5,479 research outputs found

    A Constraint Handling Strategy for Bit-Array Representation GA in Structural Topology Optimization

    Get PDF
    In this study, an improved bit-array representation method for structural topology optimization using the Genetic Algorithm (GA) is proposed. The issue of representation degeneracy is fully addressed and the importance of structural connectivity in a design is further emphasized. To evaluate the constrained objective function, Deb's constraint handling approach is further developed to ensure that feasible individuals are always better than infeasible ones in the population to improve the efficiency of the GA. A hierarchical violation penalty method is proposed to drive the GA search towards the topologies with higher structural performance, less unusable material and fewer separate objects in the design domain in a hierarchical manner. Numerical results of structural topology optimization problems of minimum weight and minimum compliance designs show the success of this novel bit-array representation method and suggest that the GA performance can be significantly improved by handling the design connectivity properly.Singapore-MIT Alliance (SMA

    Evolutionary Approaches to Optimization Problems in Chimera Topologies

    Full text link
    Chimera graphs define the topology of one of the first commercially available quantum computers. A variety of optimization problems have been mapped to this topology to evaluate the behavior of quantum enhanced optimization heuristics in relation to other optimizers, being able to efficiently solve problems classically to use them as benchmarks for quantum machines. In this paper we investigate for the first time the use of Evolutionary Algorithms (EAs) on Ising spin glass instances defined on the Chimera topology. Three genetic algorithms (GAs) and three estimation of distribution algorithms (EDAs) are evaluated over 10001000 hard instances of the Ising spin glass constructed from Sidon sets. We focus on determining whether the information about the topology of the graph can be used to improve the results of EAs and on identifying the characteristics of the Ising instances that influence the success rate of GAs and EDAs.Comment: 8 pages, 5 figures, 3 table

    A heuristic optimization method for mitigating the impact of a virus attack

    Get PDF
    Taking precautions before or during the start of a virus outbreak can heavily reduce the number of infected. The question which individuals should be immunized in order to mitigate the impact of the virus on the rest of population has received quite some attention in the literature. The dynamics of the of a virus spread through a population is often represented as information spread over a complex network. The strategies commonly proposed to determine which nodes are to be selected for immunization often involve only one centrality measure at a time, while often the topology of the network seems to suggest that a single metric is insufficient to capture the influence of a node entirely. In this work we present a generic method based on a genetic algorithm (GA) which does not rely explicitly on any centrality measures during its search but only exploits this type of information to narrow the search space. The fitness of an individual is defined as the estimated expected number of infections of a virus following SIR dynamics. The proposed method is evaluated on two contact networks: the Goodreau's Faux Mesa high school and the US air transportation network. The GA method manages to outperform the most common strategies based on a single metric for the air transportation network and its performance is comparable with the best performing strategy for the high school network.Comment: To appear in the proceedings of the International Conference on Computational Science (ICCS) in Barcelona. 11 pages, 5 figure

    Evolution engine technology in exhaust gas recirculation for heavy-duty diesel engine

    Get PDF
    In this present year, engineers have been researching and inventing to get the optimum of less emission in every vehicle for a better environmental friendly. Diesel engines are known reusing of the exhaust gas in order to reduce the exhaust emissions such as NOx that contribute high factors in the pollution. In this paper, we have conducted a study that EGR instalment in the vehicle can be good as it helps to prevent highly amount of toxic gas formation, which NOx level can be lowered. But applying the EGR it can lead to more cooling and more space which will affect in terms of the costing. Throughout the research, fuelling in the engine affects the EGR producing less emission. Other than that, it contributes to the less of performance efficiency when vehicle load is less

    A Neurogenetic Algorithm Based on Rational Agents

    Get PDF
    Lately, a lot of research has been conducted on the automatic design of artificial neural networks (ADANNs) using evolutionary algorithms, in the so-called neuro-evolutive algorithms (NEAs). Many of the presented proposals are not biologically inspired and are not able to generate modular, hierarchical and recurrent neural structures, such as those often found in living beings capable of solving intricate survival problems. Bearing in mind the idea that a nervous system's design and organization is a constructive process carried out by genetic information encoded in DNA, this paper proposes a biologically inspired NEA that evolves ANNs using these ideas as computational design techniques. In order to do this, we propose a Lindenmayer System with memory that implements the principles of organization, modularity, repetition (multiple use of the same sub-structure), hierarchy (recursive composition of sub-structures), minimizing the scalability problem of other methods. In our method, the basic neural codification is integrated to a genetic algorithm (GA) that implements the constructive approach found in the evolutionary process, making it closest to biological processes. Thus, the proposed method is a decision-making (DM) process, the fitness function of the NEA rewards economical artificial neural networks (ANNs) that are easily implemented. In other words, the penalty approach implemented through the fitness function automatically rewards the economical ANNs with stronger generalization and extrapolation capacities. Our method was initially tested on a simple, but non-trivial, XOR problem. We also submit our method to two other problems of increasing complexity: time series prediction that represents consumer price index and prediction of the effect of a new drug on breast cancer. In most cases, our NEA outperformed the other methods, delivering the most accurate classification. These superior results are attributed to the improved effectiveness and efficiency of NEA in the decision-making process. The result is an optimized neural network architecture for solving classification problems

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners

    Speciation, clustering and other genetic algorithm improvements for structural topology optimization

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1996.Includes bibliographical references (p. 103-106).by James Wallace Duda.M.S

    Effective ANN Topologies for Use as Genotypes for Evaluating Design and Fabrication

    Get PDF
    There is promise in the field of Evolutionary Design for systems that evolve not only what to manufacture but also how to manufacture it. EvoFab is a system that uses Genetic Algorithms to evolve Artificial Neural Networks (ANNs) which control a modified 3d-printer with the goal of automating some level of invention. ANNs are an obvious choice for use with a system like this as they are canonically evolvable encodings, and have been successfully used as evolved control systems in Evolutionary Robotics. However, there is little known about how the structural characteristics of an ANN affect the shapes that can be produced when that ANN controls a system like a 3d-printer. We consider the relationship between certain structural characteristics of an ANN and the ability of that ANN to produce complex geometric shapes by controlling a 3d-printer. We develop an understanding of shape complexity for 2d shapes in a simulated 3d-printer in order to use Genetic Algorithms to optimize ANNs with fixed structures to produce complex outputs and assess the relationship between topologies of ANNs and the systems success in producing complex outputs under evolutionary optimization

    ON AN EVOLUTIONARY DEVELOPMENTAL METHODOLOGY FOR PIN-JOINT FRAMEWORK OPTIMIZATION

    Get PDF
    M.S.M.S. Thesis. University of Hawaiʻi at Mānoa 201
    corecore