11)1, 1(12) (22) I, 1(21)(31)1, with a total flow time of 860. Adding total

batch delivery costs gives UB* = 860 + 500 = 1360.

87

Applying algorithm VE2 for this schedule cannot improve the upper bound,

therefore, UB * = 1360.

Branch and Bound:

Let symbol {} shows a discontinuous batch. In what follows the information

appropriate with each node is presented. Furthermore, the starting and completion

times of batches, which we have taken decision about, are illustrated. The remaining

single-job batches, which we have not decided about yet, must be sequenced in

SEBT at the end of the partial schedule. The numbers, at the top of each operation ,

show the order of operations (assuming that idle time of machine is also an

operation). The operations that may confuse the reader are explained separately.

• So = 1(11) I, I (12)1; LBF = 635, LBD = 300, LBB = 65 + 200 + 60 = 325, LB

= 1260.

1 2 3

10 I 5 20

1

10

1

20

• SI = 1(11)1, I (12) (22) I; LBF = 700, LBD = 300, LBB = 65 + 200 = 265, and

LB = 1265.

2 3

10 80

• S2 = 1(12) (22)1, I (11) (21) I, 1(31)1; LBF = 885, LBD = 500, LBB = 0, and

LB = 1385. Since LB > UB*, backtrack. Notice that in this node we have

used preempt-resume.

2 3 4 5

20 60 75 160

Explanation:

1: The time we have to wait till the first batch gets ready. It is worth noting

that at time 0, job (11) is ready but it cannot be processed because at thi s node

job (11) is one part of batch hI = I (11) (21)1 which is not ready yet.

88

1

10

2: The first batch in the sequence, when the sequence is ordered in SEBT, is

batchb] . Since this batch is not ready at time 20, we use preempt-resume and

then the process starts with batch b2 = 1(12) (22)1.

3: The process must continue until the next batch gets ready (arrives). Next

batch,b] is ready at time 40. At time 40, the total processing time of batchb
J

'

is 75, while the remaining total processing time of batch b2 is 60. Since the

size of both batches is the same, the process must continue with batch b
2

.

Steps 4 and 5 are clear.

• S3 = {I (11) (21)1}' 1(12) (22)1,1 (31)1; LBF = 855 , LBD = 500, LBB =0, and

LB = 1355. In fact, this is the best solution, which is found by now. Therefore

UB* = 1355, backtrack

2 3 4 5 6

10 30 50 65 160

Explanation:

1: At time 0, the process of the first job of discontinuous-batch

b; = {I (11) (21)1}, with the processing time of 10, starts and will be completed

at time 10. It is worth noting that in contrast with node S2 ' since batch b; is a

discontinuous-batch we should not wait till the whole batch gets ready.

2: The idle time of machine till the next batch (job) gets ready.

3: The second job of batch b;is ready at time 50, while batch b2 = 1(12) (22)1 is

ready at time 20. Since we are using preempt-resume the process could

continue with batch b2 until the second job of batch b; gets ready.

4: At time 50 the second job of batch b; is ready. At time 50, the remaining

total processing time of batch b; is 65, while the remaining total processing

time of batch b
2

is 50. Since the size of both batches is the same, the process

must continue with batchb 2 •

5: The process of the second job of batch b; starts at time 100 and will be

completed at time 165.

89

1

10

1

10

1

10

6: The process of single-job batch 1(31)1 starts at time 165 and will be

completed at time 325.

Since we are at leaf node and the result has obtained by using preempt-resume,

two possible options, without using preempt-resume, must be evaluated. The

first option occurs when batch 1(2) (22)1 is followed by the second job of

discontinuous-batch {I (1) (21)1}; in which case LBF = 855, LBD = 500,

LBB =0, and LB = 1355.

2 3 4 5

10 80 , I 65 160

The second option occurs when the second job of discontinuous-batch {IOl)

(21)1} is followed by batch 1(2) (22)1; in which case LBF = 975, LBD = 500,

LBB =0, and LB = 1475.

2 3 4 5

40 65 80 160

The LB for the first option is still less than the current upper bound, thus it is

the best solution, which is found by now. Therefore UB* = 1355, backtrack .

• S4 = 1(1)1, I (12) (22)1, 1(21)1; LBF = 700, LBD = 500, LBB = 160, and LB =

1360. Since LB > UB*, backtrack.

2 3 4

10 80 65

• S5 = 1(1)1, {1(2) (22)1}; LBF = 700, LBD = 300, LBB = 65 +200 = 265,

and LB = 1265.

1 2 3 4 5

10 I 5 20 5 I 60

90

1

15

1

10

• S6 = 1(1)(21)1, {1(2) (22)1}' 1(31)1; LBF = 885, LBD = 500, LBB = 0, and

LB = 1385. Since LB > UB*, backtrack. Notice that in this node we don ' t

need to use preempt-resume.

2 3 4 5 5
20 1 5 1 60 75 160

• S7= {1(11)(21)1}' {1(2) (22)1}' 1(31)1; LBF = 855, LBD = 500, LBB = 0, and

LB = 1355. Since LB = UB*, backtrack.

2 3 4

1 5 1 20~i / 1 5 r
5 5 6
60 65 160

• S8 = 1(1)1, {1(12)(22)1}' 1(21)1; LBF = 700, LBD = 500, LBB = 160, and LB

= 1360. Since LB > UB* , backtrack.

1 2 3 4 5 6
10 1 5 1 20 'I 5 1 60 65

• S9 = 1(1)1, 1(2)1, 1(22)1; LBF = 635 , LBD = 400, LBB = 65 +200 = 265, and

LB = 1300.

1 2 3 4 5

10 1 5 1 20 1 5 1 60

• S 10 = 1(2)1, 1(1)(21)1, 1(22)1, 1(3)1; LBF = 775 , LBD = 600, LBB = 0, and

LB = 1375. Since LB > UB *, backtrack.

1 2 3 4 5 6

15 20 75 60 160

• S II = {1(1)(21)1}' 1(2)1, 1(22)1,103)1; LBF = 755 , LBD = 600, LBB = 0, and

LB = 1355. Since LB = UB*, backtrack. Notice that in this node we use

preempt-resume.

91

1

10

2 3 4 5 6 7 8

5 20 5 10 65 50 160

Explanation:

1: At time 0, the process of the first job of discontinuous-batch

b; = {\ (11) (21)\}, with the processing time of 10, starts and will be completed

at time 10. It is worth noting that since batch b; is a discontinuous-batch we

should not wait until the whole batch gets ready.

2: The idle time of machine till the next batch (job) gets ready.

3: At time 15, the single-job batch \(12)\, with the processing time of 20, starts

and will be completed at time 35.

4: At time 35 no batch (jobs) is ready, then the machine will be idled till the

next batch (job) gets ready.

5: The next batch (job) in the sequence, when the sequence is ordered in

SEBT, is the second job of batch b; ,job \(21) \. Since this job is not ready at

time 40, we use preempt-resume and the process continue with job 1(22)1 till

job 1(21)\ gets ready.

6: At time 50, job \(21)\ is ready. The processing time of this job is 65 and it

belongs to the discontinuous-batch b; with size of 2. On the other hand, the

remaining total processing time of single-job batch 1(22)1, i.e. the job that is

under processing, is 50 and its size is 1. Therefore, by virtue of proposition

4.3.5 the processing of job 1(22)\ must be interrupted and the processing of

job \(21)\ starts.

7: At time 115, the processing of job \(21) \ is completed and the process of job

1(22)\, with the remaining processing time of 50, starts.

8: The process of single-job batch \(31)\ starts at time 165 and will be

completed at time 325.

It is worth noting that the total flow time at this node must be calculated as

follows.

LBF = (15 + 20) + (50 + 65) x2 + (115 + 50) + (165 + 160) = 755 .

92

• S 12 = 1(11)1, 1(12)1, 1(22)1, 1(21)1; LBF = 635 , LBD = 600, LBB = 160, and LB

= 1395.

1 2 3 4 5 5

10 I 5 I 20 I 5 I 60 65

• Search Completed.

4.5 Computational Results

In the absence of benchmark test problem instances upon which to test the branch

and bound algorithm (B&B) and compare its performance with that of the only other

available algorithm for the single machine-scheduling problem under consideration ;

i.e., the dynamic programming algorithm (DP) of Hall and Potts, we resorted to

generating a set of problem instances.

For the set, three subsets were generated; one with 2 customers, another with 3

and the third with 4. In each subset, the number of jobs was varied up to a total of 40.

The jobs were randomly distributed among customers, with each being assigned at

least two jobs. Processing times were randomly generated integers from the uniform

distribution defined on [1,100]. To ensure that results are representative, 5 instances

were generated for each combination of number of jobs-number of customers. Each

of the running times in tables below represents the average over the appropriate five

instances.

Since interaction between batch delivery costs and job processmg times may

affect problem hardness, we generated two classes of problems. In class A, all job

processing times are less than the delivery cost of the relevant customer, while in

class B it is possible randomly that some jobs have a processing time that exceeds the

deli very cost.

The computational experiments were run on a Pentium 4 computer with 2.40 GHz

of CPU and 512 ME of RAM. Both B&B and DP were coded in C++.

Comparative results are shown in tables 1 to 6. Furthermore, to present the

efficiency of B&B , another subset with 8 customers were also generated. Tables 7

and 8, show the results for this subset.

93

As can be clearly seen, the DP algorithm has advantage over B&B only for some

class A problem instances having 2 customers. For all other instances, B&B is more

efficient by far. This is due to the time complexity of the DP algorithm, which can be

clearly observed in the escalation of computing time with the increase in the number

of jobs and customers. On the other hand, the efficiency of the B&B, which enables

it to solve problem instances very fast, is attributable to the effectiveness of the initial

upper bound and the sharpness of the lower bounds. Careful analysis of the structural

properties of the problem proved crucial in forging both sub-algorithms (upper bound

and lower bound).

As cited in the last chapter the complexity of the dynamic programming algorithm

is such that for the same number of jobs, problem instances with a larger number of

customers are more difficult while, the opposite is true for the branch-and-bound

algorithm, as revealed by the solution times. This is so because when the number of

customers is large, the algorithm is in effect searching over a larger number of

smaller subsequences, with much smaller numbers of possible permutations.

However, it is expected that by increasing the number of jobs for the same number of

customers the running times increase. In this regard, we define a critical point (CP),

which shows the number of jobs for which the B&B algorithm can still solve

problem instances efficiently. It is worth noting that CP is not the maximum number

of jobs that can be solved by B&B, but only the number of jobs after which the

running time increases critically. The CP for each combination of customer-jobs is

shown in the caption of diagrams 1 to 8.

94

Table 1: Running times for problem instances with 2 customers, where jobs
randomly distributed among customers-Class A.

Number of Number of Running time (per ms)
Customers jobs DP 8&8

2 7 36 16
2 12 232.2 26
2 17 1594.2 38.2
2 22 6860 212.2
2 27 18837.2 3174.6
2 32 52944.2 56645.4
2 37 124341 1038527.4
2 40 213843 27518645

Diagram 1: Running times versus Number of jobs for problem instances with 2
customers, where jobs randomly distributed among customers-Class A. CP = 37.

2 Customers Class A

1200000

CD 900000 E
:;:;
C'I

600000 c
c
C

I-:-DP I ___ 8&8

:::J 300000 a:

0

0 10 20 30 40 50

Number of jobs

95

Table 2: Running times for problem instances with 3 customers, where jobs
randomly distributed among customers-Class A. *: Computer gives up for lack of
sufficient.

Number of Number of Running time (per ms)
Customers jobs DP 8&8

3 7 120 14
3 12 3166.6 16
3 17 28641 28
3 20 137934.4 52
3 22 280443.34 170.4
3 27 937307.8 1948.8
3 32 * 4873
3 37 * 99825.6
3 40 * 213447

Diagram 2: Running times versus Number of jobs for problem instances with 3
customers, where jobs randomly distributed among customers-Class A. CP = 42.

3 Customers Class A

1200000

Q) 900000 E
:;:::
tn 600000 c
c
C

I-:-DP I
-11-8&8

::I
300000 cc

0
0 10 20 30 40 50

Number of jobs

96

Table 3: Running times for problem instances with 4 customers, where jobs
randomly distributed among customers-Class A. *: Computer gives up for lack of
sufficient.

Number of Number of Running time (per ms)
Customers jobs DP 8&8

4 8 889.4 20
4 10 4117.8 20
4 13 39174.6 20
4 15 131477 22
4 16 586020.4 26
4 18 4221419.5 40.2
4 23 * 134.2
4 28 * 843.2
4 32 * 4350.2
4 37 * 45717.6
4 40 * 80263.4

Diagram 3: Running times versus Number of jobs for problem instances with 4
customers, where jobs randomly distributed among customers-Class A. CP = 48.

5000000

4000000
CD
E
- 3000000
Cl
t:

:§ 2000000
:::::I
a:

1000000

o
o

4 Customers Class A

•
I : DP I __ B&B

__ J._ - - - -.---- - -
10 20 30 40 50

Number of jobs

97

Table 4: Running times for problem instances with 2 customers, where jobs
randomly distributed among customers-Class B.

Number of Number of Running time (per ms)
Customers jobs DP B&B

2 7 94.2 14
2 12 288.4 14
2 17 1686.4 16
2 22 6653.6 22
2 27 19768.6 102.2
2 32 54968.8 102.2
2 37 126511.6 19592.2
2 40 207202.2 21833.75

Diagram 4: Running times versus Number of jobs for problem instances with 2
customers, where jobs randomly distributed among customers-Class B. CP = 48

2 Customers Class B

250000

Q)
200000

E
:;:; 150000
Cl
c
c 100000 c

I-:-DP I __ 8&8

~
a: 50000

0

0 10 20 30 40 50

Number of jobs

98

Table 5: Running times for problem instances with 3 customers, where jobs
randomly distributed among customers-Class B. *: Computer gives up for lack of
sufficient.

Number of Number of Running time (per ms)
Customers jobs DP B&B

3 7 120 12
3 12 2475.4 16.2
3 17 35260.6 14
3 20 125089.6 34
3 22 798830.6 32
3 27 * 34.2
3 32 * 10
3 37 * 32
3 40 * 358

Diagram 5: Running times versus Number of jobs for problem instances with 3
customers, where jobs randomly distributed among customers-Class B. CP =58.

3 Customers Class B

1000000 .. ~~ __ w_._·····_

Q) 800000
E

:;::: 600000
C)
c
c 400000 c

T

I-:-op I
_8&8

::l
0:: 200000 I

~ ..
I

- .. I -o
o 10 20 30 40 50

Number of jobs

99

Table 6: Running times for problem instances with 4 customers, where jobs
randomly distributed among customers-Class B. *: Computer gives up for lack of
sufficient.

Number of Number of Running time (per ms)
Customers jobs DP B&B

4 8 863.2 18
4 10 4439 12
4 13 40209.8 14
4 16 364484.2 14.2
4 18 4287873.8 20
4 23 * 20
4 28 * 22
4 32 * 70.2
4 37 * 446.6
4 40 * 779.2

Diagram 6: Running times versus Number of jobs for problem instances with 4
customers, where jobs randomly distributed among customers-Class B. CP = 63.

5000000

CI) 4000000
E
:;, 3000000
c:
'2 2000000
c:
~

0::: 1 000000

o
o

4 Customers Class B

t

1 - - -... - - - -
10 20 30 40

Number of jobs

100

.-

I-:-DP I _8&8

50

Table 7: Running times for problem instances with 8 customers, where jobs
randomly distributed among customers-Class A.

Number of Number of Running time (per ms)
Customers jobs DP B&B

8 16 - 24.2
8 21 - 20
8 26 - 42
8 31 - 294.4
8 36 - 979.4
8 40 - 2503.8

Diagram 7: Running times versus Number of jobs for problem instances with 8
customers, where jobs randomly distributed among customers-Class A. CP = 52.

