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ABSTRACT

The formal investigation into optimal structures, called topology optimization, commenced from

the 1904 paper of A.G.M. Michell. While impractical for real constructions, the criteria considered

therein allow for a determination of the limit of material economy attainable for truss structures,

called Michell structures. These analytical solutions are a useful tool for benchmarking, but have

been solved only for a small number of simple cases. The usual computational approaches for iden-

tifying these optima rely on a presupposed ground structure, which covers the design space with an

initial assemblage of members and joints. While denser ground-structures provide for more refined

optima, the stipulation of an initial structure (i.e., topology) artificially restricts the allowable op-

tima.

In the present work, we are concerned with the development and application of a biologically in-

spired methodology for the study of layout (size, shape, and topology) optimization in pin-jointed

frameworks. The methodology is based on the formalism of map L-systems, whose grammar gener-

ates purely topological information. This topology is encoded and optimized using an evolutionary

algorithm coupled to a non-linear programming method for sizing and shape optimization. Three

benchmark test cases are examined which show the gains attainable when a ground-structure is

not presupposed.
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CHAPTER 1
INTRODUCTION

Cast into an environment with scattered hazards and food sources, the slime-mold Physarum

polycephalum will spread from an an initial spore - branching, converging, and culling, as needed -

in a manner so as to construct an energy efficient, least path transport network. This property was

demonstrated by Tero et al.[1], who placed the mold in an environment modeling Tokyo, its nearby

cities, and the surrounding inexorable geographic features. They found the mold’s natural organi-

zation to rival that of the existing Japanese rail infrastructure in terms of transport efficiency, least

total distance covered, and fault tolerance. Particularly remarkable is that no presupposition was

made by the initial spore regarding its habitat - no map was given, or destination provided, aside

from a primordial knowledge of some ultimate end, for the organism to optimally ‘mold’ itself to

the environment. Such ramified optimization is typical in the development of biological structures,

an evolving advantage accompanying the harsh scrutiny of natural competition. Examples are the

venation in insect wings[2] and plant leaves[3], which develop through stages: at first in exploration,

then as refinement.

Illuminated by such biological processes, Kobayashi [4] pioneered an evolutionary developmental

methodology for the study of topology optimization in natural and engineering systems, using a

generative grammar system to develop an optimum material distribution for microchip heat cooling,

taking inspiration from structural homeostasis mechanisms in plants. This was formally demon-

strated in a paper with Pedro and Hude [5], who showed significant gains over existing designs for

payload adaptors. It was further developed by Pedro and Kobayashi [6] and applied to optimum

lifting surfaces in Kolonay and Kobayashi [7]. The following work is a successor to these endeavors,

applied particularly to the search for optimum truss layouts. It seems the first such effort is the

conference paper of Allison et al.[8], which provides a useful, independently developed approach for

use as a benchmark. In the succeeding, we elaborate on the basic nature of truss structures and

their optimum as considered by Michell. A review of the prerequisites occurs in the second chapter:

programming, an evolutionary algorithm, and a generative grammar. These are arranged in the

third chapter in accordance with the evolutionary programme of Kobayashi. In the final chapter

we examine the results of such an application to three benchmark test cases: two cantilevers, and

a multiply loaded span.

1.1 Truss Structures

A rod is a straight, prismatic, and linearly elastic mechanical element assigned a cross-sectional area

a ∈ R+, an elastic modulus E ∈ R+, and a length l ∈ R+ subject to the requirement l >>
√
a/π.
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Figure 1.1: Nodal displacement vectors ̂(source)and ̂(target) for member i in three spatial dimensions.

These elements sustain neither couple nor shear, and are static only for pairs of self-equilibrating

forces applied at either end of the rod and directed along its length. A truss, or pin-joint framework,

is an assemblage of such elements, termed members or connections, joined end-to-end by friction-

less pins called nodes, or joints. Each node corresponds to d possible degrees of freedom in the

structure, and are the application sites of external loads. Some of these nodes must be restrained

(that is, act as the possible load paths to the environment) to achieve equilibrium.

