449 research outputs found

    A branch and bound approach for the design of decentralized supervisors in Petri net models

    Get PDF
    The paper addresses the design of compact and maximally permissive decentralized supervisors for Petri nets, based on generalized mutual exclusion constraints. Decentralization constraints are formulated with respect to the net transitions, instructing each local supervisor to detect and disable transitions of its own control site only. A solution is characterized in terms of the states it allows and its feasibility is assessed by means of two separate tests, one checking the required behavioral properties (e.g., liveness, reversibility and controllability) of the induced reachability subgraph and the other ensuring the existence of a decentralized supervisor enforcing exactly the considered set of allowed states. The second test employs an integer linear programming formulation. Maximal permissivity is ensured by efficiently exploring the solution space using a branch and bound method that operates on the reachable states. Particular emphasis is posed on the obtainment of the controllability property, both in the structural and the behavioral interpretation

    Petri net controllers for Generalized Mutual Exclusion Constraints with floor operators

    Get PDF
    In this paper a special type of nonlinear marking specifications called stair generalized mutual exclusion constraints (stair-GMECs) is defined. A stair-GMEC can be represented by an inequality whose left-hand is a linear combination of floor functions. Stair-GMECs have higher modeling power than classical GMECs and can model legal marking sets that cannot be defined by OR–AND GMECs. We propose two algorithms to enforce a stair-GMEC as a closed-loop net, in which the control structure is composed by a residue counter, remainder counters, and duplicate transitions. We also show that the proposed control structure is maximally permissive since it prevents all and only the illegal trajectories of a plant net. This approach can be applied to both bounded and unbounded nets. Several examples are proposed to illustrate the approach

    Discrete events: Perspectives from system theory

    Get PDF
    Systems Theory;differentiaal/ integraal-vergelijkingen

    Modeling and formal verification of probabilistic reconfigurable systems

    Get PDF
    In this thesis, we propose a new approach for formal modeling and verification of adaptive probabilistic systems. Dynamic reconfigurable systems are the trend of all future technological systems, such as flight control systems, vehicle electronic systems, and manufacturing systems. In order to meet user and environmental requirements, such a dynamic reconfigurable system has to actively adjust its configuration at run-time by modifying its components and connections, while changes are detected in the internal/external execution environment. On the other hand, these changes may violate the memory usage, the required energy and the concerned real-time constraints since the behavior of the system is unpredictable. It might also make the system's functions unavailable for some time and make potential harm to human life or large financial investments. Thus, updating a system with any new configuration requires that the post reconfigurable system fully satisfies the related constraints. We introduce GR-TNCES formalism for the optimal functional and temporal specification of probabilistic reconfigurable systems under resource constraints. It enables the optimal specification of a probabilistic, energetic and memory constraints of such a system. To formally verify the correctness and the safety of such a probabilistic system specification, and the non-violation of its properties, an automatic transformation from GR-TNCES models into PRISM models is introduced. Moreover, a new approach XCTL is also proposed to formally verify reconfigurable systems. It enables the formal certification of uncompleted and reconfigurable systems. A new version of the software ZIZO is also proposed to model, simulate and verify such GR-TNCES model. To prove its relevance, the latter was applied to case studies; it was used to model and simulate the behavior of an IPV4 protocol to prevent the energy and memory resources violation. It was also used to optimize energy consumption of an automotive skid conveyor.In dieser Arbeit wird ein neuer Ansatz zur formalen Modellierung und Verifikation dynamisch rekonfigurierbarer Systeme vorgestellt. Dynamische rekonfigurierbare Systeme sind in vielen aktuellen und zukünftigen Anwendungen, wie beispielsweise Flugsteuerungssystemen, Fahrzeugelektronik und Fertigungssysteme zu finden. Diese Systeme weisen ein probabilistisches, adaptives Verhalten auf. Um die Benutzer- und Umgebungsbedingungen kontinuierlich zu erfüllen, muss ein solches System seine Konfiguration zur Laufzeit aktiv anpassen, indem es seine Komponenten, Verbindungen zwischen Komponenten und seine Daten modifiziert (adaptiv), sobald Änderungen in der internen oder externen Ausführungsumgebung erkannt werden (probabilistisch). Diese Anpassungen dürfen Beschränkungen bei der Speichernutzung, der erforderlichen Energie und bestehende Echtzeitbedingungen nicht verletzen. Eine nicht geprüfte Rekonfiguration könnte dazu führen, dass die Funktionen des Systems für einige Zeit nicht verfügbar wären und potenziell menschliches Leben gefährdet würde oder großer finanzieller Schaden entstünde. Somit erfordert das Aktualisieren eines Systems mit einer neuen Konfiguration, dass das rekonfigurierte System die zugehörigen Beschränkungen vollständig einhält. Um dies zu überprüfen, wird in dieser Arbeit der GR-TNCES-Formalismus, eine Erweiterung von Petrinetzen, für die optimale funktionale und zeitliche Spezifikation probabilistischer rekonfigurierbarer Systeme unter Ressourcenbeschränkungen vorgeschlagen. Die entstehenden Modelle sollen über probabilistische model checking verifiziert werden. Dazu eignet sich die etablierte Software PRISM. Um die Verifikation zu ermöglichen wird in dieser Arbeit ein Verfahren zur Transformation von GR-TNCES-Modellen in PRISM-Modelle beschrieben. Eine neu eingeführte Logik (XCTL) erlaubt zudem die einfache Beschreibung der zu prüfenden Eigenschaften. Die genannten Schritte wurden in einer Softwareumgebung für den automatisierten Entwurf, die Simulation und die formale Verifikation (durch eine automatische Transformation nach PRISM) umgesetzt. Eine Fallstudie zeigt die Anwendung des Verfahren