8 Customers Class A

3000

2500
CI)

E 2000 :;;

g' 1500
c:
c: 1000 :l
a:

500

1-+-8&81
!
/

)
/

0

0 10 20 30 40 50

Number of jobs

101

Table 8: Running times for problem instances with 8 customers, where jobs
randomly distributed among customers-Class B.

Number of Number of Running time (per ms)
Customers jobs DP B&B

8 16 - 20
8 21 - 22
8 26 - 32.2
8 31 - 50
8 36 - 58.2
8 40 - 236.2
8 45 - 464.8

Diagram 8: Running times versus Number of jobs for problem instances with 8
customers, where jobs randomly distributed among customers-Class B. CP = 70.

8 Customers Class B

3000~--------------~~------------------~

2500+-----------------------------------~

2000+-----------------------------------~

1500+-----------------------------------~

1000~----------------------------------~

500+-------------------------~~~~~~i

O~------~--~~~~~~A==~~~_r----~
o 10 20 30 40 50

Table 9: Average percentage Relative Error.

Random Distribution of Jobs

Customers Class A Class B

2 0.28 0.07

3 0.33 0.08

4 0.19 0.08

8 0.2 0.07

102

I-.-B&BI

Effectiveness of the upper bound makes it possible to use it as a fast heuristic.

Table 9 shows that on average it produces solutions that are within 0.33% of the

. (I' (UB optImum re atIve error = . -1)). Moreover, the error is smaller for larger
Optlmal

instances. However, it may be argued that the efficiency of the B&B obviates the

need for a heuristic solution.

4.6 Conclusion

A branch and bound algorithm for scheduling a set of jobs to be processed on a

single machine for delivery in batches to customers while, the jobs are ready at their

release times, has been presented. This problem is a natural extension of minimizing

the sum of flow times in presence of release dates by considering the possibility of

delivering jobs in batches and introducing batch delivery costs. The scheduling

objective adopted is that of minimizing the sum of flow times and delivery costs. The

extended problem arises in the context of coordination between machine scheduling

and a distribution system in a supply chain network.

The branch and bound algorithm proved to be very efficient. Indeed, it proved to

be far more efficient than the only existing algorithm for solving the problem, which

is based on dynamic programming. This efficiency is attributable to the sharpness of

the lower bounds derived, in addition to the high quality of an initial upper bound

found using an effective heuristic.

Both lower bound and the upper bound are based on a careful analysis of the

structural properties of the problem.

103

Chapter 5

5. Minimizing the sum of flow times (completion times)

for the combined problem

In this chapter we consider the situation when a supplier and one of the

manufacturers (assume manufacturer 1) cooperate together to minimize the sum of

flow times plus delivery times over the system. Thus, the problem being considered

is that of scheduling a set of jobs to be processed on a single machine by the supplier

for delivery to several manufacturers in batches, and also scheduling the jobs which

are to be processed on a single machine by manufacturer 1 for delivery of the final

product to several customers in batches.

This problem can be considered as a combination of two problems. The first

problem is a natural extension of a single machine scheduling problem where a set of

jobs to be processed by supplier for delivery in batches to manufacturers 2 to n. The

second problem is a natural extension of the two-machine flow shop problem, where

there are some jobs to be processed by the supplier for delivery in batches to

manufacturer 1 who has to process the jobs for delivery of the final products in

batches to several customers. The combined problem arises in the context of

104

coordination between machine scheduling and a distribution system in a supply chain

network.

Structural properties of the problem are investigated and used to devise a branch

and bound solution scheme. Computational experience shows the efficiency of the

algorithm and the benefit of cooperation in reducing total system cost over the

system.

5.1 Introduction

This chapter considers a combined problem that occurs in a real world supply

chain network, where a supplier makes deliveries to several manufacturers, M g for

g = 1, ... ,G who in tum make deliveries to several customers. We address the

condition that supplier and one manufacturer, M l' cooperate together to minimize

total flow times plus total delivery times over the system. Thus, there are single-stage

jobs that the supplier processes and delivers them to some manufacturers

M 2, ... ,M G in batches, and there are also two-stage jobs that the supplier processes

and delivers them in batches to manufacturer M l' who has to process the jobs and

deliver the final products in batches to several customers. The objective is to

minimize the total flow times (completion times) plus delivery times over the system.

The two-stage problem is a natural extension of two-machine flow shop problem by

considering the possibility of delivering jobs in batches and introducing batch

delivery costs. The two-stage problem is the recognition of the F211 IFj or

F 211 Ie j classical problem with additional term. The classical problem is NP­

complete [43], and then it is easy to show that the recognition version of the

extended problem is also NP-complete. The permutation version of the classical

problem has been first studied by Ignall and Schrage [58], who presented a branch

and bound approach based on two lower bounds.

Van de Velde [88] developed a branch and bound method based on applying the

Lagrangian relaxation on the constraint that requires for each job the second

operation starts after the completion of the first operation, and showed that his lower

bound dominated both bounds suggested by Ignall and Schrage.

105

F. Della Cross et al. [34] considered several known lower bounds and introduced

two new ones among them. They have tested these bounds on problem instances with

up to 30 jobs. The computational results indicate that a new bound presented by them

when applied jointly with the Van de Velde's lower bound [88], gave the best

performing lower bounding procedure. F. Della Cross et al. [33] presented an

enhancement of Van de Veld's lower bound by exploring sufficient conditions for

the optimality of a given sequence when maximizing the Lagrangian dual problem.

They report the computational results of a problem with up to 45 jobs.

Can Akkan and Se1cuk Karabati [2] present a new lower bound calculation

scheme based on a minimum-cost network flow formulation of the problem, which

when integrated into a branch and bound algorithm that uses dominance criteria

already established in the literature, can solve problems with as many as 60(45) jobs

when processing times are uniformly distributed in the [1,10]([1,100]) range.

Two-machine flow shop problems that address an optimal value, with both

machine scheduling and delivery cost, appear to be rather complex, though they are

more practical than those which involve just one of those factors. This type of

combined optimization is often encountered when a real-world supply chain

management is under consideration. However, although there is a large body of

research on the classical version of the problem, only a few articles address

combined optimization problem that seek to coordinate machine scheduling with

delivering jobs in batches. The complexity of some combined problems such as

makespan and completion times, when the jobs are to be delivered after their

processing time to customer or warehouse are measured by Lee and Chen [64].

Hurink and Knust [57] considered a flow shop problem for minimizing makespan

with transportation times, but they have assumed that a single robot, which can shift

only one job at a time, does all the transportations.

Hall and Potts [49] consider a variety of scheduling, batching and deli very

problems that arise in an arborescent supply chain, where a supplier makes deliveries

to several manufacturers, who also make deliveries to customers. One of the

problems identified by Hall and Potts is when the supplier and one manufacturer

cooperate together in order to minimize sum of flow times plus delivery costs for the

entire system including the supplier and manufacturer. Hall and Potts derive a

forward dynamic programming algorithm for the problem under the assumptions of

total SPTwithin groups. By this assumption they assume that two stage-jobs for each

106

customer are sequenced by both i.e. supplier and manufacturer, in SPT order

according to the total processing time of jobs on the supplier's machine and

manufacturer's machine. They also make the further assumption of total SPT within

groups, in which jobs for each of the manufacturersM 2, ... ,M G ' are sequenced in

SPT order according to the processing time of jobs on the supplier's machine. Hall

and Potts have proved that the overall time complexity of their algorithm for finding

. 1 h d 1 . 0 (2G+7H -2). h'l an optIma sc e u e IS n tIme w 1 en, G and H identify the number of

jobs, manufacturers and customers respectively.

In this chapter we consider the similar problem under assumptions that, the single

-stage jobs for each of the manufacturers M 2, ... ,M G are sequenced in SPT order by

the supplier according to the processing time of jobs on the supplier's machine, and

that the two-stage jobs for each customer are also sequenced in SPT order by the

supplier according to the processing time of jobs on the supplier's machine. We also

assume that each batch for manufacturer M 1 contains the jobs that are destined for a

particular customer, i.e. the jobs that are destined for different customers neither

make a batch on the manufacturer's machine nor on the supplier's machine. This

assumption is a natural assumption within the framework of supply chain

management. This condition may be enforced as a part of the coordination between

the supplier (upstream stage) and the manufacturer.

In what follows, we consider this problem, study its structural properties, derive

upper and lower bounds, offer a branch and bound scheme for solving it and present

the efficiency of algorithm for solving the problem instances up to 30 jobs.

Furthermore the benefit of cooperation between the supplier and manufacturer will

be presented.

5.2 Problem Definition

Let NS ={l, ... ,N} denote the set of jobs to be scheduled by the supplier and to be

delivered in batch to several manufacturersM g for g = 1 to G. The supplier

cooperates with one of the manufacturers (without loss of generality assume

manufacturer 1) who has also to process the jobs and delivers them in batches to

several customers C
h

for h = 1 to H. We denote the supplier's machine and

manufacturer's machine by M S ' and M M respectively.

107

Let N 1 = { 1, ... , nl
} denote the single-stage jobs that supplier processes and deli vers

to manufacturers M 2 , .. ·,M G in batches andN2 ={1, ... ,n2
} denote two-stage jobs

that supplier processes and delivers in batches to manufacturer 1. The jobs in set

N l need only one operation i.e. machineM s . Each job in set N 2 consists of two

operations where the first operation must be processed on machine M s and the

second operation on machineM M with the same order (Permutation schedule)~ also

the second operation cannot begin before the first operation is complete. Each job is

available at time zero. Both machines can process at most one job at time. A group of

jobs forms a batch for supplier (manufacturer), if all of these jobs are delivered to a

single manufacturer (customer) at the same time. We also assume that each batch for

manufacturer 1 contains the jobs, which are destined for a particular customer, i.e.

the jobs that are destined for different customers make a batch neither on the

manufacturer's machine nor, on the supplier's machine. The single-stage jobs for

each of the manufacturers M 2, ... ,M G are sequenced in SPT order by the supplier

according to the processing time of jobs on the supplier's machine, and the two-stage

jobs for each customer are also sequenced in SPT order by the supplier and

manufacturer 1 according to the processing time of jobs on the supplier's machine.

Let J~ for n = 1, ... ,~ show the set of batches that are to be delivered to

manufacturer M 1 and, J: for n = 1, ... ,n2 show the set of batches that are to be

delivered to customers Ch for h = 1 to H. When there is no ambiguity we

simplify J~ and J: to jS and jM, respectively. The objective function that we

consider is to minimize the sum of flow times plus delivery costs over the system.

This is a combination of two problems. The first problem is a natural extension of

111 I F
j

problem with additional term which IS delivery cost for

manufacturersM 2, ... ,M g , i.e. the problem we considered in chapter 3, and the

second problem is a natural extension of two-machine flow shop problem

F 2" I F
j

with additional term which is delivery cost for transporting jobs from the

supplier to manufacturer M 1 and also delivery costs for each customer. Thus, using

the standard classification scheme for scheduling problems [46], the objective

108

f . . II" C SSM M unctIOn IS 1 L.Fj + ID g Y g + IDh Y h , where Y g and Y h denote the number of

deliveries for each manufacturer and customer respectively and F.c = F S + FM
J J J'

while F/ and Ft show the sum of flow times on machines M s, and

M M respectively. As cited in the last section the classical version of two- machine

flow shop problem, F211 I Fj , is NP-complete, then the combined problem that

contains this problem with some additional terms is also NP-complete.

We also use the following notations:

pf ' the processing time of job i on machineM S ,

pf ,the processing time of job i on machineM M '

S
D g' the delivery cost for delivery of batches from supplier to

manufacturer g ,

Dt! ' the delivery cost for delivery of batches from manufacturer 1 to

customerh,

lSj , the size of batch j E J S or j E J M ,

A j , the sum of processing time of jobs within batch j E JS on machineM S '

C Ij , the completion time of batch j E J S on machine M S which is equal to

the completion time of each job within respective batch,

X Ij' the sum of completion times of jobs within batch j E J S on

machine M S which is equal to i5j C1j ,

QIj , the sum of flow times of jobs within batch j E JS on machineM S .

Although the size and substances of batches on set J ~ and J': are not the same,

however it is efficient to mark the group of jobs that are delivered in a batch to

machineM M with the same index that it has on machineM S . Therefore, we define

variable B j such that it shows the sum of processing time of jobs on machine M M '

which are delivered in batch j E J S to manufacturer 1. C 2j ,Q2j' and X 2j are

defined analogously for machine MM' We note that X Ij = QIj' while X 2j and

Q2} are not identical. More clearly, assume p: and p; are processing times of first 2

109

jobs that have been scheduled on machine M s and delivered to manufacturer 1 in one

batch. The processing time of these jobs on machine M M are PIM and

P~ respectively and they have been processed and delivered to respective customer

by two separate batches, then we have:

X Ij = Qlj = 2(p; + p;),

X 2j = 2(p; +p;) +2p~ +p~, or X 2j =X Ij + Q2j .

5.3 Structural Properties

In this section, structural properties of the problem, used subsequently to derive

upper and lower bounds, are analyzed. We first rewrite the first proposition of the

third chapter in term of completion time, then we provide and prove a set of

propositions and corollaries that are useable in a two-machine flow shop problem

and finally we extend them for a combined problem. Since any result that is proved

for completion time applies also to flow time, we state and prove the following

propositions and properties in terms of completion time.

Proposition 5.3.1. For a set of batches to be scheduled on a single machine

(machine M s), the sequence ordered by the Shortest Effective Batch Time (SEBT) is

A
optimal in terms of total completion time, with batch effective time Tb = --.lz...., where

8b

Ab is the total processing time of the batch and 8b is the batch size (number of jobs

in the batch), which could be equal to 1.

Proof: See proposition 3.1 in chapter 3. 0

In accordance with our description of the problem, each machine can process the

jobs while the machine is free. In the absence of batch delivery, relaxing this

constraint for the second machine such that the machine to be always free for newly

arrived jobs and sorting the jobs in SPT on the first machine yields a lower bound in

term of sum of flow times (completion times) for two-machine flowshop problem,

see Ignall and Schrage [58] and also Hoogeveen and Kawaguchi [55]. In what

110

follows we will improve this idea to derive a lower bound for two-machine flowshop

problem in presence of batch delivery.

Proposition 5.3.2. For scheduling a set of batches in a two-machine jlowshop, while

the second machine is always free for processing the jobs of the newly arrived batch,

the sequence ordered by the Shortest Effective Batch Time (SEBT) on the first

machine, i.e. machine M s' yields a lower bound in tenns of total completion time

n n n
such that if a* be an optimal schedule, then I X j (a*) ~ I X Ij + I Q2j ,

j=1 j=I j=I

n

where I X j (a*) shows the total completion time.
j =1

Proof.

C21 = Al + B I ,

X 21 = X 11 + Q 21 and

C 2j = max{Clj,C 2,j-I) + B j ,

Consider any schedule a. The lower bound will be found as follows

X 2j = lSj max { C lj , C 2,j-I) + Q2j ~ lSj CI,j + Q2,j which implies that

X 2 · ~ Xl' + Q 2 . for j =l, ... ,n ; hence, J ,J ,J

n n n n

IXj= IX2,j ~ IXI,j + I Q 2,j'
j~ j~ j~ j~

The term ~ Q . in the right side of the above equation is independent of the order of ~ 2,J
j=I

batches on machineM s . More clearly, if the order of jobs within batches on the first

machine does not change, the order by which the batches will be delivered to

n

manufacturer 1 does not affect on term I Q2,j .
j=I

The term ± Xl . in the above equation yields:
,J

j=l

n

" XI . = Xl I + X I 2 + ... + X I n or L...J ,j " ,
j=l

± X . = 6I~ + J2 (~ + A2) + ... + I n (~ + ... ~) I,J
j=!