Consider a framework of spatial dimension d ∈ {2, 3} with j ∈ {1, ..., N} nodes and i ∈ {1, ...,m}
potential connections. Given r ≥ 3 many restraints (fixed degrees), there are Nd total global

degrees of freedom and n := Nd − r reduced global degrees of freedom (free degrees). The use of

either global or reduced coordinates is permissible for optimization. Choosing to work with degrees

of freedom p ∈ {1, .., n}, as in the sequel, allows us to disregard the support reaction forces in

member force calculations; geometric considerations generally require a full set p ∈ {1, .., Nd}. If

the structure is subject to an external loading, f ∈ Rn, acting on its free degrees, there happens

a mobilization of internal forces, t ∈ Rm, resulting from the elastic response of the m members to

internal strains (changes in length) corresponding to effects of the nodal displacements u ∈ Rn. The

applied deformation effort is related to the resulting external deformations through the structures

characteristic stiffness, K.
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To determine the system’s global reduced stiffness we define the nodal displacement directions

̂
(source)
i,k , ̂

(target)
i,k ∈ RNd with k ∈ {1, ..., d}, which are the mechanisms for generating strain in

member i. Additionally, let the angle between the ith member and kth displacement direction axis

be ϕi,k ∈ [0, 2π). The components of the direction cosine vector γi ∈ Rn for the ith potential

member are determined accordingly

γi := [γi]p =


cosϕi,k p = ̂

(source)
i,k

− cosϕi,k p = ̂
(target)
i,k

0 else

(1.1)

and so has, at most, 2d nonzero elements. Terms source and target are used arbitrarily to differ-

entiate between the two end nodes of a given member. The stiffness matrix follows in the typical

fashion, summing over individual member contributions like

K =
m∑
i=1

aiKi =
m∑
i=1

ai
Ei
li
γiγ

T
i (1.2)

where the base matrices γiγ
T
i correspond to the ith members global response matrix.

Michell Structures

In a celebrated 1904 paper on The Limits of Economy of Material in Frame-structures, A.G.M

Michell derived sufficient criteria for a structure of least weight, or volume; that is, an optimum

framework. In particular, he applied the principles of virtual work to a result of Maxwell [9] to

arrive at the following conditions: (1) Each member is subject to a tensile (+) or compressive(-)

stress equal in magnitude to an allowed stress ±σ, and (2) If a virtual deformation is provided

satisfying the kinematic constraints the resulting strain in each member is equal in magnitude to a

small strain ε whose sign agrees with the stress state of the member.

A framework satisfying these conditions is shown to be minimum in volume with respect to all

others given the same considerations. Michell further showed that a class of solutions satisfying

these criteria are those forming systems of orthogonal curves before and after deformation, and so

obeying the strain compatibility
∂2φ

∂α∂β
= 0 (1.3)

in two dimensions, where α is a curvilinear coordinate, φ is the angle between this this curve and

a given fixed direction, and β is a second curvilinear coordinate. Equation (1.3) stipulates that the
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minimum structure must lie along the lines of principle strain traced by both systems of curves. In

reality, such a structure is not a discrete framework, but a continuum with certain strain properties

comparable to an infinite assemblage of infinitesimal elements. Such restrictions (1.3) result in

continuous frameworks like that in Fig 1.2, which was found by Michell to have a minimum volume

Fa
π

2

(
1

P
+

1

Q

)
(1.4)

where F is the force applied at midspan, a distance a = AC = BC away from either support, and P

and Q are the allowed positive and negative stresses, respectively. These requirements are seen to

be the same as those in slip line plastic flow theory, generating Hencky-Prandtl nets. The interested

reader is directed to the original work[10] and the succinct report on the subject by A.S.L Chan

[11]. An extended treatment is given in the recent text by Lewiński, Sokól, and Graczykowski [12].

Figure 1.2: Optimum Michell framework for the one load span
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CHAPTER 2
FOUNDATIONAL METHODS

In the succeeding content we review, in a relatively brief manner, the ingredients for the sequel.