    On Minimum-time Control of Continuous Petri nets: Centralized and Decentralized Perspectives

    Get PDF
    Muchos sistemas artificiales, como los sistemas de manufactura, de logística, de telecomunicaciones o de tráfico, pueden ser vistos "de manera natural" como Sistemas Dinámicos de Eventos Discretos (DEDS). Desafortunadamente, cuando tienen grandes poblaciones, estos sistemas pueden sufrir del clásico problema de la explosión de estados. Con la intención de evitar este problema, se pueden aplicar técnicas de fluidificación, obteniendo una relajación fluida del modelo original discreto. Las redes de Petri continuas (CPNs) son una aproximación fluida de las redes de Petri discretas, un conocido formalismo para los DEDS. Una ventaja clave del empleo de las CPNs es que, a menudo, llevan a una substancial reducción del coste computacional. Esta tesis se centra en el control de Redes de Petri continuas temporizadas (TCPNs), donde las transiciones tienen una interpretación temporal asociada. Se asume que los sistemas siguen una semántica de servidores infinitos (velocidad variable) y que las acciones de control aplicables son la disminución de la velocidad del disparo de las transiciones. Se consideran dos interesantes problemas de control en esta tesis: 1) control del marcado objetivo, donde el objetivo es conducir el sistema (tan rápido como sea posible) desde un estado inicial a un estado final deseado, y es similar al problema de control set-point para cualquier sistema de estado continuo; 2) control del flujo óptimo, donde el objetivo es conducir el sistema a un flujo óptimo sin conocimiento a priori del estado final. En particular, estamos interesados en alcanzar el flujo máximo tan rápido como sea posible, lo cual suele ser deseable en la mayoría de sistemas prácticos. El problema de control del marcado objetivo se considera desde las perspectivas centralizada y descentralizada. Proponemos varios controladores centralizados en tiempo mínimo, y todos ellos están basados en una estrategia ON/OFF. Para algunas subclases, como las redes Choice-Free (CF), se garantiza la evolución en tiempo mínimo; mientras que para redes generales, los controladores propuestos son heurísticos. Respecto del problema de control descentralizado, proponemos en primer lugar un controlador descentralizado en tiempo mínimo para redes CF. Para redes generales, proponemos una aproximación distribuida del método Model Predictive Control (MPC); sin embargo en este método no se considera evolución en tiempo mínimo. El problema de control de flujo óptimo (en nuestro caso, flujo máximo) en tiempo mínimo se considera para redes CF. Proponemos un algoritmo heurístico en el que calculamos los "mejores" firing count vectors que llevan al sistema al flujo máximo, y aplicamos una estrategia de disparo ON/OFF. También demostramos que, debido a que las redes CF son persistentes, podemos reducir el tiempo que tarda en alcanzar el flujo máximo con algunos disparos adicionales. Los métodos de control propuestos se han implementado e integrado en una herramienta para Redes de Petri híbridas basada en Matlab, llamada SimHPN

