5 research outputs found

    Augmented Block Householder Arnoldi Method

    Get PDF
    AbstractComputing the eigenvalues and eigenvectors of a large sparse nonsymmetric matrix arises in many applications and can be a very computationally challenging problem. In this paper we propose the Augmented Block Householder Arnoldi (ABHA) method that combines the advantages of a block routine with an augmented Krylov routine. A public domain MATLAB code ahbeigs has been developed and numerical experiments indicate that the code is competitive with other publicly available codes

    Block GMRES method with inexact breakdowns and deflated restarting

    Get PDF
    International audienc

    An Ensemble-Based Projection Method and Its Numerical Investigation

    Get PDF
    In many cases, partial differential equation (PDE) models involve a set of parameters whose values may vary over a wide range in application problems, such as optimization, control and uncertainty quantification. Performing multiple numerical simulations in large-scale settings often leads to tremendous demands on computational resources. Thus, the ensemble method has been developed for accelerating a sequence of numerical simulations. In this work we first consider numerical solutions of Navier-Stokes equations under different conditions and introduce the ensemblebased projection method to reduce the computational cost. In particular, we incorporate a sparse grad-div stabilization into the method as a nonzero penalty term in discretization that does not strongly enforce mass conservation, and derive the long time stability and the error estimate. Numerical tests are presented to illustrate the theoretical results. A simple way to solve the linear system generated in the ensemble method is to use a direct solver. Compared with individual simulations of the same problems, the ensemble method is more efficient because there is only one linear system needs to solve for the ensemble. However, for large-scale problems, iterative linear solvers have to be used. Therefore, in the second part of this work we investigate numerical performance of the ensemble method with block iterative solvers for two typical evolution problems: the heat equation and the Navier-Stokes equations. Numerical results are provided to demonstrate the effectiveness and efficiency of the ensemble method when working together with the block iterative solvers

    A perturbed two-level preconditioner for the solution of three-dimensional heterogeneous Helmholtz problems with applications to geophysics

    Get PDF
    Le sujet de cette thèse est le développement de méthodes itératives permettant la résolution de grands systèmes linéaires creux d'équations présentant plusieurs seconds membres simultanément. Ces méthodes seront en particulier utilisées dans le cadre d'une application géophysique : la migration sismique visant à simuler la propagation d'ondes sous la surface de la terre. Le problème prend la forme d'une équation d'Helmholtz dans le domaine fréquentiel en trois dimensions, discrétisée par des différences finies et donnant lieu à un système linéaire creux, complexe, non-symétrique, non-hermitien. De plus, lorsque de grands nombres d'onde sont considérés, cette matrice possède une taille élevée et est indéfinie. Du fait de ces propriétés, nous nous proposons d'étudier des méthodes de Krylov préconditionnées par des techniques hiérarchiques deux niveaux. Un tel pre-conditionnement s'est montré particulièrement efficace en deux dimensions et le but de cette thèse est de relever le défi de l'adapter au cas tridimensionel. Pour ce faire, des méthodes de Krylov sont utilisées à la fois comme lisseur et comme méthode de résolution du problème grossier. Ces derniers choix induisent l'emploi de méthodes de Krylov dites flexibles. ABSTRACT : The topic of this PhD thesis is the development of iterative methods for the solution of large sparse linear systems of equations with possibly multiple right-hand sides given at once. These methods will be used for a specific application in geophysics - seismic migration - related to the simulation of wave propagation in the subsurface of the Earth. Here the three-dimensional Helmholtz equation written in the frequency domain is considered. The finite difference discretization of the Helmholtz equation with the Perfect Matched Layer formulation produces, when high frequencies are considered, a complex linear system which is large, non-symmetric, non-Hermitian, indefinite and sparse. Thus we propose to study preconditioned flexible Krylov subspace methods, especially minimum residual norm methods, to solve this class of problems. As a preconditioner we consider multi-level techniques and especially focus on a two-level method. This twolevel preconditioner has shown efficient for two-dimensional applications and the purpose of this thesis is to extend this to the challenging three-dimensional case. This leads us to propose and analyze a perturbed two-level preconditioner for a flexible Krylov subspace method, where Krylov methods are used both as smoother and as approximate coarse grid solver
    corecore