In the first, we investigate two applications of mathematical programming to structural topology

optimization, the field originating in the work of Michell. For general references see Hemp [13],

Christensen and Klarbring [14], or the monograph Bendsøe and Sigmund[15] (see chapters 1, 5

and 4, respectively, for trusses). An instructive set of lectures on the subject is collected by the

International Centre for Mechanical Sciences in [16]; of particular relevance are those by Rozvany

on exact analytic solutions and their use in numerical validation, and Lewinski and Sokol on the

properties of Michell structures. As for technical reviews, see Rozvany and Bendsøe [17] for an

extensive review of optimal layout theory of continuous and discrete structures; more recent re-

views are [18], highlighting four recent numerical approaches to topology optimization (including

Kobayashi’s work), [19] on the application of level set method to structural topology optimization,

and [20] on the optimization of trusses using discrete valued design variables, focusing extensively

on heuristic methods. For an introduction to basic concepts in programming consider the course

text developed by Robinson [21].

In the second, we examine the function and composition of a probabilistic optimization scheme

termed genetic algorithms. The text by Goldberg [22] provides a thorough introduction to these

methods; a more digestible overview is given in the ‘tutorial’ by Mitchell [23]. Applications of

genetic algorithms to truss optimization are remarked in [20]. Such a method is considered by

Rajan [24], where sizing is accomplished by a linear programming model and staggered shape and

topology optimization are achieved through a genetic algorithm using boolean values to indicate

connectivity and continuous variables for the permissible - but limited - nodal variations. It should

be noted that sizing is chosen from discrete areas values, and that topology is only loosely optimized.

In the third, we explicate the rules of formal grammar systems in general, and in particular the

so-called Lindemeyer grammar systems. The authoritative text is Prusinkiewicz and Lindenmayer

[25], specifically applied to the development of biological systems; a more developed mathemati-

cal treatment is presented in [26]. For a general reference on grammars and language see [27] or

the works of Chomsky [28] and Chomsky and Miller [29]. Besides the work of Kobayashi and his

collaborators [4][5][6][7], the works in engineering are Allison et al., on optimal truss structures [8]

and Hartl et al., producing optimal compliant actuating mechanisms for muscular-skeletal struc-

tures [30][31]. Other applications of the so-called mapL systems are relegated mostly to the growth

and visual modeling of biological structures: see [32] for an application to knot growth and grain
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variance in wood, and [33] for fruits and their internal structures. An exception to this is the

work of Alber and Rudolph [34] applied to the development and visualization (but not analysis)

of 3d frameworks using a graph implementation for the productions that operate on an alphabet

containing predefined structural polyhedra parameterized for geometric considerations.

2.1 Mathematical Programming

The term programming is meant in the sense of arranging a schedule, or plan, to accomplish some

task; mathematical programming, then, describes the use of specialized mathematical methods to

aid in rigorous optimal decision making. In theory, practitioners hope to obtain some consummate

position, the sublime; in practice, theoreticians are seldom able to illuminate that gilded path.

Instead, approximate procedures are developed, and the necessary and sufficient conditions (if they

exist) are identified, to exploit the mathematical structure of the problem being optimized. For

certain classes global, or absolute, optimum are assured. More generally, variational criteria provide

the necessary conditions for local optimality, with no guarantees towards sufficiency.

The general optimization programme is expressed as the following

min
x∈S

g(x) (2.1)

s.t. h(x) ≤ 0 (2.2)

where g : Rn → R is an objective function representing some input or output we would like to

minimize. We can also maximize this function by negation of the objective results (2.1). If one

considers multiple objectives this function becomes vector-valued, whence g : Rn → Rk. The mod-

ulating, or optimization, variable, x, is an element of a given set S, often taken (as herein) to

be a subset of Rn. Additional requirements, or constraints, are imposed on the set of admissible

solutions by choice of a constraint function h : Rn → Rm; that the image is in Rm means we can

consider one, none, or several constraints. These can be of mixed or strict equality/inequality, and

need not have the same dependance on the inputs as the objective.

As yet, we have made no more progress than to phrase our problem mathematically: minimize

an objective g with respect to the allowable inputs x while adhering to the requirements of h.