III

that states the total completion times of jobs on the first machine, i.e. machine Ms.

This term is minimized by virtue of proposition 5.3.1 and it completes the proof. 0

The following corollary then follows immediately.

Corollary 5.3.1. For a set of batches to be scheduled in two-machine jlowshop, the

sequence ordered by the Shortest Effective Batch Time (SEBT) on the first machine is

optimal in terms of total completion time, if ~+1 > Bj for all batches in the

sequence. 0

Proposition 5.3.3. In a partial schedule, where some batches have been fanned on

system, i.e. the jobs that are scheduled and decision about batching has been taken

on both machines, but no decision has been taken yet on batching the remaining 'un­

batched' jobs, a lower bound on the sum of completion times of an optimally

completed schedule corresponds to the sum of completion times in a schedule fanned

by considering each un-batched job as a single-job batch for each machine and

sequencing all batches in the order of SEBT on machine Ms.

Proof: Any batching of un-batched jobs to complete the schedule will necessarily

delay some jobs. Hence, considering each such job as a single-job batch ensures no

delay. Thereafter, SEBT sequencing on machineM s ensures that the resulting

schedule minimizes total completion time by virtue of proposition 5.3.2. 0

Proposition 5.3.4. In an optimal solution, any batch that is scheduled on first

machine that has 6b > 1 jobs will have the property that (6b -1)pf < Dr ' where

6b shows the batch size, 1 is the last job in the batch and Dr is batch delivery cost to

manufacturer 1.

Proof: (by contradiction) Consider a batch that does not have the indicated property.

Removing the last job and delivering it in a batch of its own will decrease the overall

objective function by(6b -1)pf -Dr, no matter where the batch happens to be in

the sequence of batches. It is also worth noting that since the jobs in a batch are all

delivered at the batch delivery time; the order of the jobs within a batch is

immaterial. However, from the viewpoint of supplier (first machine), it is assumed

112

that these jobs are ordered according to SPT, then it is clear that the last job in each

batch has the greatest processing time. 0

Proposition 5.3.5. In an optimal solution, any batch that is scheduled on the second

machine that hasSb >1 jobs will have the property that(Sb -1)pr <Dr, where

Sb shows the size of batch, I is the last job in the batch and Dr is batch delivery

cost to the corresponding customer.

Proof: The proof is the same as cited for proposition 5.3.4. The only difference is

that from the viewpoint of manufacturer (second machine) the jobs within a batch are

not necessarily ordered according to SPT rule. 0

The following corollaries then follow immediately.

Corollary 5.3.2. In an optimal solution, any job on the first machine (machine M s)

that has a processing time greater than the batch delivery cost to the second machine

(machine M M) i.e., such that pf > Dl ' will form a single-job batch. 0

Corollary 5.3.3. In an optimal solution, any job on the second machine (machine

M M) that has a processing time greater than the batch delivery cost to the

corresponding customer i.e., such that pf > Dt! ' will start a new batch. 0

We note that the difference between corollaries 5.3.2 and 5.3.3 stems from this

fact that the jobs on machine M M are not ordered according to SPT, then it may

occasionally happen that a job that has a processing time greater than the batch

delivery cost to the corresponding customer starts a new batch and the other jobs join

to this batch for establishing a batch with greater size. However, if a batch is already

started, a job that has a processing time greater than the batch delivery cost to the

corresponding customer cannot join to this batch.

Proposition 5.3.6. A lower bound on the number of batches that are scheduled on

the first machine and destined for the second machine in an optimal solution can be

found by the following greedy maximum batching algorithm; take the jobs destined

113

for the customer concerned in SPT order; if the job may be added to the current

batch by virtue of proposition 5.3.4, then add it; else start a new batch.

Proof: In accordance with our assumption, jobs have to be taken in SPT order on the

supplier's machine. Since each batch is augmented until it can take no more jobs, the

number of batches is minimized. Moreover, since this is done while relaxing

(forgetting) the constraints of interaction with jobs for other manufacturers due to

batching, the number found is a lower bound, as claimed. D

Proposition 5.3.7. A lower bound on the number of batches that are scheduled on

the second machine and destined for a customer in an optimal solution can be found

by the following greedy maximum batching algorithm; take the jobs destined for the

customer concerned in the same order that these jobs are delivered by supplier

(permutation schedule); if the job may be added to the current batch by virtue of

proposition 5.3.5, then add it; else start a new batch.

Proof: In accordance with our assumption, jobs on the manufacturer's machine have

to be taken in the same order with the supplier's machine (permutation schedule).

Since each batch is augmented until it can take no more jobs, the number of batches

is minimized. Moreover, since this is done while relaxing (forgetting) the constraints

of interaction with jobs for other customers due to batching, the number found is a

lower bound, as claimed. D

In carrying out the search, we will be continually evaluating the worth of moves

that add a job to a preceding batch for the same customer on the supplier's machine.

It is, therefore, important that this evaluation be carried out in a computationally

efficient way. The following proposition helps achieve that aim.

Proposition 5.3.8. Let a job k be in position s r to the right of a batch b, which is in

position s l in a SEBT sequence on machine M s (in which job k constitutes a

single-job batch). If k may be added to b by virtue of proposition 5.3.4, then the

change in the sum of job completion times resulting from doing so, could be found by

updating the contribution of the batches between s land s r inclusive.

Proof: See the proof of proposition 3.7 in chapter 3. D

114

In consequence of the above proposition, evaluating the worth of a job joining an

earlier batch can be calculated efficiently, provided the delivery time, the number of

jobs and the contribution of each batch to total flow time are kept updated.

In completing a partial schedule, where some batches on machine M or
S

M M have been formed, but no decision has been taken yet on batching the remaining

'un-batched' jobs, a 'batching penalty' ,11k , attaches to each un-batched job, since if

the job is added to the last formed batch for the customer concerned total completion

time (flow time) will increase, and if a new batch is started with it an additional batch

delivery cost will be incurred. The following propositions help to achieve that aim

for each machine in tum.

Proposition 5.3.9. Batching penalty, 11k , attaches to each un-scheduled job on

machine M S such that lSi pt ~ 11k ~ DIS where, lSi is the number of jobs in the batch

that it may join and DIS is the batch delivery cost to second machine (machine M M).

Proof: See proof of proposition 3.8 in chapter 3.0

Proposition 5.3.10 Let unscheduled jobs on machine M M and the last batch for the

same customer both belong to a group of jobs that are delivered by supplier in the

same batch. Then, batching penalty, 11k = lSz P r ~ D t:, attaches to each

unscheduled job on machine M M ' where lSi is the number of jobs in the batch that it

may join and D:: is the appropriate batch delivery cost.

Proof: Consider a partial scheduleS. Since job k and the last batch I for the same

customer both belong to a group of jobs that are delivered by supplier in the same

batch, and since according to our assumption each batch only contains the jobs that

are destined for a particular customer, and because it is a permutation schedule

problem, then job k must be next to the last job of batch I, i.e. no job exist between

job k and the last job of batch I. If k may not be added to I by virtue of proposition

5.3.5 or is not added to it, then a penalty equal to D tt will be incurred. Otherwise,

total flow time will increase. To achieve this aim it is sufficient to compare the total

115

flow time of partial schedule before and after of joining k and I. We note that the

flow times of all the batches preceding I and k will remain unaffected and so will the

flow times of all the succeeding batches. Let T and o[show the flow time and size of

batch Ion machine M M respectively.

The total flow time of partial schedule on machine M M before job k is added to

batch I is:

(1)

The total flow time of partial schedule on machine M M after job k is added to batch I

IS:

(01 +1)(1' + pf) (2)

Comparing terms of equations (1) and (2), we achieve the batching penalty;

/:).k = 51 pf which completes the proof. 0

Proposition 5.3.11 Let unscheduled jobs on machine M M and the last batch for the

same customer belong to two different groups of jobs which are delivered to

machine M M separately. Batching penalty; l5z p r ~ /:).k ~ D:: attaches to each un-

scheduled job where, l5z is the number of jobs in the batch that it may join and D::
is the appropriate batch delivery cost.

Proof: Consider a partial scheduleS which is sequenced according to SEBT on

machine M s such that Aa ~ Aa+l ~ ... ~ Ab-1 ~ Ab . Let job k be the first unscheduled
0a 0a+l 0b-l ~

job on the manufacturer's machine, which is delivered to machine M M by single-job

batch j t . This is while the last batch with the same customer i.e. batch I, belongs to

a group of jobs that has been delivered to machine M M previously by batch j; . If k

may not be added to I by virtue of proposition 5.3.5 or is not added to it, then a

penalty equal to D f will be incurred. Otherwise, total flow time will increase. To

access this increase, without loss of generality let each group of jobs that are

delivered to machine M M through batches j; to jt make a batch on machine M.11

with the same size to the corresponding batch such that Ja = Jz, Ja+1 = JZ+1 ,... and

116

Jb- 1 = tSl +b-a-l while, tSa,···, tSb are the sizes of batches j; to j t on machine M sand

tSz ,tSZ+l,···,tSl+b-a-l are the sizes of batches jzM to jz~b-a-l on machineM M •

Four cases need to be distinguished:

Case 1 Batch j t follows batch j; directly (b=a+ 1):

~k = (Aa +max{Ab ,Ba}+ p.r)(tSa +1)- (Aa + Ba)tSa -(Aa +Ab + p.r)

~ tSaPf

Case 2 b >a + 1 and after the newly formed batch is established, batch j t moves

to the position next to batch j; :

-(Aa + Ba)tSa -(~ + Aa+l +Ba+l)tSa+l-···(Aa + Aa+l + ... At, + ptt) ~tSaPtt

Case 3 b > a + 1 and after the newly formed batch is established batch j; moves

to the end of the subsequence, i.e., after the batch that was in position jt-l:

Case 4 b > a + 1 and after the newly formed batch is established batch j; and

batch jt move to a position in between, say, after the batch that used to be in

position a + a:

b.k = (Aa+l + Ba+1)tSa+1 + ... + (Aa+l + .,. + Aa+a-l)tSa+a-l +

(Aa+1 + ... + Aa+a-1 + Aa + Ab + Aa+a+1 + B a+a+l)tSa+a+1 + .. , +
(Aa+1 + ... + Aa+a-1 + Aa + At, + Aa+a+l + ... + At,-1)tSb-1 -

(Aa + Ba)tSa - ... -(Aa +Aa+l + ... +Aa +Ba)tSa - ... -

(~+Aa+l + ... At, + p.r) ~tSaPf

Since tSa = tsz ' then ~k ~ tsz p.r which completes the proof. D

117

Proposition 5.3.12. All propositions and corollaries cited above for two-machine

jlowshop problem are extendable to the combined problem.

Proof. For the combined problem, there are some jobs that require machine M s

only, i.e., the jobs that are to be processed and delivered in batch to manufacturers

g = 2, ... n. In accordance to our description of the problem, each batch, which is

constructed by the supplier for delivery to manufacturer 1, contains only the jobs that

are destined for a particular customer. Hence, it can be assumed that all jobs,

including the jobs that are to be processed for manufacturers g = 2, ... n, need two

operations while the processing times of some jobs on the second machine

(machineM M) are zero. By this interpretation of the problem, the supplier has to

process and deliver all jobs in batch to manufacturer 1 while, the batch delivery cost

for transporting batches from supplier to manufacturer 1 (second machine) is

dependent on the final destination of jobs, i.e. customers. On the other hand,

manufacturer 1 has to process and deliver jobs in batches to several customers while,

the processing time of some jobs on the manufacturer's machine (second machine)

are zero, and also the delivery times of these jobs, i.e. the jobs with processing time

of zero on the second machine, are zero too.

Carrying out in this manner the combined problem reduces to a two-machine

flowshp problem and as a result all propositions and corollaries proved above are

also valid for the combined problem. D

Henceforward we will distinguish between the jobs according to their destination

as follows. The jobs are destined for a regular customer when both operations of jobs

on the first and second machines are not zero. In contrast, the jobs are destined for a

virtual customer when their second operations are zero. Whenever we use customer,

without any prefix, we mean both regular and virtual customer.

As a consequence of the above description and proposition, the combined problem

will reduce to a two-machine flowshop problem in the following way.

There is the set of jobs NS ={l, ... ,N} that are to be scheduled for several

consumers C A on both supplier's machine and manufacturer's machine for

A = G + H -1, where G IS the number of virtual customers (in fact

118

manufacturers g = 2, ... n) and H are the number of regular customers. Di and

D'j define the delivery cost to manufacturer 1 and to customers respectively while,

the delivery costs for transporting batches from supplier to manufacturer 1 varies for

different customers and, some of the delivery costs from manufacturer 1 to customers

are zero.

5.4 Branch and Bound Scheme

Search of the solution space is structured as a triplet 0-1-2 search tree, where each

node is partitioned into three: one indicating that a job on machine M s is added to

the last batch for the customer concerned; also if this job belongs to a regular

customer, then the decision about adding it to the last batch for the regular customer

concerned will be taken by virtue of proposition 5.3.5 and corollary 5.3.3 (1); the

second indicating the start of a new batch on machine M s and if this job belongs to a

regular customer, then it is added to the last batch for the regular customer

concerned, i.e. the condition cited in propositions 5.3.5 is certainly satisfied (2); and

the third indicating the start of new batch on both machines M sand M M that could

be a single-job batch on both machines (0).

We note that in case (1), when a job belongs to a regular customer, i.e. its

processing time on the second machine is not zero, two options may arise. The first

option is when the job is added to the last batch on the first machine and it is also

added to the last batch on the second machine, and the second one is when the job is

added to the last batch on the first machine but it is not added to the last batch on the

second machine. Since considering both options in one branch can reduce the tasks

of search tree we have considered both options in one branch.

It is also worth noting that in case (2), although the job under consideration does

not contribute to making a batch on machine M s' it may still be moved from its

original position. Furthermore, since the job under consideration joins the last batch

with the same regular customer to make a grater batch, then the flow time of such job

must be calculated as a member of the newly created batch. This implies that

although this job indicating the start of a new batch on machine M s' it still

contributes as an element of a batch on the system in respect of total flow time

(completion time) consideration.

119

The tree is constructed in a depth-first fashion. Other components of the branch

and bound scheme are presented in the following subsections.

5.4.1 Branching and ordering of variables

Variables are ordered in accordance with the SPT of the corresponding jobs on

machine Ms· At each node of the decision tree, two tasks are performed. First,

variables that have to be set to zero, because no batch for the customer concerned has

been formed or by virtue of propositions 5.3.4 and 5.3.5, are set to zero. Secondly,

the first free variable (free variables are the ones that have not yet been committed to

either zero or one or two) in the SPT sequence is set to one.

5.4.2 Fathoming and backtracking

A node is fathomed if:

Either it is a leaf node, i.e., all variables are fixed.

Or the lower bound exceeds or equals the incumbent upper bound.

Fathoming initiates backtracking to the first node associated with a variable

whose value is either 1 or 2. If the value of this variable is 1 then it is set to 2; else it

is set to zero. If no such node is found, the search terminates.

5.4.3 Upper bounds

Unfortunately, due to the complexity of the problem neither the algorithms, which

were used in the third chapter, i.e. maximization heuristic and multi-start greedy

heuristic, nor the second algorithm that was used in the forth chapter, can be

generalized for this problem. However, the first algorithm of the last chapter can still

be modified for application to the problem in hand.