    Une approche efficace pour l’étude de la diagnosticabilité et le diagnostic des SED modélisés par Réseaux de Petri labellisés : contextes atemporel et temporel

    Get PDF
    This PhD thesis deals with fault diagnosis of discrete event systems using Petri net models. Some on-the-fly and incremental techniques are developed to reduce the state explosion problem while analyzing diagnosability. In the untimed context, an algebraic representation for labeled Petri nets (LPNs) is developed for featuring system behavior. The diagnosability of LPN models is tackled by analyzing a series of K-diagnosability problems. Two models called respectively FM-graph and FM-set tree are developed and built on the fly to record the necessary information for diagnosability analysis. Finally, a diagnoser is derived from the FM-set tree for online diagnosis. In the timed context, time interval splitting techniques are developed in order to make it possible to generate a state representation of labeled time Petri net (LTPN) models, for which techniques from the untimed context can be used to analyze diagnosability. Based on this, necessary and sufficient conditions for the diagnosability of LTPN models are determined. Moreover, we provide the solution for the minimum delay ∆ that ensures diagnosability. From a practical point of view, diagnosability analysis is performed on the basis of on-the-fly building of a structure that we call ASG and which holds fault information about the LTPN states. Generally, using on-the-fly analysis and incremental technique makes it possible to build and investigate only a part of the state space, even in the case when the system is diagnosable. Simulation results obtained on some chosen benchmarks show the efficiency in terms of time and memory compared with the traditional approaches using state enumerationCette thèse s'intéresse à l'étude des problèmes de diagnostic des fautes sur les systèmes à événements discrets en utilisant les modèles réseau de Petri. Des techniques d'exploration incrémentale et à-la-volée sont développées pour combattre le problème de l'explosion de l'état lors de l'analyse de la diagnosticabilité. Dans le contexte atemporel, la diagnosticabilité de modèles RdP-L est abordée par l'analyse d'une série de problèmes K-diagnosticabilité. L'analyse de la diagnosticabilité est effectuée sur la base de deux modèles nommés respectivement FM-graph et FM-set tree qui sont développés à-la-volée. Un diagnostiqueur peut être dérivé à partir du FM-set tree pour le diagnostic en ligne. Dans le contexte temporel, les techniques de fractionnement des intervalles de temps sont élaborées pour développer représentation de l'espace d'état des RdP-LT pour laquelle des techniques d'analyse de la diagnosticabilité peuvent être utilisées. Sur cette base, les conditions nécessaires et suffisantes pour la diagnosticabilité de RdP-LT ont été déterminées. En pratique, l'analyse de la diagnosticabilité est effectuée sur la base de la construction à-la-volée d'une structure nommée ASG et qui contient des informations relatives à l'occurrence de fautes. D'une manière générale, l'analyse effectuée sur la base des techniques à-la-volée et incrémentale permet de construire et explorer seulement une partie de l'espace d'état, même lorsque le système est diagnosticable. Les résultats des simulations effectuées sur certains benchmarks montrent l'efficacité de ces techniques en termes de temps et de mémoire par rapport aux approches traditionnelles basées sur l'énumération des état