Depending on our motivation, the basic architecture of (2.1)-(2.2) finds applications in finance,

medicine, physics, chemistry and engineering, with the interpretation of x, g, and h corresponding

to the problem in question. At present, we are concerned with structural optimization: that subset

of mathematical programming concerned with distributing load-bearing material in a minimum

fashion so as to agree with stress, displacement, buckling, or some other structural criteria. In
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particular, we examine the optimal solutions to the usual minimum compliance problem derived

from the general equations of elasticity by virtual work

min
u∈U

a(v,u) (2.3)

s.t. a(v,u) = l(v) (2.4)

v ∈ U (2.5)

seen dual to the problem of minimizing weight in the subsequent. The real (u) and virtual (v)

displacements are taken from the set, U , satisfying kinematic requirements on the boundary. The

objective is to minimize the internal virtual strain energy of the deformed body, written here as

the typical bi-linear form

a(v,u) =

∫
Ω
∇vC∇udΩ

which is synonymous to maximizing the body’s stiffness, or minimizing external virtual work of the

body forces and surface tractions under a given variation

l(u) =

∫
Ω
fudΩ +

∫
Γ
tudΓ

Linear Programming in Structural Optimization

For linear problems, i.e., those in which the objective function and constraints satisfy additivity1

and homogeneity2 with respect to their input, the general formulation (2.1)-(2.2) is clarified as

min
x∈Rn

cTx (2.6)

s.t. Ax ≤ b (2.7)

x ≥ 0 (2.8)

such that cT is a covector of x, and A : Rn → Rm is a linear transformation on the admissible

set of modulating variables with (possibly nill) image b ∈ Rm. Unless m = n, which guarantees a

single solution for nonsingular A, we expect non-unique solutions to (2.6)-(2.8).

A ground structure is a presupposed framework specifying both geometry (the relative positions of

nodes) and topology (member-node connectivities), which naturally restricts the allowed topologies

1f(u) + f(x) = f(u+ x)∀u, x ∈ S
2αf(u) = f(αu)∀u ∈ S, α ∈ R
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Figure 2.1: Possible ground structure for the problem of a one load span.

of the optimized structure (see Fig. 2.1). Using a finite element discretization of (2.3)-(2.5) the

compliance optimization problem becomes a sizing problem as well, expressed in the classical form,

for fixed geometry

min
a∈Rm,u∈Rn

fTu (2.9)

s.t. K(a)u = f (2.10)
m∑
i=1

vi = V (2.11)

ai ≥ 0 (2.12)

where K(a) is the reduced global structural stiffness shown explicitly as a function of the member

areas. Objective (2.9) consists of minimizing the compliance in terms of the design variables u and

a. According to the area bounds (2.9) the truss’s topology is allowed to vary only in the sense

that a member’s area may go to zero. V is a supplied upper bound on the total volume of the

structure, and vi = aili is the ith member’s volume defined by the product of its area, ai, with its

length. If the global stiffness is written in terms of member volumes K(v), so Ki =
∑m

i=1
Ei
l2i
γiγ

T
i

the problem (2.9)-(2.12) is equivalent to a maximization in u subject to nonlinear constraints on

the individual member strain energies

max
u∈Rn

fTu (2.13)

s.t. uTKiu ≤ 1 (2.14)

where, for a positive semidefinite3, symmetric K(v), which is the case, we can use the decomposition

3A matrix, K, is positive definite if xTKx > 0 for all x 6= 0. A positive semidefinite matrix is one which loosens
the restriction on inequality to allow x = 0. This is reasonable, lest we expect our structure to decrease in internal
energy under deformations from an unstrained reference.