It is worth noting that since both the single-stage jobs and two-stage jobs for each

customer are sequenced in SPT order according to processing times of jobs on the

supplier's machine then, applying any algorithm for sequencing the jobs on the

second machine, before scheduling of jobs on the first machine, cannot lead to a

efficient result. Consequently, the algorithm that is provided here is based on

sequencing the jobs on the first machine. Whenever a batch on the first machine is

constructed or a new single-job batch is added to the last batch, then the possibility

of establishing a batch on the second machine will also be considered.

120

Algorithm VB-initial upper bound
Begin

• Form all jobs into single-job batches and sequence the batches in SEBT

order (which, in this case, is equivalent to SPT) on the supplier's machine,

and call it original sequence.

For i =1 to number of batches do

• Select the first single-job batch in the sequence, which is not selected

yet.

For j = i + 1 to number of batches do

• Scan forward until the first single-job batch with the same customer

to the selected batch, i.e. batch i ,is found and call it k .

• Move the newly found single-job batch, i.e. batch k , to the

position of batch i , and join them to make a bigger batch, if they will

join profitably, otherwise, if they belong to a regular customer, move

single-job batch k to the position next to i . In either case, regardless

of whether they are joined or not, consider the possibility of joining

the corresponding single-job batches on the second machine (if they

belong to a regular customer) by virtue of proposition 5.3.5 and

corollary 5.3.3 and join them, if they will join profitably. Return job

k to its original position if no advantage is yielded .

• Continue the interior loop until no improving move is found .

• Continue the exterior loop until a complete scan of all batches.

end.

5.4.4 Lower bounds

It is worth recalling that at each node of the decision tree, if, in view of the

batching decisions already taken, a job has to start a new batch on

machines M s or M M ' then the partial solution is immediately augmented by a batch

starting with that job.

121

At each node of the decision tree, a lower bound on total flow time is calculated in

accordance with proposition 5.3.3. Additionally, batch delivery costs are added for

each batch already formed.

Furthermore, a lower bound on the batching penalties is calculated by applying

the logic of propositions 5.3.9, 5.3.10 and 5.3.11 in the following way. The first un­

batched job, k, on the supplier's machine (manufacturer's machine) will either start a

new batch or will join the last batch. It would, therefore, attract a lower bound on its

batching penalty = cSt pf (cSt pt!), where 6z is the number of jobs in the last batch

on the supplier's machine (manufacturer's machine). Since for each subsequent job,

we do not know the number of jobs in the batch that it may join in the optimal

completion of the current partial solution, each such job would attract a lower bound

on its batching penalty = pf (pt!) (i.e., the lowest batching penalty that it may

incur be if it joined a single-job batch).

The overall lower bound is then the sum of the lower bound on the total flow

time, batch delivery costs of the batches already formed and the sum of the lower

bounds on the batching penalties for the un-batched jobs of each machine.

5.4.5 Optimum value at Leaf nodes

Proceeding with carrying out the branch and bound scheme explained above leads

us to the all feasible combinations of batching at leaf nodes. Since these

combinations are made by virtue of proposition 5.3.2, which is based on relaxing

over one of the constraints on the second machine, i.e. the constraint that does not

allow processing more than one job at the same time on the manufacturer's machine,

then those combinations must be considered again without applying the relaxation.

However at leaf nodes we have a set of batches for which decisions about their ,

batching have been taken but the optimality of the sequence is not guaranteed. Each

sequence at leaf node can be considered again in the following way.

Let t/J reperesents the total flow time plus delivery time of a sequence at leaf

node, without applying any relaxation.

- If t/J is less than current upper bound and the sequence is ordered by logic of

corollary 5.3.1, then this value is certainly a local optimum. For this case the former

122

upper bound replaces the later (if the later is sharper) and no more consideration is

need.

- If ¢J is less than current upper bound but the sequence is not ordered by logic of

corollary 5.3.1, this value is also a local optimum but there is a need for more

searching if there is any sharper value. For this case, the former upper bound replaces

the sharper value (if it is sharper than current upper bound) at the end of

consideration.

- Otherwise, there is a need for more seeking.

However, in the strong sense, our problem at the leaf nodes is reduced to a two­

machine flowshop problem without batch delivery and with a property (corollary

5.3.1) that makes the problem easier. To achieve the optimum value, we can apply a

branch and bound technique to the problem in the following way. Each node

represents a sequence of r of the n batches, with n - r of the batches remaining to be

ordered. Each node does not have more than A children while A = H + G -1 (see

proposition 5.3.12). ¢J is our upper bound and the required lower bound on the sum

of flow times for schedules emanating from a given node is roughly the following:

'I' r + 'I'~-r '

where 'I'r is the sum of the flow times of the r batches assigned in the partial

schedule represented by node, 'I'~-r is the sum of flow times for the remaining

n - r batches, calculated under assumption that the remaining batches are sequenced

in order of SEBT on machine M s and ~+l > Bi for all i of the n - r .

5.4.6 Numerical example

Consider the following combined problem. There is a set of jobs to be scheduled

by the supplier for delivery in batch to two manufacturers, say manufacturer 1 and 2,

with delivery costs of 10 and 15 respectively. Furthermore, manufacturer 1 has to

process and deliver jobs to two customers, customers 1 and 2, with delivery costs of

20 and 30 respectively.

123

/

J , Manufacturer 1 Manufacturer 2

Job 1 Job 2 Job 3 Job 4 Job 1 Job 2
Processing time
on machine M s 3 8 12 14 4 9

Dr = 10, and Df = 15.

Customer 1 Customer 2

Job 1 Job 2 Job 1 Job 2
Processing time
on machine M s 3 12 8 14
Processing time
on machine M M 7 10 6 11

Dt = 20, and Df = 30.

By virtue of proposition 5.3.12, we can assume that manufacturer 2 is a virtual

customer; the problem will be changed to the following problem:

Customer 1 Customer 2 Customer 3(M2)

Job 1 Job 2 Job 1 Job 2 Job 1 Job 2
Processing time
on machine M s 3 12 8 14 4 9

Processing time 7 10 6 11 0 0

on machine M M

Initial lower bound:

The lower bound on total flow time, LBF, corresponding to flow time under SPT

on the supplier's machine = 169. Batch delivery costs, LBD, is batch delivery cost on

machineM s ' LBD1, plus batch delivery cost on machineM M ' LBD2. It is worth

recalling that only the jobs that are destined for a particular customer can establish a

batch. Therefore, with regard to machine M s we have to start one batch for each

regular or virtual customer which yields: LBD1 = 10 + 10 + 15 = 35.

124

In line with our description of the problem, the delivery cost of transporting

batches from machine M M to the virtual customers is zero thus, LBD2 = 20 + 30 + 0

= 50, and LBD = LBDl + LBD2 = 85.

The lower bound on batching penalties, LBB is the sum of LBB1, i.e. batching

penalties on machine M s ' and LBB2, which is batching penalties on machine MM.

LBBl is: (10) + (10) + 9 = 29, where the numbers within the first (second) bracket

correspond to the penalties incurred by the only remaining job of the first (second)

regular customer in tum, and the third number corresponds to the penalty incurred by

the only remaining job of the virtual customer. Note that the 10 for the first (second)

regular customer results from substituting the initial lower bound on the batching

penalty, which are equal to 12 and 14, by the batch delivery costs, by virtue of the

fact that the minimum number of batches for the first (second) regular customer is

two. LBB2 is: 10 + 11 = 21, where the first and second numbers correspond to the

penalties incurred by the remained jobs of regular customers in tum. Hence,

LBB = LBBl + LBB2 = 50, and

LB = LBF + LBD + LBB = 169 + 85 + 50 = 304.

Initial upper bound:

To differentiate between batches on the first and second machines we enclose

batches belonging to machine M M by curl bracket, { }. Furthermore, the group of

jobs enclosed by symbol [] indicate that these jobs have not made a batch but they

have been scheduled consecutively on machine M s while they have made a batch on

machineM M •

Applying algorithm UB to the 6 single-job batches on the supplier's machine

leads to the following schedule:

1(11)1, 1(13) (23) I, [(12)1(22)], 1(21)1 {1(11)1, I (12)(22)1, 1(21)1 }, with a total flow

time of 200. Adding total batch delivery costs gives UB* = 200 + 125 = 325.

Branch and Bound:

• So = 1(11) I, 1(13)1, I (12)1 { 1(11) I, I (12)1}; LBF = 169,

LBDl = 10+10+15 = 35, LBD2 = 20+30 = 50, LBD = 85,

LBBl = 10+10+9 = 29, LBB2 = 10 +11 = 21, LBB = 50, LB = 304.

125

• SI = 1(11) I, 1(13) (23)1, I (12)1 { 1(11) I, 1(13) (23)1, I (12)1}; LBF = 179,

LBD1 = 10+15 + 10 = 35, LBD2 = 20+30 = 50, LBD = 85,

LBB1 = 10+10 = 20, LBB2 = 10 +11 = 21, LBB = 41, LB = 305.

• S2 = 1(13) (23)1, [(11) (21)], 1(12)1 { 1(11) (21) I, 1(12)1}; LBF = 205,

LBD1 = 15+10+10+10 = 45, LBD2 = 20+30 = 50, LBD = 95,

LBB1 = 0 + 0 + 10 = 10, LBB2 = 0 +11 = 11, LBB = 21, LB = 321.

• S3 = 1(13) (23)1, [(11) (21)], [(12)(22)] { 1(11) (21) I, 1(12)(22)1}; LBF =

224,LBD1 = 15+10+10+10 +10 = 55, LBD2 = 20+30 = 50, LBD = 105,

LBB1 = 0, LBB2 = 0, LBB = 0, LB = 329. LB > UB backtrack.

• S4 = 1(13) (23)1, [(11) (21)], (12)1,1(22)1 { 1(11) (21) I, 1(12)1, 1(22)1};

LBF = 205, LBD1 = 15+10+10+10 +10 = 55, LBD2 = 20+30 + 30 = 80,

LBD = 135, LBB1 = 0, LBB2 = 0, LBB = 0, LB = 340. LB > UB backtrack.

• S5 = 1(11) I, 1(13)(23)1, 1(12)1, 1(21)1 { 1(11) I, 1 (12)1, 1(21)1}; LBF = 179,

LBD1 = 10+15+10 +10 = 45, LBD2 = 20+ 20 + 30 = 70, LBD = 115,

LBB1 = 0+0+10 = 10, LBB2 = 0 +11 = 11, LBB = 21, LB = 315.

• S6 = 1(11) I, 1(13)(23)1, [(12)(22)], 1(21)1 {1(11) I, 1(12)(22)1, 1(21)1}; LBF =

200, LBD1 = 10+15+10 +10 +10 = 55, LBD2 = 20+ 20 + 30 = 70, LBD =

125, LBB1 = 0, LBB2 = 0, LBB = 0, LB = 325. LB = UB backtrack.

• S7 = 1(11) I, 1(13)(23)1, 1(12)1, 1(21)1, 1(22)1,{ 1(11) 1,1(12)1, 1(21)1, 1(22)1};

LBF = 179, LBD1 = 10+ 15+ 10 + 10 + 10 = 55, LBD2 = 20+ 20 + 30 +30 =

100, LBD = 155, LBB1 = 0, LBB2 = 0, LBB = 0, LB = 334. LB > UB

backtrack.

• S8 = 1(11) 1,1(13)1, 1(12)1, 1(23)1, {1(11) I, 1(12)1, 1(22)1}; LBF = 169,

LBD1 = 10+15+10 +15 = 50, LBD2 = 20+ 30 = 50, LBD = 100,

126

LBB1 = 10 + 10 = 20, LBB2 = 10 + 11 = 21, LBB = 41, LB = 310.

• S 9 = 1(13)1, [(11) (21)], 1(12)1, 1(23)1, {1(11)(21)1, 1(12)II}; LBF = 192,

LBD1 = 15+10 +10 +10 +15 = 60, LBD2 = 20+ 30 = 50, LBD = 110,

LBB1 = 10, LBB2 = 11, LBB = 21, LB = 323.

• S 10 = 1(13)1, [(11) (21)], 1(23)1, [(12)(22)], {1(11)(21)1, 1(12)(22)1}; LBF =

212, LBD1 = 15+10 +10 +15 +10 + 10 = 70, LBD2 = 20+ 30 = 50, LBD =

120, LBB1 = 0, LBB2 = 0, LBB = 0, LB = 332. LB > DB backtrack.

• S 11 = 1(13)1, [(11) (21)], 1(12)1, 1(23)1,1(22)1 {1(11)(21)1, 1(12)1, 1(22)1};

LBF = 192, LBD1 = 15+10 + 10 + 10 + 15 + 10 = 70, LBD2 = 20+ 30 +30 =

80, LBD = 150, LBB1 = 0, LBB2 = 0, LBB = 0, LB = 342. LB > DB

backtrack.

• S 12 = 1(11) I, 1(13)1, I (12)1, 1(23)1, 1(21)1 { 1(11) I, I (12)1, 1(21)1}; LBF = 169,

LBD1 = 10+15 10 + 15 +10= 60, LBD2 = 20+30 +20 = 70, LBD = 130,

LBB1 = 10, LBB2 = 11, LBB = 21, LB = 320.

• S13= 1(11) I, 1(13)1, 1(23)1, [(12)(22)], 1(21)1 { 1(11) I, I (12)(22)1, 1(21)1}; LBF

= 191, LBD1 = 10+15 +15 +10 +10 +10= 70, LBD2 = 20+30 +20 = 70,

LBD = 140, LBB1 = 0, LBB2 = 0, LBB = 0, LB = 331.

• S14= 1(11) I, 1(13)1, 1(12)1, 1(23)1, 1(21)1, 1(22)1 {1(11) I, 1(12)1, 1(21)1, 1(22)1};

LBF= 169, LBD1 = 10+15 +10 +15 +10 +10= 70, LBD2 = 20+30 +20 +

30 = 100, LBD = 170, LBB1 = 0, LBB2 = 0, LBB = 0, LB = 339 .

• Search Completed.

Hence, the optimum value is 325, and the sequence that leads us to the upper

bound is the optimum schedule. The corresponding sequence is illustrated in figure

4.1.

127

o
f(12)-8

Figure 4.1: The procedure for achieving the optimum value.

The first cell and the second cell in each line show the processing time of batches on

the first machine and the second machine respectively.

Symbols "[]" and "0" are defined previously. The symbols are not closed until all

jobs within a batch are processed.

5.4.7 Benefit of cooperation

The optimal schedule from the viewpoint of supplier in the absence of cooperation

with manufacturer 1 can be obtained by applying the algorithm provided in chapter

3. The optimal sequence is 1(11)1, 1(21)(22)1, (21)1,1(31)1,1(41)1 for total flow time plus

delivery time of 200. In accordance to this sequence, the jobs will be delivered to

manufacturer 1 by 4 single-job batches at times 3, 24, 36, and 50 respectively. These

times identify the release dates of jobs for the manufacturer's problem. Hence, the

manufacturer's problem can be shown as follows.

Customer 1 Customer 2

Job 1 Job 2 Job 1 Job 2
Processing time
on machine M M 7 10 6 11

Release date 3 36 24 50

From the viewpoint of manufacturer 1 the optimal schedule is achieved by applying

the algorithm provided in chapter 4. For manufacturer 1, the optimum value will be

obtained by processing and delivering the jobs in 4 single-batches that are sequenced

as 1(11)1, 1(12)1, 1(21)1, 1(22)1 for total completion time plus delivery cost of 247.

Subtracting the sum of release dates from this value will yield:

Total flow time plus delivery cost = 247 - 113 = 134.

128

Hence, the sum of total flow times plus delivery times over the system (STFD) . , I.e.

for the supplier and manufacturer, before cooperation is:

STFD = 200 + 134 = 334.

Comparing this value and the optimum value i.e. 325, which is already obtained for

the combined problem in the last section, shows that cooperation reduces the total

system cost of this problem instance by 9, i.e. 2.69%.