    A Forward On-The-Fly Approach for Safety and Reachability Controller Synthesis of Timed Systems

    Get PDF
    RÉSUMÉ Cette thèse s’intéresse à la synthèse de contrôleurs pour des systèmes temps réel (systèmes temporisés). Partant d’un système temps réel modélisé par un réseau de Petri temporel composé de transitions contrôlables et non contrôlables (TPN), le contrôle vise à forcer, en restreignant les intervalles de franchissement des transitions contrôlables, le système à satisfaire les propriétés souhaitées. Nous proposons, dans cette thèse, un algorithme pour synthétiser de tels contrôleurs pour des propriétés de sûreté et d’accessibilité. Cet algorithme, basé sur la méthode de graphe de classes d’états, calcule à la volée les classes d’états atteignables du TPN tout en collectant progressivement les sous-intervalles de tir à éviter, afin de satisfaire les propriétés souhaitées. Avec cet algorithme, il n’est plus nécessaire de calculer les prédécesseurs contrôlables et de partitionner récursivement les classes d’états jusqu’à atteindre un point fixe, comme c’est le cas dans les autres approches basées sur l’exploration, en avant et en arrière, de l’espace des états du système. Nous prouvons formellement la correction de l’algorithme, puis nous montrons que dans la catégorie des contrôleurs basés sur la restriction des intervalles de tir, l’algorithme, proposé dans cette thèse, synthétise un contrôleur optimal (le plus permissif possible). Afin d’atténuer davantage le problème d’explosion combinatoire, nous montrons comment combiner cette approche avec une abstraction par l’inclusion, par union-convexe ou par enveloppe-convexe. Nous montrons également comment exploiter cet algorithme pour générer des contrôleurs décentralisés. Enfin, nous proposons d’appliquer cet algorithme pour contrôler des TPN par des chronomètres. Notre algorithme permet de partitionner les intervalles des transitions en “bons” et “mauvais” sous-intervalles (à éviter). L’idée est d’utiliser des chronomètres pour suspendre les tâches (transitions) durant leurs mauvais sous-intervalles et les activer dans leurs “bons sous-intervalles”. Il s’agit donc de contrôler les réseaux de Petri temporels en associant des chronomètres aux transitions contrôlables, pour obtenir ainsi des réseaux de Petri temporels contrôlés.----------ABSTRACT This thesis deals with controller synthesis for real time systems (timed systems). Given a real time system modeled as a Time Petri Net (TPN) with controllable and uncontrollable transitions, the control aims at forcing the system to satisfy properties of interest, by limiting the firing intervals of controllable transitions. We propose, in this thesis, an algorithm to synthesize such controllers for safety / reachability properties. This algorithm, based on the state class graph method, computes on-the-fly the reachable state classes of the TPN while collecting progressively firing subintervals to be avoided so that the property is satisfied. It does not need to compute controllable predecessors and then split state classes until reaching a fixpoint, as it is the case for other approaches based on backward and forward exploration of state space of the system. We prove formally the correctness of the algorithm and show that, in the category of state dependent controllers based on the restriction of firing intervals, the algorithm proposed in this thesis, synthesizes maximally permissive controllers. In order to attenuate the state explosion problem, we show how to combine efficiently this approach with an abstraction by inclusion, convex union or convex hull. Afterwards, we discuss the compatibility of this method with distributed systems and decentralized controllers. Finally, we apply this algorithm to control TPN with controllable and uncontrollable transitions by stopwatch. In this approach, we find the subintervals violating the given properties and our objective is to suspend the tasks (transitions) during their bad subintervals and to resume them later. The controller is synthesized through the same algorithm already introduced. In this approach, we suggest to control time Petri nets by associating stopwatches to controllable transitions and to achieve a controlled time Petri nets

    Activity Report 2022

    Get PDF
    corecore