8



uKiu =

(√
Ei
li

γTi u

)2

to arrive at an LP formulation of the minimum compliance problems in terms

of u alone[15][35]

max
u∈Rn

fTu (2.15)

s.t. − 1 ≤
√
Ei
li

γTi u ≤ 1 (2.16)

This problem admits an equivalent LP formulation in terms of slack variables t
′

and t
′′

min
t′ ,t′′∈Rm

m∑
i=1

(t
′
i + t

′′
i )li (2.17)

s.t.

m∑
i=1

√
Ei(t

′′
i − t

′
i)γi + f = 0 (2.18)

t
′
i, t
′′
i ≥ 0 (2.19)

where, if we make the substitution ti =
√
Ei(t

′′
i − t

′
i) for the ith member force and ai = (t

′
i + t

′′
i )

for the corresponding member’s area, we find that (2.15)-(2.16) is equivalent to a minimization of

the volume, constrained by static requirements and stress conditions

min
a∈Rm

m∑
i=0

aili (2.20)

s.t.
m∑
i=0

tiγi + f = 0 (2.21)

−
√
Eiai ≤ ti ≤

√
Eiai (2.22)

which is Hemps linear programming formulation of Michell’s problem with the scaling σi =
√
Ei.

By duality in linear programming, a global optimum is guaranteed satisfying both (2.15)-(2.16)

Figure 2.2: LP solution to the one load span using the ground structure in Fig 2.1.
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and (2.20-2.22), though it need not be unique. This makes sense if we reflect that εi = l−1
i γTi u,

so both of Michell’s criteria are reflected in the dual formulations. Numerical solutions to (2.17)-

(2.19) are easily determined using Danzig’s simplex algorithm. For example, applying LP to the

ground structure in Fig 2.1 gives the optimum shown in Fig 2.2 with a volume VLP = 16.0. Using

F = Q = P = 1 and a = 3, (1.4) gives a volume Vmin = 3π ≈ 9.4248, which is significantly lower

than the LP value. In the subsequent we extend this to a framework in which an initial ground

topology is stipulated, but the spatial positions of the unrestrained nodes are allowed to vary.

Nonlinear Programming in Structural Optimization

To this end, we consider the complete set of nodal coordinates in the non-reduced system, which

are again N many. If p ∈ {1, ..., Nd}, corresponds to a possible degree of freedom the initial nodal

positions can be collected in y ∈ RNd. If k ∈ {1, ..., d} the component yp corresponds to the kth

component of node j’s position. Obtainable geometries are specified by a choice of a set Y ⊂ RNd,
such that y ∈ Y is a vector of allowed nodal positions. Problem (2.9)-(2.12) naturally generalizes

to include these changing geometries

min
a∈Rm,u∈Rn,y∈Y

fTu (2.23)

s.t. K(a,y)u = f (2.24)
m∑
i=1

aili(y) = V (2.25)

ai ≥ 0 (2.26)

The admission of this nodal design variable affects the problem data in several ways, and may

furnish added difficulty with regards to the phenomena of so-called ‘melting nodes’. As the end

nodes of a given member are modulated the angle ϕi,k(y), which member i makes with respect to

axis k, changes. By this consideration so too does the direction cosine vector, γi(y). The individual

member lengths are dependent on y in a more direct fashion, like

li(y) =

√√√√ d∑
k=1

(
y
̂
(target)
i,k

− y
̂
(source)
i,k

)2

where two nodes are considered melting if y
̂
(source)
i,k

= y
̂
(target)
i,k

∀k, or li(y) = 0.

While the presence of melting nodes is crucial to limiting the number of bars, they may also form

a singularity in the model, manifest in two ways: the function li(·) ceases to be differentiable for
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such geometries, and the global stiffness matrix becomes singular. To overcome these difficulties,

Achtziger[36] provides an alternate evaluation for the functions li(·) and K(·, ·) as follows:

For each spatial dimension k, define a vector

v
(k)
i := [v(k)

p ]i =


1 p = ̂

(source)
i,k

−1 p = ̂
(target)
i,k

0 else

associated with the ith member whose Nd elements beget the matrix

Ci :=

d∑
k=1

v
(k)
i

(
v

(k)
i

)T
(2.27)

where Ci ∈ RNd × RNd. The projection matrix, P ∈ Rn × RNd is defined

P =
(

1n×n 0n×s

)
(2.28)

so that when it left multiplies a vector with Nd elements the first p = 1, ..., n are retained, and

the remaining, restrained degrees p = n + 1, ...Nd are nullified. In particular, these allow for the

substitutions li(y) = yTCiy and γi = 1
li(y)PCiy. If a node melts we have yTCiy = 0, which

implies Ciy = 0. The denominator of γi is addressed by a suitable change of variables.