It is worth noting that when the supplier acts independently job 1(31)1 proceeds job

1(41)1 while in the combined problem job 1(41)1 proceeds job 1(31)1.

Further examples and considerations on the benefit of cooperation will be

presented in the next chapter.

5.5 Computational Results

To consider the efficiency of the combined algorithm for solving the problems the

algorithm was tested on a set of randomly generated problem instances. For the set,

six subsets were generated, one with 2 manufacturers and 2 customers denoted by (2-

2), second with 2 manufacturers and 3 customers (2-3), third with 3 manufacturers

and 3 customers (3-3), fourth with 3 manufacturers and 4 customers (3-4), fifth with

4 manufacturers and 3 customers (4-3), and the sixth subset with 4 manufacturers

and 4 customers (4-4). In each subset, the number of jobs was varied up to a total of

30. The jobs were randomly distributed among manufacturers and customers, with

each being assigned at least two jobs. Processing times were randomly generated

integers from the uniform distribution defined on [1,100]. For each distribution type

and problem size 10 instances were generated. In order to limit the time taken by the

procedures, a limited bound was placed on the number of nodes on the algorithm that

finds the optimum at leaf nodes. The procedures were terminated when the number

of nodes generated exceeded 80,000,000. In the tables 1-6, below, the minimum,

maximum, average running times over the appropriate instances and the number of

unsolved problems are represented. The average running times are calculated only

over the solved problem instances.

The computational experiments were run on a Pentium 4 computer with 2.40 GHz

of CPU and 512 MB of RAM. The B&B algorithm was coded in C++. The results

are shown in tables 1 to 6.

129

As can be clearly seen, the Branch and Bound (B&B) algorithm derived for the

combined problem can solve the problem instances with up to 22 jobs for all cases,

and when the number of jobs is 27 only one instance in each of the subsets (2-3) and

(2-4) is unsolved.

It is worth recalling that the only existing algorithm, with the same problem under

consideration, is the dynamic programming algorithm developed by Hall and Potts.

They have proved that the overall time complexity of their algorithm for finding an

optimal schedule is 0 (n 2G+7H -2) time while n, G and H reperesent the number of

jobs, manufacturers and customers respectively.

In contrast to the previous two chapters, here we have not coded the DP

algorithm. This is mainly due to different set of assumptions made in the two

approaches. In fact, the assumptions we have applied are a little more restricted than

what they have applied, but on the other side the algorithm we have developed is

more practical than theirs. Although the DP algorithm is not coded but we can still

have an imagination about its running time for solving the problem instances. To

achieve this gain we note that the time complexity of DP algorithm for the last

problem, considered in chapter 4, was O(n 3H) time. We showed in the last chapter

that the DP algorithm could solve the problem instances with less than 18 jobs while

the number of customers was 4, or problem instances with less than 22 jobs while the

number of customers was 3. Comparing the time complexity of two algorithms, i.e.

the DP algorithms of the last problem and the current problem, makes it clear that the

current DP algorithm can only solve the problem instances with only a few jobs

when the number of manufacturers and customers are also very restricted. To make it

more clear assume that the supplier has to supply the jobs only for one manufacturer,

i.e. manufacturer 1. Then the time complexity of problem will reduce to

o (n 7 H) time. Let n1 and n2 show the number of jobs for the last problem and the

current problem respectively. Roughly speaking, we can say that n2 = n;l7. Then, for

the case that the number of customers is 3 the number of jobs for the current problem

cannot exceed n
2

= 22317 (n
2

< 4), while 22 is the maximum job numbers that DP

algorithm could solve the problem instances with 3 customers for the last problem.

Similarly for the case that the number of customers is 4, the number of jobs cannot

130

exceed n 2 = 18
317

(n 2 < 4). In other words, the DP algorithm cannot solve the

problem instances for more than 1 manufacturer and 3 customers.

Now let's assume that the number of manufacturers is 2. Then, the time

complexity of DP algorithm for the current problem will reduce toO (n 7H +2). For

this case the rate of jobs in comparing with the last problem is n
2
= n/3H I7H +2) • Thus,

it can be clarified that when the number of manufacturers is 2 and the number of

customers is 3, then the maximum number of jobs cannot exceed n
2

= 229123 (n
2

< 4)

which means again that DP algorithm cannot handle it.

In a similar way it can be estimated that the running times for the problem

instances with 1 (2) manufacturers, 3 (2) customers and only 5 jobs, if assume that

DP algorithm is used to solve it, may be huge that is so far even from the worst case

running time which is reported in tables 1 to 6.

Moreover, for majority of instances the problem can be solved by B&B algorithm

very fast. It is worth recalling that the combined problem is a multi variables

problem, related to the distribution of jobs among manufacturers and customers, and

also the processing times and delivery times of both customers and manufacturers.

On the other hand the algorithm, which is provided for the combined problem,

contains two sub-algorithms. The first algorithm considers all combinations of

delivering jobs in batch and provides a set of acceptable combination of batches at

leaf nodes while the second algorithm solves a two-machine flow shop problem for a

set of batches. Due to the structure of the problem, it is understandable that our

algorithm might readily solve some instances with total jobs in excess of 30, while

for others the running times may be significantly longer. The great running time for

some instances is due to the weakness of the second sub-algorithm, which applies on

the set of batches at the leaf nodes.

131

Table 1: Running times for problem instances with 2 manufacturers and 2
customers.

Number
Number of Number of of Runn ing time (Per ms) Unsolved
Manufacturers Customers Jobs Min AVG Max Instances

2 2 7 10 13 20 0
2 2 12 10 104 410 0
2 2 17 30 506 3024 0
2 2 22 50 11245 96719 0
2 2 27 40 219 1142 0
2 2 30 360 11191 36162 2

Table 2: Running times for problem instances with 2 manufacturers and 3
customers.

Number
Number of Number of of Runn ing time (Per ms) Unsolved
Manufacturers Customers Jobs Min AVG Max Instances

2 3 12 10 40 120 0
2 3 17 20 5276 45355 0
2 3 22 40 817 5388 0
2 3 27 100 241133 937058 1
2 3 30 70 871871 404101 3

Table 3: Running times for problem instances with 3 manufacturers and 3
customers.

Number
Number of Number of of Runn ing time (Per ms) Unsolved

Manufacturers Customers Jobs Min AVG Max Instances

3 3 12 10 33 70 0

3 3 17 20 2951 29122 0

3 3 22 30 10558 75248 0

3 3 27 30 516178 4306993 0

3 3 30 70 248566 1851943 1

132

Table 4: Running times for problem instances with 3 manufacturers and 4
customers.

Number
Number of Number of of Runn ing time (Per ms) Unsolved
Manufacturers Customers Jobs Min AVG Max Instances

3 4 12 20 108 251 0
3 4 17 20 555 1692 0
3 4 22 80 429951 1997773 0
3 4 27 30 33674 151748 0
3 4 30 60 542592 4205367 1

Table 5: Running times for problem instances with 4 manufacturers and 3
customers.

Number
Number of Number of of Runn ing time (Per ms) Unsolved

Manufacturers Customers Jobs Min AVG Max Instances
4 3 12 10 26 40 0
4 3 17 40 865 2153 0
4 3 22 20 403 3224 0
4 3 27 51 2136 6770 0
4 3 30 51 375060 2275161 2

Table 6: Running times for problem instances with 4 manufacturers and 4
customers.

Number
Number of Number of of Runn ing time (Per ms) Unsolved

Manufacturers Customers Jobs Min AVG Max Instances

4 4 17 20 3847 33257 0

4 4 22 40 23044 130628 1

4 4 27 80 165235 1007989 1

4 4 30 120 119511 647050 4

133

5.6 Conclusion

A combined problem for scheduling a set of jobs to be processed on a single

machine by supplier for delivery to some manufacturers in batches, and scheduling

the jobs by one of the manufacturers on a single machine for delivery of the final

products to some customers in batches has been presented. The combined problem

has been considered as a natural extension of two problems, i.e. the problem of

minimizing the sum of flow times on a single machine and a two-machine flow shop

problem, by considering the possibility of delivering jobs in batches and introducing

batch delivery costs.

The scheduling objective adopted is that of minimizing the sum of flow times and

delivery costs over the system while the supplier and one of the manufacturers

cooperate together. The extended problem arises in the context of coordination

between machine scheduling and a distribution system in a supply chain network.

The branch and bound algorithm proved to be efficient for solving the problem up

to 27 jobs while the number of manufacturers and customers changes from 2 to 4.

The efficiency of algorithm is based on a careful analysis of the structural properties

of the problem and deriving high quality of lower bound and initial upper bound.

In addition, the reduction of total system cost in the light of cooperation between

supplier and manufacturer for one sample instance was shown to be 2.69%. More

discussion on the mechanism of cooperation and maximum benefit of cooperation

will be presented in the next chapter.

134

Chapter 6

6. Benefit of cooperation

This chapter builds on the work detailed in the last three chapters to compare the

computational work of various algorithm developed in the thesis and to highlight the

benefit of cooperation. Furthermore the mechanisms of such cooperation will be

reviewed. We first present an example that provides significant benefit from

cooperation. We then consider briefly the mechanisms of cooperation and finally the

result of computational experience will be presented.

Example: By presenting a parametric instance Hall and Potts have shown

cooperation can provide a reduction up to 20% in total system cost. Consider the

following instance, which is constructed in accordance with their example.

Supplier Manufacturer

lJob 1 2 1 2

Processing time 1 2001 1

Delivery Cost 199 200

Applying the algorithm of chapter 3 to the two jobs of supplier, leads to the optimum

schedule in which the jobs are processed and delivered in two separate batches with

total flow time plus delivery cost of 600. For this example, it is easy to see that

supplier's processing of the jobs is completed at times 1 and 201, respectively. Then,

if the jobs are to be delivered in a single batch the total flow time plus delivery cost

is: 2 (l + 200) + 199 = 601, that is increased by 1. Consequently the supplier delivers

the jobs in two separate batches to manufacturer.

135

For the manufacturer's problem the jobs are ready at their release dates of 1 and

201 respectively. Applying the algorithm of chapter 4 to the manufacturer problem

with the above processing times and release dates leads to the optimum sequence

with the sum of completion times plus delivery cost of 604. Subtracting the sum of

release dates from this value will yield the sum of flow times plus delivery cost of

402.

For this example it is easy to see that from the viewpoint of manufacturer it makes

no difference if the jobs are delivered in a single batch or two separate batches to the

customer. Hence the sum of total flow time plus delivery time over the system

(STFD), i.e. for the supplier and manufacturer, before cooperation is: STFD = 600 +

402 = 1002.

At the same time applying the algorithm of chapter 5 for a combined problem to

the above instance leads to the optimum schedule with total flow times and delivery

cost of 805. Therefore the cooperation reduces the total system cost by 197, i.e.

19.66%.

It is worth noting that the optimum schedule for the combined problem will be

obtained by the sequence in which the supplier delivers the jobs in a single batch to

the manufacturer. This sequence costs the supplier more than the sequence in which

the jobs are delivered to manufacturer by two batches.

6.1 Practical application

It is clear and understandable that real world scheduling problems are very

different from the mathematical models and theoretical application use to study by

researchers in academia. Considering these differences and making a real world

application is outside the remit of this thesis. Those interested in the subject can refer

to Piendo [78]. He has highlighted that "it is not easy to list all the differences

between these problems and theoretical models because every real-world scheduling

problem has its own particular idiosyncrasies". However, he has mentioned to a

number of common differences, which are important.

In the following example we consider a practical example that helps better

understanding of our works in the last three chapters. On the other hand this example

provides a useful insight for developing a real world application for whose are

interested this subject.

136

Example: Consider the following combined problem. There are 10 jobs to be

scheduled by the supplier for delivery in batch to three manufacturers, say

manufacturer 1, 2 and 3, with delivery costs of 504, 443 and 799 respectively as it is

shown in table 6.1. Furthermore, manufacturer 1 has to process and deliver jobs to

three customers, customersl, 2 and 3, with delivery costs of 288, 445 and 416

respectively as it is illustrated in table 6.2.

Table 6.1:

Problem from the viewpoint of Supplier
Manufacturer 1 Manufacturer 2 Manufacturer 3

Job number 1 2 3 4 5 6 1 2 1 2
Job processing time 352 377 377 399 497 665 186 359 88 852

Delivery cost 504 443 799

Table 6.2:

Problem from the viewpoint of manufacturer 1
Customer 1 Customer 2 Customer 3

Job number 1 6 2 4 3 5

Job processing time 718 1043 792 876 810 893

Delivery cost 288 445 416

Problem from the viewpoint of supplier:

Assuming the supplier has only one machine, the supplier faces a problem just

like the one we considered in chapter 3, i.e. the problem of minimizing the sum of

flow times with delivery cost on a single machine. Thus, the optimal schedule from

the viewpoint of supplier can be obtained by applying the DP algorithm of Hall and

Potts or the B&B algorithm provided in chapter 3. The optimal sequence is 1(13)1,

1(12)(22)1, (11)(21)1, 1(31)(41)1, 1(51)1, 1(61)1, 1(23)1 for the sum of flow times of 18441,

sum of delivery costs of 4057 and the total cost of 22498. In accordance to this

sequence, the jobs will be deli vered to manufacturers by the following schedule:

Job 1 of manufacturer 3 with one delivery that will be ready at time 88.

Jobs 1 and 2 of manufacturer 2 with one delivery that will be ready at time 633.

Jobs 1 and 2 of manufacturer 1 with one delivery that will be ready at time 1362.

137

Jobs 3 and 4 for manufacturer 1 with one delivery that will be ready at time 2138.

Job 5 of manufacturer 1 with one delivery that will be ready at time 2635.

Job 6 of manufacturer 1 with one delivery that will be ready at time 3300.

Job 2 of manufacturer 3 with one delivery that will be ready at time 4152.

Problem from the viewpoint of manufacturer 1:

Clearly, manufacturer 1 cannot start the process of jobs before the batches arrive.

In fact, scheduling and batching decisions, which is made by the supplier, defines a

release time for each job before which the manufacturer cannot start the processing

of jobs. The optimal sequence that introduced by the supplier determines the release

time of each job. Then, the problem from the viewpoint of manufacturer 1 can be

illustrated as follows.

Table 6.2.a:

Problem from the viewpoint of manufacturer 1 according to time at which
batches arrive

Customer 1 Customer 2 Customer 3
Job number 1 6 2 4 3 5

Job processina time 718 1043 792 876 810 893
Job release time 1362 3300 1362 2138 2138 2635

Delivery cost 288 445 416

It is worth noting that the problem illustrated in table 6.2.a can equivalently be

shown in table 6.2.b. In table 6.2.b the release times are shifted such that

manufacturer 1 can start the process of jobs at time zero.

Table 6.2.b:

Problem from the viewpoint of manufacturer 1 according to time at which
batches arrive

Customer 1 Customer 2 Customer 3

Job number 1 6 2 4 3 5

Job processina time 718 1043 792 876 810 893

Job release time 0 1938 0 776 776 1273

Delivery cost 288 445 416

Assuming manufacturer 1 has only one machine, he faces a problem just like the

one we considered in chapter 4, i.e. the problem of minimizing the sum of flow times

138

with deli very cost in presence of release time on a single machine. The optimal

schedule from the viewpoint of manufacturer 1 can be obtained by applying the DP

algorithm of Hall and Potts or the B&B algorithm provided in chapter 4. The optimal

sequence is 1(12)1, 1(11)1, 1(13)1, 1(21)1, 1(23)1, 1(22)1 for the sum of completion times of

25137 and sum of delivery costs of 2298. Subtracting the sum of release times, i.e.

12935, from the sum of completion times will yield 12202. Thus, the sum of flow

times plus delivery times from the viewpoint of manufacturer is 1202 + 2298

=14500.

Therefore, the total cost of system, including the supplier and manufacturer 1, will

be found by summation over the supplier's total cost (22498) and manufacturer l' s

total cost (14500), which equals 36998.

The problem in the light of cooperation:

Now let us assume that the supplier and manufacturer 1 cooperate together for

reducing the total system cost. In this situation they face a combined problem just

like the one we considered in chapter 5. This problem can be illustrated as follows.

Table 6.3:

Manufacturer 1 Manufacturer 2 Manufacturer 3

J.N 1 2 3 4 5 6 1 2 1 2
Processing

Time 352 377 377 399 497 665 186 359 88 852

Manufacturer 1 Manufacturer 2 Manufacturer 3

Customer 1 Customer 2 Customer 3 (Virtual Customer 4) 'Virtual Customer 5)

J.N 1 6 2 4 3 5 1 2 1 2
Processing

Time 718 1043 792 876 810 893 0 0 0 0

Table 6.4:

Manufacturer 1 Manufacturer 2 Manufacturer 3

Delivery
443 799 cost 504

Customer 1 Customer 2 Customer 3 Virtual Customer 4 Virtual Customer 5

Delivery
416 0 0 cost 288 445

139

It is very important to note that the DP algorithm of Hall and Potts provided for

this problem cannot solve this instance. As it is explained in chapter 5, the DP can

only solve the problem instances with about 5 jobs and at most 2 manufacturers and

2 customers. This is while the B&B algorithm provided in chapter 5 can solve this

problem instance less than 1 second. The optimal schedule will be obtained by the

sequence 1(11)1,1(13)1, (12)1,1(21)1,1(22)1,1(31)1,1(41)1,1(23)1, 1(51)1, 1(61)1, {1(I1)1,

1(12)1, (13)1, 1(22)1, 1(23)1, 1(21)1} for the sum of flow times of 24495, sum of delivery

costs of 7806 and the total cost of 32301 over the system.

Comparing this value with the value obtained previously, i.e. the total system cost

when the supplier and manufacturer 1 had their individual sequence, proves that the

total cost is reduced by 4697, which is 12.65% of total system cost.

It is worth noting this sequence requires the supplier changes his individual

schedule, which was optimal. As a result the total cost from the viewpoint of the

supplier will be increased to 23787, which is 1289 units greater than the last

schedule. On the other hand the total cost from the viewpoint of manufacturer 1 will

be decreased to 8514, which shows the reduction of 5986 units.

Consequently the total cost in the light of cooperation is reduced significantly,

but it is very crucial to note that the cooperation between components of a supply

chain only occurs when all components feel benefit. The mechanism of cooperation

such that guarantees the supplier's benefit must be offered from the manufacturer 1

(downstream) to the supplier (upstream). We will briefly consider this mechanism in

the next section.

6.2 Mechanism of cooperation:

Detailed consideration of the mechanisms of cooperation between different levels

of a supply chain network is outside the scope of this thesis. Hence, in this section

we only address some important issues that affect the construction of such

mechanisms.

Since the supplier's cost is independent of the manufacturer's decision, therefore

the preliminary offer for changing the schedule cannot be proposed by the supplier.

On the other hand, the manufacturer's cost is strongly dependent on the suppliers'

schedule and then any change in the supplier's schedule with the gain of reducing

total cost of system must be offered by the manufacturer.

140

Hall and Potts (2003) have suggested mechanisms by which a f manu acturer may

encourage a supplier to accept delivery in batches, which are more favoured to the

manufacturer. These mechanisms are based on:

Sharing the probable extra cost resulting from the change of schedule in the

supplier's side.

Compensating the full increased cost of supplier's side reSUlting from the

change of schedule.

Sharing the extra benefit that will be achieved overall the system resulting

from the change of schedule.

Force the supplier, for example by refusing to accept the delivery of batches

after or before a certain date.

However, it is obvious that cooperation only occurs while all participants feel their

involvement is beneficial. Therefore, the mechanism of cooperation may change

from case to case and will be derived through negotiation and sharing of information

throughout the chain.

6.3 Computational Results

To consider the benefit of cooperation between the supplier and manufacturer 1,

we resorted to generating two sets of problem instances.

For each set, the number of manufacturers and customers were generated

randomly from 1 to 4. The jobs were randomly distributed among manufacturers and

customers, with each being assigned at least two jobs, while the number of jobs for

manufacturer 1 is the sum of jobs that is assigned for customers. For the first set, the

processing times and delivery times for each manufacturer and customer were

randomly generated integers from the uniform distribution defined on [1, 1000].

For the second set, the processing times and delivery times for each manufacturer

were randomly generated integers from the uniform distribution defined on [1, 100],

while the processing times and deli very times for each customer were randoml y

generated integers from the uniform distribution defined on [100, 1000]. For each

set, 50 problem instances were generated. Each of the two tables below shows the

result for each instance when the supplier and manufacturer 1 act independently;

when they cooperate together; and the comparison of the results.

141

As can be clearly seen in tables 1 and 2, the benefit of cooperation between supplier

and manufacturer is evident in 42% of the instances of the first set and 94% of the

instances of the second set. The tables also show the cooperation is not beneficial in

46% of the instances of the first set and in only 4% of the instances of the second set.

The consequences of the cooperation for the remaining instances are identical. The

maximum advantage gained over all instances in the two sets is 12.35% of total cost.

It is worth noting that the disadvantage of cooperation for some instances stems

from the assumptions that we applied for solving the combined problem. Firstly, we

assumed that each batch, which is prepared by the supplier for delivery to

manufacturer 1, only contains the jobs that are destined for a particular customer.

This assumption simplifies the problem solution, but it can impact on the total

system cost. This is because, without this assumption, these jobs, even if they are

destined for different customers, can still be delivered within the same batch to

manufacturer 1. Secondly, we assumed that the two-stage jobs for each customer are

sequenced in SPT order by the supplier according to the processing time of jobs only

on the supplier's machine. This assumption can also impact on the total system cost

while the processing time of some jobs on the second machine, which must be

scheduled earlier, are greater than others that must be scheduled later.

However, close examination of table 2 reveals that the benefit of cooperation is very

significant when the processing times of jobs on the second machine are greater than

those on the first machine. This is particularly true when jobs are ordered in SPT on

both machines.

142

Table 1: Comparing the sum of flow times plus delivery cost over the system before

and after cooperation with processing times distribution on [1, 1000], while the jobs

are randomly distributed among manufacturers and customers. Instances 1 to 25.

Manufacturer Supplier + Combined
Supplier 1 Sum of Manufacturer 1 Problem Benefit of Benefit

Flow
times Flow times Release times Flow times Flow times Cooperation percent
12292 9906 6174 16024 16007 17 0.10
16398 16823 12903 20318 20318 0 0.00
27113 28953 15949 40117 37632 2485 6.19
5839 4517 2747 7609 7609 0 0.00
18509 16581 10858 24232 24696 -464 -1.91
31023 25719 21280 35462 35680 -218 -0.61
10546 11043 7108 14481 14481 0 0.00
19093 16597 8894 26796 25856 940 3.51
8325 7081 2152 13254 13810 -556 -4.19

15304 17132 10370 22066 22916 -850 -3.85

11890 13977 6518 19349 19227 122 0.63

26232 20901 15104 32029 32111 -82 -0.26

20926 23722 14416 30232 29119 1113 3.68

23019 25346 16961 31404 31387 17 0.05

20042 17448 8293 29197 28873 324 1.11

19585 13168 7938 24815 24804 11 0.04

14266 13523 4842 22947 22878 69 0.30

19912 14306 10376 23842 23842 0 0.00

22498 27435 12935 36998 32428 4570 12.35

31993 19267 10867 40393 40895 -502 -1.24

14731 17452 7215 24968 24817 151 0.60

15769 9144 4128 20785 21800 -1015 -4.88

33715 19634 12742 40607 41960 -1353 -3.33

24455 29049 21772 31732 31990 -258 -0.81

15373 22929 14141 24161 24177 -16 -0.07

17373 9072 4429 22016 22110 -94 -0.43

143

Table 1 continue. Instances 26 to 50

25005 12604 7536 30073 29585 488 1.62
37993 23666 17689 43970 44189 -219 -0.50
30670 23770 18057 36383 36949 -566 -1.56
30936 22439 17738 35637 35545 92 0.26
36174 15266 12285 39155 39770 -615 -1.57
26547 16287 9419 33415 33124 291 0.87
37120 26584 17801 45903 45482 421 0.92
19340 17977 10590 26727 25916 811 3.03
58672 51383 39759 70296 70587 -291 -0.41
18055 16610 11249 23416 23378 38 0.16
36311 31861 23309 44863 45720 -857 -1.91
28247 25859 15839 38267 38034 233 0.61
21850 15243 9655 27438 27784 -346 -1.26

26160 17785 10546 33399 33760 -361 -1.08

35604 13125 8756 39973 39973 0 0.00

46086 39024 31117 53993 54441 -448 -0.83

26808 16169 10918 32059 31933 126 0.39

22465 25668 8922 39211 38986 225 0.57

37725 31121 18255 50591 49859 732 1.45

30281 30432 24149 36564 36564 0 0.00

39689 27544 19872 47361 47867 -506 -1.07

55209 23308 18154 60363 60377 -14 -0.02

50958 42594 35330 58222 58310 -88 -0.15

32677 28226 19704 41199 41478 -279 -0.68

144

Table 2: Comparing the sum of flow times plus delivery cost over the system before

and after cooperation with processing times distribution on [1, 100] for

manufacturers and [100, 1000] for customers, while the jobs are randomly distributed

among manufacturers and customers.

Manufacture Supplier+ Combined
Supplier r 1 Sum of Manufacturer 1 Problem Benefit of Benefit

Release Cooperati
Flow times Flow times times Flow times Flow times on percent

1250 2835 435 3650 3444 206 5.64
1723 4167 741 5149 4699 450 8.74
1704 3025 721 4008 3885 123 3.07
1619 5458 871 6206 5848 358 5.77
3000 4793 1408 6385 5754 631 9.88
3135 3478 1683 4930 4781 149 3.02
1441 2570 774 3237 3082 155 4.79
1821 4878 1589 5110 4936 174 3.41
3344 4873 1731 6486 6182 304 4.69
2797 5051 1751 6097 5875 222 3.64
1899 5418 1116 6201 5920 281 4.53
1010 2784 879 2915 2813 102 3.50
3147 4964 2016 6095 5807 288 4.73
3093 3335 1560 4868 4764 104 2.14
1304 3538 886 3956 3843 113 2.86
1543 3084 462 4165 3849 316 7.59
3008 5240 1525 6723 6252 471 7.01
3581 4670 1608 6643 6039 604 9.09

1225 2577 461 3341 3088 253 7.57

2918 15990 1229 17679 17189 490 2.77

1383 8882 443 9822 9491 331 3.37
2953 11104 1424 12633 12664 -31 -0.25

1156 13050 916 13290 13204 86 0.65

2129 5347 1236 6240 5828 412 6.60

1914 12299 1163 13050 13025 25 0.19

2725 9021 1315 10431 10271 160 1.53

145

Table 2 continue. Instances 25 to 50.

1650 3186 309 4527 4347 180 3.98
3324 13917 1819 15422 15330 92 0.60
2482 17469 1548 18403 18155 248 1.35
2454 11007 1418 12043 11726 317 2.63
3239 11226 1274 13191 12694 497 3.77
1410 11649 937 12122 12333 -211 -1.74
4646 11925 1842 14729 13978 751 5.10
2948 6054 742 8260 7951 309 3.74
2223 11733 618 13338 13082 256 1.92
1505 9092 607 9990 9742 248 2.48
3331 20661 1800 22192 21504 688 3.10
5542 16120 3127 18535 17679 856 4.62
3260 12390 2040 13610 13055 555 4.08
2411 8547 1171 9787 9787 0 0.00
3769 12770 2339 14200 14117 83 0.58
6396 16824 2727 20493 19528 965 4.71
2549 6145 310 8384 8317 67 0.80
6228 10454 1978 14704 14169 535 3.64
2553 16641 1495 17699 17316 383 2.16
3136 13925 1585 15476 14924 552 3.57
2820 12266 1286 13800 13468 332 2.41
4785 22049 1519 25315 24438 877 3.46
3674 12309 1987 13996 13472 524 3.74
1767 13521 987 14301 13979 322 2.25

6.4 Conclusion

The benefit of cooperation between the supplier and one manufacturer for

reducing the total system cost, i.e. the sum of flow times plus delivery times over the

system, has been briefly considered. Although the assumptions that are applied to

solve the combined problem can be costly, the benefit of cooperation, especially

when the processing times of jobs on the second machine are greater than of the first

machine, is significant. The computational results show the reduction of total system

cost of up to 12.35% while theoretical reduction of up to 20% can be achieved for

special instances.

146

Chapter 7

7.Conclusion and further work

7.1 Conclusion

In this thesis, scheduling, batching and delivery of a set of jobs that arise in supply

chain have been presented. In particular, scheduling a set of jobs in a supply chain

with three stages including supplier, manufacturer and customer is analysed.

First, the problem from the viewpoint of supplier has been considered. We have

provided a branch and bound algorithm for scheduling a set of jobs to be processed

by the supplier on a single machine for delivery in batches to manufacturers or to

other machines for further processing. This problem is a natural extension of

minimizing the sum of flow times by considering the possibility of delivering jobs in

batches and introducing batch delivery costs. The scheduling objective adopted is

that of minimizing the sum of flow times and delivery costs. The branch and bound

algorithm proved to be very efficient. This efficiency is attributable to the sharpness

of the lower bounds derived, in addition to the high quality of an initial upper bound

found using an effective heuristic. Both lower bound and the upper bound were

based on a careful analysis of the structural properties of the problem.

Second, the similar problem from the viewpoint of manufacturer, while the jobs

are ready at their release times, has been presented. The release times were based on

147

arri val times of batches from the supplier. This problem is a natural extension of

minimizing the sum of flow times with the general release dates by considering the

possibility of delivering jobs in batches to customers. The problem in ordinary sense

and even without the extension term, i.e. without considering the possibility of

delivering jobs in batches, is NP-complete. However, it is proved that for a set of

jobs under defined conditions, the sequence ordered by SPT is optimal in term of

total flow time. Furthermore, it is proved that provided branch and bound algorithm

for the extension version of problem is very efficient. Two alternative batch

formation strategies were introduced. The first was that of continuous batching,

under which the jobs that formed a batch were processed continuously; i.e., no job

that belonging to another customer was processed between them and there was no

idle time. The second strategy was that of discontinuous batching, where the jobs that

formed a batch were processed separately but delivered together.

Third, a combined problem in the light of cooperation between the supplier and

one of the manufacturers has been presented. The combined problem has been

analysed as a natural extension of two problems, i.e. the problem of minimizing the

sum of flow times on a single machine and a two-machine flow shop problem, by

considering the possibility of delivering jobs in batches and introducing batch

delivery costs for each problem. The scheduling objective adopted is that of

minimizing the sum of flow times and delivery costs over the system while the

system is defined as a combination of the supplier and the manufacturer that

cooperate together. A two-machine scheduling problem is individually NP-complete

and so is the combined problem. A number of propositions that dominate on the

structure of optimum schedule were investigated and used to devise a branch and

bound solution scheme for solving this problem. The efficiency of algorithm for

solving problem instances was measured.

Fourth, the benefit of cooperation between the supplier and one of the

manufacturers for reducing the total system scheduling and batching cost, i.e. the

sum of flow times plus delivery costs over the system, has been investigated. The

total system cost before cooperation was found by applying the algorithm provided

for the first (supplier) and the second (manufacturer) problems respectively while the

total system cost after cooperation was found by applying the algorithm provided for

148

the combined problem. Indeed it is proved that although the combined problem

algorithm is provided based on some restrictive assumptions, the benefit of

cooperation is still significant. The computational results showed the reduction of

total system cost of up to 12.35%, while theoretically reduction of up to 20% can be

achieved for special cases.

Moreover, each one of the three considered problems in the thesis has been

introduced as an independent scheduling problem. From this point of view the first

problem is an extension of F problem, the second problem is an extension of

F problem in presence of release dates and the third one is a combined scheduling

and batching problem. The efficiency of provided B&B algorithms have been

compared with the existing algorithms. Indeed for each problem, it is proved B&B

algorithm to be more efficient by far than the only existing algorithm, which is based

on dynamic programming. This is due to the time complexity of the DP algorithm,

which can be clearly observed in the escalation of computing time with the increase

in the number of jobs and manufacturer (customer) for each problem.

On the other hand, the efficiency of the B&B, which enables it to solve most

problem instances in less than one second for the first and the second problem and

very fast for the third problem, is attributable to the tightness of the lower bound,

which has been derived on the basis of careful analysis of the structural properties of

each problem. This analysis provides useful insights into problems of scheduling

with batching in general. In this regard, Propositions 3.1, 3.2, 3.3 and 3.8 in chapter 3,

propositions 4.3.1 and 4.3.4 and Property 4.3.3 in chapter 4 and propositions 5.3.2 in

chapter 5 seem most important.

In addition, effectiveness of the upper bound provided for the first (the second)

problem makes it possible to use it as a fast heuristic. It is revealed that on average

the upper bound heuristic produces solutions that are within 0.23% (0.33%) of the

optimum.

The complexity of the dynamic programming algorithm for each one of these

three problems is such that for the same number of jobs, problem instances with a

larger number of manufacturers (customers) are more difficult. Interestingly, the

opposite is true for the branch-and-bound algorithm, as revealed by the solution

times for each problem. This is so because when the number of customers is large,

the algorithm is in effect searching over a larger number of smaller subsequences,

149

with much smaller numbers of possible permutations. It is clearly shown that DP

algorithm, even for the first problem in which the time complexity of algorithm is

less than two other algorithms, cannot solve the problem instances with more than 48

jobs and with 12 manufacturers. This is while the B&B algorithm solves these

problem instances very fast and even faster than problem instances with the same

number of jobs and with fewer manufacturers.

Similarly, for the second problem, DP can solve the problem instances with up to 3

customers and 22 jobs or alternatively with 4 customers and 18 jobs, while the B&B

algorithm proved to be efficient for solving problem instances with even more than 8

customers and 40 jobs. And finally for the combined problem, it is proved that DP

cannot solve the problem instances with more than only 5 jobs, 1 (2) manufacturers

and 3 (2) customers, while the B&B algorithm can solve problem instances with 27

jobs and with several manufacturers and customers efficiently.

7.2 Recommendation for further work

There are a number of issues for further investigations.

First, in the second problem we assumed that for each pair of jobs i and j ,

whenever Pi ~ P j then r i ~ rj • Although within the framework of supply chain

management this condition may be enforced as part of the coordination between the

supplier (upstream stage) and the manufacturer, however, this assumption appears

restrictive. Due to the complexity of the problem it is not expected to solve the

problem without any simplification, however the deterministic approaches with more

generality than our work or some heuristic methods should be investigated.

Second, in the combined problem we assumed that each batch for manufacturer 1,

i.e. the manufacturer who cooperates with the supplier, contains only the jobs that are

destined for a particular customer. This assumption relaxed the problem to become

solvable as a two-machine flowshop problem. It may be worth considering if there is

still good upper and lower bound without this assumption.

Third, the algorithm provided for the combined problem consists of two sub­

algorithms which are based on branch and bound method. The first algorithm

150

considers all of the possible combinations of delivering jobs in batch and finally

provides a set of acceptable combinations of batches at leaf nodes, while the second

algorithm solves a two-machine flowshop problem for each acceptable combination

set of batches. It seems that the second algorithm may be improved upon by using

the dominance rules already available in the literature for two-machine scheduling

problem. In particular, the development of this part of the algorithm in the light of

the criteria, which is presented by Della Croce, Ghirardi and Tadei [33] and Akkan

and Karabati [2], should be investigated.

Fourth, the propositions and properties provided in this thesis are used for the

problem of minimizing the sum of flow times plus delivery costs at different stages

of a supply chain. However, some of these propositions and properties and more

importantly, the logic of solution approach, are extendable for other classical

scheduling problems. In particular, Hall and Potts have shown that the weighted

version of this problem is intractable. But it seems that by following the logic and

adopting the criteria provided in this thesis, the weighted version of the problem can

be solved. This issue needs to be investigated.

Fifth, the mechanisms of cooperation suggested in this thesis are based on

negotiation and sharing the information between different stages. There is a need for

more accurate mechanisms of such cooperation especially, when one partner does

not want to share the information with others.

Sixth, the extension of the model to multi-stage supply chain with more than three

stages is another research topic.

151

Appendix 1

Proposition 3.13. If the optimum set of batches established under the conditions

defined in chapter 4, is sequenced in SEBT order, then either:

A) the ready times of batches happen to be in non- decreasing order,

B) or for some subsequence, the ready times are an increasing order, in which case

for any two batches x and y in the subsequence, partial schedule of the sequence

Rx + ~ ~ Ry ' where Rand P denote respectively the ready time and the total

processing time.

Proof: (By induction method). We prove this proposition in two parts. First, in part

1, the proof of proposition for the special case that the original set of jobs, i.e. the set

of jobs before establishing batch between the jobs, includes only three jobs (3 single­

job batches) will be presented and then, in part two, the proof will be extended to the

general case.

Part 1) Assume there are 3 jobs jl' j2 ' and j 3 that may contribute for making one

batch, two batches or three single-job batch together while PI ~ P2 ~ P3

and '; ~ r2 ~ r3 . We consider all of the possibilities that these three jobs may make a

batch.

1.1- For the case that the jobs don't contribute for making any continuous batch,

i.e. the jobs establish three single-job batches, or they establish some

discontinuous batches, then the statement A of the proposition is satisfied.

152

1.2 - il and i2 make batch b, then it is obvious that (It = PI + P2)12 ~ P3 and

Rb ~ r3 ' so the sequence will be optimized by the SEBT rule and statement A, is

satisfied.

1.3 - i2 and i3 make batch b, then it is clear that PI ~ (It = P2 + P3)/2 and

r1 ~ Rb ' so the sequence is again optimized by the SEBT rule and statement A is

satisfied.

(It 12> P2) and Rb < r2 (Rb > r2), then the sequence will be optimized by the

SEBT rule and statement A is satisfied.

and Rb > r2 , in this case three options must be distinguished:

1.5.1) b comes first, then since Rb + It ~ r3 + P3 and '3 ~'2' it is

guaranteed that statement B of the proposition is satisfied.

1.5.2) i2 comes first and r2 + P2> Rb , then statement B of the

proposition is satisfied.

1.5.3) i2 comes first and r2 + P2 < Rb , then it requires that '2 + P2 <

r3 - PI ' or r2 + PI + P2 < '3 . This term means that if we start the

process of job il and complete the processing of job i 2, the third job,

i.e. i3 , is not ready for processing yet. Consequently, the optimum

sequence does not meet this option and this case making a

discontinuous batch leads us to optimum schedule.

16- J. and J·3make batch b, P = p + P , Rb=, or Rb ='3 - PI ' It12> P2 • 1 b 1 3 1

and Rb < r2 , in this case two options must be distinguished:

153

1.6.1) b comes first, then since Rb + lb ~ '3 + P3 and '3 ~ '2' it is

guaranteed that the second statement of proposition is satisfied.

1.6.2) j2 comes first, then since '2 > Rb, thus the second statement

of proposition is satisfied.

Part 2) Now let us consider the possibility of adding the fourth job, j 4 ' to the last

three jobs. It is worth noting that j 4 has the processing time of p 4 ' and release date of

, , while p S P and 1:3 S, .
4 3 4 4

2.1 - If p 4 ' is to be processed separately or all of the last three jobs have

contributed for making one batch with the total processing time of

PI + P2 + P 3 ' then statement A is satisfied.

2.2 - If the last three jobs have not made any batch together, and j4 may make a

batch with each one of them, then three options must be distinguished:

2.2.1) j3 and j4make batch b' , then making such batch does not affect on

the position of jl and j2 and statement A is satisfied.

2.2.2) j2 and j4make batch b' , then making such batch does not affect on

the position of jl and our problem will be reduced to the problem with 3

single-job batches that was considered in part 1.

2.2.3) jl and j4 make batch b' . Assume that job j3 does not exist, and

then the new problem reduces to the problem of part 1. Now, if we add

j3 to the new problem three options must be distinguished (we notice that

j3 never can come before j2):

154

2.2.3.1) b' comes first, followed by j2 and j3' It is clear that there is

no confliction. Note that b' and j2 have been considered before and

satisfied the proposition.

2.2.3.2) j2 comes first, followed by j3 and b'. Since b' and j2 don't

conflict together and r3 ~ r2 , then there is no confliction.

2.2.3.3) j2 comes first, followed by b' and j3' It is easy to see that

there is no confliction again.

2.3 - If the last three jobs have contributed for making a batch by virtue of state

1.2, 1.3 or 1.4, then the problem again will be reduced to the problem with 3

single-job batches that was considered in part 1.

2.4- If the last three jobs have contributed for making a batch by virtue of state

1.5, 1.6 or 1.7 and job j4 does not contribute for making a batch neither with

batch b nor with single-job batch j2' then it does not conflict with them and it

must be scheduled after them.

2.5- If the last three jobs have contributed for making a batch by virtue of state

1.5, 1.6 or 1.7 and job j4 contributes with batch b for making a bigger batch,

then we have 11, = 11 + P4 and Rb, = Rb or Rb, = r4 -11· It is easy to see that for

all these cases the logic of states 1.5, 1.6 and 1.7 is still true and the proposition

will be satisfied.

2.6- if the last three jobs have contributed for making a batch by virtue of state

1.5, 1.6 or 1.7 and job j4 contributes with single-job batch j2 to make

batchb', then we have 11, = P2 + P4 and Rb, = r2 or Rb, = r4 - P2' For this case

five options must be distinguished:

2.6.1) Pb /2< 11, /2 (11 /2> 11, /2) and Rb < Rb, (Rb > Rb,), then the

statement A is satisfied.

155

2.6.2) b comes first, It /2< It, /2 and Rb > Rb,. Since Rb > Rb" thus the

second statement of the proposition is satisfied.

2.6.3) b' comes first, It /2< It, /2 and Rb > Rb,. Since Rb, + It, ~'4 + P4 and

'4 > Rb ' thus the second statement of the proposition is satisfied.

2.6.4) b comes first, It /2> It, /2 and Rb < Rb, . For this case two options

must be distinguished:

2.6.4.1- Rb, = '2 . Since Rb + lb ~ '3 + P3 ' and '3 > '2 , thus the second

part of the proposition is satisfied.

2.6.4.2- Rb, = '4 - P2' If Rb + It ~ Rb, , the second part of proposition

is proved, otherwise two options must be distinguished:

2.6.4.2.1) Rb, ='2' then it requires that '3 + P3 < '2' which is

not possible.

2.6.4.2.2) Rb, = '4 - P2 ' then it requires that Rb + lb < '4 - P2

or Rb + PI + P2 + P3 < '4 . The recent term means that if we

start with job jI and finish with job j3' the fourth job, i.e. j4'

is not ready for processing yet. Consequently, the optimum

sequence does not meet this option and in this case making a

discontinuous batch leads us to optimum schedule.

2.6.5) b' comes first, It /2> It, / 2 and Rb < Rb, . Since Rb < Rb" the second

statement of the proposition is satisfied.

Carrying out with this treatment for adding jobs js' j6'"'' and jn to the last

jobs proves the proposition. It is worth noting that some jobs may don't

contribute for making a batch with the previous batches or single-job batches.

but they establish a batch with the jobs that have to be processed later. In this

156

condition the new partial schedule may be built and must be considered

separately as a new partial.

157

References

[1] Branch and Bound. Wikipedia the free Encyclopedia. 1960.
Ref Type: Electronic Citation

[2] Akkan,C. & Karabati,S. (2004) The two-machine flowshop total completion
time problem: Improved lower bounds and a branch-and-bound algorithm.
European Journal of Operational Research 159,420-429.

[3] Albers,S. & Brucker,P. (1993) The Complexity of One-Machine Batching
Problems. Discrete Applied Mathematics 47,87-107.

[4] Aldowaisan,T. & Allahverdi,A. (1998) Total flowtime in no-wait flowshops
with separated setup times. Computers & Operations Research 25, 757-765.

[5] Allahverdi,A. (2000) Minimizing mean flowtime in a two-machine flowshop
with sequence-independent setup times. Computers & Operations Research
27,111-127.

[6] Allahverdi,A., Gupta,J.N.D., & Aldowaisan,T. (1999) A review of scheduling
research involving setup considerations. Omega-International Journal of
Management Science 27, 219-239.

[7] Ams,M., Fischer,M., Kemper,P., & Tepper,C. (2002) Supply chain modelling
and its analytical evaluation. Journal of the Operational Research Society 53,
885-894.

[8] Baker,K. (1974) introduction to sequencing and scheduling. John Wiley &
Sons.

[9] Ballou,R.H. (1992) Business Logistics Management, 3 edn. Prentice-Hall,
Englewood Cliffs, NJ ..

[10] Bardly,S.P., Hax,A.C., & Magnanti,T.L. (1977) Applied Mathematical
Programming. Addison-Wesley Pub. Co.

[11] Beamon,B.M. (1998) Supply chain design and analysis:: Models and methods.
International Journal of Production Economics 55, 281-294.

[12]

[13]

[14]

Belouadah,H., Posner,M.E., & Potts,C.N. (1992) Scheduling with Release
Dates on A Single-Machine to Minimize Total Weighted Completion-Time.

Discrete Applied Mathematics 36, 213-231.

Bianco,L. & Ricciardelli,S. (1982) Scheduling of A Single-Machine to
Minimize Total Weighted Completion-Time Subject to Release Dates. Naval

Research Logistics 29, 151-167.

Biswas,S. & Narahari,Y. (2004) Object oriented modeling and decision
support for supply chains. European Journal of Operational Research 153,

704-726.

158

[15] Budnick,F.S., McLeavey,D., & Mojena,R. (1988) Principle of operations
research for management. Homewood, IL:Irwin.

[16] Chan~,y.~. & Lee,C.Y. (2004) Machine scheduling with job delivery
coordmatIOn. European Journal of Operational Research 158,470-487.

[17] Chen,!.J. & Paulraj,A. (2004) Towards a theory of supply chain management:
the constructs and measurements. Journal of Operations Management 22,
119-150.

[18] Cheng,T.C.E., Chen,Z.L., & Oguz,C. (1994) One-Machine Batching and
Sequencing of Multiple-Type Items. Computers & Operations Research 21,
717-721.

[19] Cheng,T.C.E., Gordon,V.S., & Kovalyov,M.Y. (1996) Single machine
scheduling with batch deliveries. European Journal of Operational Research
94, 277-283.

[20] Cheng,T.C.E. & Kovalyov,M.Y. (1996) Batch scheduling and common due­
date assignment on a single machine. Discrete Applied Mathematics 70, 231-
245.

[21] Cheng,T.C.E. & Kovalyov,M.Y. (2001) Single supplier scheduling for
multiple deliveries. Annals of Operations Research 107, 51-63.

[22] Chou,C.F.M. (2004) Asymptotic performance ratio of an online algorithm for.
the single machine scheduling with release dates. IEEE Transactions on
Automatic Control 49, 772-776.

[23] Chou,F.D. & Lee,C.E. (1999) Two-machine flowshop scheduling with
bicriteria problem. Computers & Industrial Engineering 36, 549-564.

[24] Chou,Y.-L., Pollock,S.M., Romeijn,H.E., & Smith,R.L. A Formalism for
Dynamic Programming. Department of Industrial and Operations Engineering,
The University of Michigan. 2001.
Ref Type: Electronic Citation

[25] Chu,C.B. (1992) Efficient Heuristics to Minimize Total Flow Time with
Release Dates. Operations Research Letters 12, 321-330.

[26]

[27]

Clausen,J. Branch and Bound Algorithms-Principles and Examples.
http://www.imada.sdu.dkl-jbjIDM85rrSPtext.pdf . 1999.
Ref Type: Electronic Citation

Coffman,Jr.E.G., Yannakakis,M., Magazine,M.J., & Santos,C. (1990) Batch
sizing and job sequencing on a single machine. Annals of Operations
Research.

[28] Conway,R.W., Maxwell,W.L., & Miller,L.W. (1967) Theory of Scheduling.
Addison-Wesley Publishing Company, Inc ..

159

[29] Cooper,M.C., Lambert,D.M., & Pagh,J.D. (1997) Supply Chain Management:
More Than a New Name for Logistics. The International Journal of Logistics
Management 8,1-14.

[30] Cormen,T.H., Leiserson,C.E., Rivest,R.L., & Stein,C. (1990) Introduction to
algorithms. Mc. Graw-Hill Company.

[31] Crauwels,H.A.J., Hariri,A.M.A., Potts,C.N., & Van Wassenhove,L.N. (1998)
~ranch an~ ~o~nd algorithms for single-machine scheduling with batch set-up
hmes to Ill1ll1Ill1ze total weighted completion time. Annals of Operations
Research 83, 59-76.

[32] Croom,S., Romano,P., & Giannakis,M. (2000) Supply chain management: an
analytical framework for critical literature review. European Journal of
Purchasing & Supply Management 6,67-83.

[33] DellaCroce,F., Ghirardi,M., & Tadei,R. (2002) An improved branch-and­
bound algorithm for the two machine total completion time flow shop
problem. European Journal of Operational Research 139, 293-301.

[34] DellaCroce,F., Narayan,V., & Tadei,R. (1996) The two-machine total
completion time flow shop problem. European Journal of Operational
Research 90, 227-237.

[35] Deogun,J.S. (1983) On Scheduling with Ready Times to Minimize Mean Flow
Time. Computer Journal 26, 320-328.

[36] Dessouky,M.I. & Deogun,J.S. (1981) Sequencing Jobs with Unequal Ready
Times to Minimize Mean Flow Time. Siam Journal on Computing 10, 192-
202.

[37] Dunstall,S., Wirth,A., & Baker,K. (2000) Lower bounds and, algorithms for
flowtime minimization on a single machine with set-up times. Journal of
Scheduling 3, 51-59.

[38] Dupont,L. & Dhaenens-Flipo,C. (2002) Minimizing the makespan on a batch
machine with non-identical job sizes: an exact procedure. Computers &
Operations Research 29, 807-819.

[39] Dyer,M.E. & Wolsey,L.A. (1990) Formulating the single machine sequencing
problem with release dates as a mixed integer program. Discrete Applied
Mathematics 26, 255-270.

[40]

[41]

Elmahi,l., Merzouk,S., Grunder,O., & Elmoudni,A. A genetic algorithm
approach for the batches delivery optimization in a supply chain. International
Conference on Networking, Sensing & Control 1, 299-304.2004.
Ref Type: Conference Proceeding

Erenguc,S.S., Simpson,N.C., & Vakharia,A.J. (1999) Integrated
production/distribution planning in supply chains: An invited review.
European Journal of Operational Research 115, 219-236.

160

[42] Ganeshan,R. & Harrison,T.P. An Introduction to Supply Chain Management.
http://lcm.csa.iisc.ernetinlscm!supply chain intro.html. 1995.
Ref Type: Electronic Citation

[43] Garey,M.R., Johnson,D.S., & Sethi,R. (1976) The complexity of flowshop and
jobshop scheduling. Mathematics of Operations Research 1, 117-129.

[44] Goemans,M.X., Queyranne,M., Schulz,A.S., Skutella,M., & Wang,Y.G.
(2002) Single machine scheduling with release dates. Siam Journal on
Discrete Mathematics 15, 165-192.

[45] Gonzalez,T. & Sahni,S. (1978) Flowshop andjobshop scheduling: Complexity
and approximation. Operations Research 26, 36-52.

[46] Graham,R.L., Lawler,E.L., Lenstra,J.K., & Rinnooy Kan,A.H.G. (1979)
Optimization and approximation in deterministic sequencing and scheduling:
A survay. Annals of Discrete Mathematics 5, 287-326.

[47] Gupta,J.N.D., Neppalli,V.R., & Werner,F. (2001) Minimizing total flow time
in a two-machine flowshop problem with minimum makespan. International
Journal of Production Economics 69, 323-338.

[48] Hall,L.A., Schulz,A.S., Shmoys,D.B., & Wein,J. (1997) Scheduling to
minimize average completion time: Off-line and on-line approximation
algorithms. Mathematics of Operations Research 22,513-544.

[49] Hall,N.G. & Potts,C.N. (2003) Supply chain scheduling: Batching and
delivery. Operations Research 51, 566-584.

[50] Hammer,M. Reengineering the Supply Chain: An Interview With Michael
Hammer. Supply Chain Management Review . 1999.
Ref Type: Electronic Citation

[51] Handfield,R.B. & Nichols,JR.E.L. (1999) Introduction to Supply Chain
Management. Prentice-Hall, Inc ..

[52]

[53]

Hariri,A.M.A. & Potts,C.N. (1983) An algorithm for single machine
sequencing with release dates to minimize total weighted completion time.
Discrete Applied Mathematics 5,99-109.

Harvey,M.G. & Richey,R.G. (2001) Global supply chain management: The
selection of globally competent managers. Journal of International
Management 7, 105-128.

[54] Hiller,F.S. & Liberman,G.J. (1995) Introduction to operations research, 6

edn. McGraw-Hill.

[55] Hoogeveen,1.A. & Kawaguchi,T. (1999) Minimizing total co~pletion time in
a two-machine flowshop: Analysis of special cases. Mathematlcs of
Operations Research 24, 887-910.

161

[56] Hu~n,S.H., ~heoran,S.K., & Wang,G. (2004) a review and analysis of supply
cham operatIOns reference (SCOR) model. Supply Chain Management: An
International Journal 9, 23-29.

[57] H~rink,J. & Kn~st,S: (2001) Makespan minimization for flow-shop problems
WIth transportatIOn tImes and a single robot. Discrete Applied Mathematics
112, 199-216.

[58] Ignall,E. & Schrage,L. (1965) Application of the branch and bound technique
to some flow-shop scheduling problems. Operations Research 13,400-412.

[59] Johnson,M.E. & Pyke,D.F. Supply Chain Management.
http://mba. tuck. dartmouth. edulpages/faculty/ dave. pyke/ case studies/ suppl y c
hain or ms.pdf. 1999.
Ref Type: Electronic Citation

[60] Kaminsky,P. & Simchi-Levi,D. (2001) Asymptotic analysis of an on-line
algorithm for the single machine completion time problem with release dates.
Operations Research Letters 29, 141-148.

[61] Kellerer,H., Tautenhahn,T., & Woeginger,GJ. (1999) Approximability and
nonapproximability results for minimizing total flow time on a single
machine. Siam Journal on Computing 28,1155-1166.

[62] Krajewski,L. & Wei,J.C. (2005) The value of production schedule integration
in supply chains. Decision Science 32, 601-634.

[63] Lambert,D.M. & Cooper,M.C. (2000) Issues in supply chain management.
Industrial Marketing Management 29,65-83.

[64] Lee,C.Y. & Chen,Z.L. (2001) Machine scheduling with transportation
considerations. Journal of Scheduling 4, 3-24.

[65] Lee,Y.H. & Kim,S.H. (2002) Production-distribution planning in supply chain
considering capacity constraints. Computers & Industrial Engineering 43,

169-190.

[66] Lenstra,J.K., Rinnooy Kan,A.H.G., & Brucker,P. (1977) Complexity of
machine scheduling problems. Annals of Discrete Mathematics 1, 343-362.

[67] Liaee,M.M. & Emmons,H. (1997) Scheduling families of jobs with setup
times. International Journal of Production Economics 51, 165-176.

[68]

[69]

Lummus,R.R. & Vokurka,R.J. (1999) Defining supply chain management: A
historical perspective and practical guidelines. Industrial Management and

Data Systems 11-17.

Mao,W. & Kincaid,R.K. (1994) A look-ahead heuristic for scheduling jobs
with release dates on a single machine. Computers & Operations Research 21,

1041-1050.

162

[70] Mason,A.J. & Anderson,E.J. (1991) Minimizing Flow Time on A Single­
Machine with Job Classes and Setup Times. Naval Research Logistics 38,
333-350.

[71] Min,R. & Zhou,G.G. (2002) Supply chain modeling: past, present and future.
Computers & Industrial Engineering 43,231-249.

[72] Minoux,M. (1986) Mathematical Programming Theory and algorithms. John
Wiley & Sons Ltd ..

[73] Monna,C.L. & Potts,C.N. (1989) On the complexity of scheduling with batch
setup times. Operations Research 37, 798-804.

[74] New,S.J. (1997) The scope of supply chain management. Supply Chain
Management 2, 15-22.

[75] New,S.J. & Payne,P. (1995) Research frameworks in logistics:three models,
seven dinners and a survay. International Journal of Production Economics
25,60-77.

[76] Ng,C.T., Cheng,T.C.E., Yuan,J.J., & Liu,Z.H. (2003) On the single machine
serial batching scheduling problem to minimize total completion time with
precedence constraints, release dates and identical processing times.
Operations Research Letters 31, 323-326.

[77] Phillips,C., Stein,C., & Wein,}. (1998) Minimizing average completion time in
the presence of release dates. Mathematical Programming 82, 199-223.

[78] Pinedo,M. (1995) Scheduling Theory, Algorithms, and systems. Prentice-Hall.
Inc ..

[79] Potts,C.N. & Kovalyov,M.Y. (2000) Scheduling with batching: A review.
European Journal of Operational Research 120, 228-249.

[80] Rinnooy Kan,A.H.G. (1976) Machine Scheduling Problem: Classification,
Complexity and Computations. Nijhoff, The Hague.

[81] Sarmiento,A.M. & Nagi,R. (1999) A review of integrated analysis of
production-distribution systems. lie Transactions 31,1061-1074.

[82] Shapiro,J.F. (2001) Modeling the Supply Chain. Wadsworth Group.

[83] Shapiro,J.F. Bottom-up vs. top-down approaches to supply chain management
and modeling. Sloan School og Management. 1998.
Ref Type: Electronic Citation

[84] Silver,E.D. (1981) Operations research in inventory management: A review
and critique. Operations Research 29, 628-645.

[85] Smith,W.E. (1956) Various optimizers for single stage production. Naval
Research Logistic Quarterly 3,59-66.

163

[86] Tan,K.C. (2001) A framework of supply chain management literature.
European Journal 0/ Purchasing & Supply Management 7, 39-48.

[87] Thomas,D.J. & Griffin,P.M. (1996) Coordinated supply chain management.
European Journal o/Operational Research 94,1-15.

[88] Van De Velde,S.l. (1990) Minimizing the sum of job completion times in the
two-machine flow-shop by Lagrangean relaxation. Annals 0/ Operations
Research 26, 257-268.

[89] Vidal,C.J. & Goetschalckx,M. (1997) Strategic production-distribution
models: A critical review with emphasis on global supply chain models.
European Journal o/Operational Research 98,1-18.

[90] Waller,D.L. (2003) Operations Management a supply chain approach, 2 edn.

[91] Wang,X. & Cheng,T.C.E. (2005) Two-machine flowshop scheduling with job
class setups to minimize total flowtime. Computers & Operations Research
32,2751-2770.

[92] Webster,S. & Baker,K.R. (1995) Scheduling Groups of Jobs on A Single­
Machine. Operations Research 43,692-703.

[93] Weng,Z.K. Pricing and ordering strategies in manufacturing and distribution
alliances. lIE Transactions (Institute of Industrial Engineers) 29, 681-692.
1997.
Ref Type: Electronic Citation

[94] Weng,Z.K. (1999) The Power of coordinated decisions for short-life-cycle
products in a manufacturing and distribution supply chain. IEEE Transactions
on Automatic Control 31, 1037-1049.

[95] Wilf,H.S. (1994) Algorithms and Complexity, Internet Edition edn.

[96] Zipkin,P.H. (2000) Foundations o/inventory management. New York, NY:
McGraw-Hill.

164

	422450_0001
	422450_0002
	422450_0003
	422450_0004
	422450_0005
	422450_0006
	422450_0007
	422450_0008
	422450_0009
	422450_0010
	422450_0011
	422450_0012
	422450_0013
	422450_0014
	422450_0015
	422450_0016
	422450_0017
	422450_0018
	422450_0019
	422450_0020
	422450_0021
	422450_0022
	422450_0023
	422450_0024
	422450_0025
	422450_0026
	422450_0027
	422450_0028
	422450_0029
	422450_0030
	422450_0031
	422450_0032
	422450_0033
	422450_0034
	422450_0035
	422450_0036
	422450_0037
	422450_0038
	422450_0039
	422450_0040
	422450_0041
	422450_0042
	422450_0043
	422450_0044
	422450_0045
	422450_0046
	422450_0047
	422450_0048
	422450_0049
	422450_0050
	422450_0051
	422450_0052
	422450_0053
	422450_0054
	422450_0055
	422450_0056
	422450_0057
	422450_0058
	422450_0059
	422450_0060
	422450_0061
	422450_0062
	422450_0063
	422450_0064
	422450_0065
	422450_0066
	422450_0067
	422450_0068
	422450_0069
	422450_0070
	422450_0071
	422450_0072
	422450_0073
	422450_0074
	422450_0075
	422450_0076
	422450_0077
	422450_0078
	422450_0079
	422450_0080
	422450_0081
	422450_0082
	422450_0083
	422450_0084
	422450_0085
	422450_0086
	422450_0087
	422450_0088
	422450_0089
	422450_0090
	422450_0091
	422450_0092
	422450_0093
	422450_0094
	422450_0095
	422450_0096
	422450_0097
	422450_0098
	422450_0099
	422450_0100
	422450_0101
	422450_0102
	422450_0103
	422450_0104
	422450_0105
	422450_0106
	422450_0107
	422450_0108
	422450_0109
	422450_0110
	422450_0111
	422450_0112
	422450_0113
	422450_0114
	422450_0115
	422450_0116
	422450_0117
	422450_0118
	422450_0119
	422450_0120
	422450_0121
	422450_0122
	422450_0123
	422450_0124
	422450_0125
	422450_0126
	422450_0127
	422450_0128
	422450_0129
	422450_0130
	422450_0131
	422450_0132
	422450_0133
	422450_0134
	422450_0135
	422450_0136
	422450_0137
	422450_0138
	422450_0139
	422450_0140
	422450_0141
	422450_0142
	422450_0143
	422450_0144
	422450_0145
	422450_0146
	422450_0147
	422450_0148
	422450_0149
	422450_0150
	422450_0151
	422450_0152
	422450_0153
	422450_0154
	422450_0155
	422450_0156
	422450_0157
	422450_0158
	422450_0159
	422450_0160
	422450_0161
	422450_0162
	422450_0163
	422450_0164
	422450_0165
	422450_0166
	422450_0167
	422450_0168
	422450_0169
	422450_0170
	422450_0171
	422450_0172