Using similar manipulations to those yielding the linear programming problem (2.17)-(2.19), we

Figure 2.3: NP solution to the one load span using the ground structure in Fig 2.1.
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arrive at a nonlinear programming (NP) form for simultaneous member size and truss shape

optimization

min
µ,λ∈Rm
y∈Y

m∑
i=1

(
t
′
i + t

′′
i

)
yTCiy (2.29)

s.t.
m∑
i=1

√
Ei
(
t
′′
i − t

′
i

)
PCiy + f = 0 (2.30)

t
′
i, t
′′
i ≥ 0 (2.31)

which is seen to be cubic in the objective function and quadratic in the dynamic constraints. If we

reassert the change of variables ai = (t
′
i + t

′′
i )li(y) and ti =

√
Ei(t

′′
i − t

′
i)li(y) we recover a similar

minimum volume expression to (2.20)-(2.22). Solutions (t
′
, t
′′
,y) to this problem are guaranteed

in a “local-global-global” sense as a global solution is guaranteed for the linear problem given a

fixed geometry. Approximate solutions satisfying the necessary first-order Karush-Kuhn-Tucker

(KKT) conditions are readily found using the method of sequential quadratic programing (SQP).

Applying NP to the ground structure of Fig 2.1 gives the framework in Fig 2.3, which has a volume

VNP = 9.6462 and whose height is the same as the length of the mid span length, a. This result is

much closer, both in volume and semi-circular/radial configuration, to the optimum predicted by

Michell in Fig 1.2.

2.2 Genetic Algorithms

The numerical optimization techniques for nonlinear problems based in calculus are generally of

two kinds: one can search for extremals of the objective function by setting its variation equal

to zero; otherwise, one travels the path of steepest decent/ascent from an initial point in steps

whose directions are determined by the gradient, hessian, or similar, calculated anew at each step.

Depending on the choice of initial input, the optima obtained by these methods are only guaran-

teed in a local sense. Genetic algorithms (GAs) are evolutionary inspired computational schemes

for nonlinear, and possibly constrained, optimization. They distinguish themselves from calculus

based methods in that they (1) employ stochastic transition rules, (2) consider entire collections, or

populations, of inputs in parallel, (3) work with genotypical representations (a set of parameters)

instead of directly with the phenotype (the parameterized modulation variables), and (4) use only

the objective information resulting from (2) to progress towards the global optimum.

From evolutionary and genetic terminology, a population is a collection of individuals, or chro-

mosomes, each encoded by an ordered set of genes. An individual represents a trial solution,
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which is assigned a fitness value corresponding to the assessment of some fitness function, i.e., the

objective function. The chromosome encoding is chosen such that the allowable values of x are

representable, say by a finite array of parameters, am. These parameters are typically converted

into a single binary string

ind = [a1, a2, ..., am] = b1b2b3...bn−2bn−1bn

For example, if we seek to minimize the function f : B → R whose integer valued range is given

by f(x) = {(x − 3)2|x ∈ B}, where B = {−15,−14, ...0, ..., 14, 15}, we might consider an initial

population of individuals with two genes encoded in a 5-bit string, the first serving to indicate the

sign, and the second demonstrating the decimal magnitude of the number

pop = [[+, 12], [−, 9], [+, 3], [+, 0], [+, 5], [−, 7]]

= [01100, 11001, 00011, 00000, 00101, 10111]

Operators

Successive generations from the initial population are generated by applying three specialized evo-

lutionary operators (selection, crossover, and mutation), and then applying them again for all

subsequent generations, save for the last. While their specific implementation may vary, the thrust

of these methods is to manipulate the chromosomal information of an initial population over gen-

erations towards a more desirable/advantageous gene pool.

Selection describes the process of choosing genetic, or chromosomal, information to pass on to suc-

ceeding generations, say by specifying a probability distribution correlating an individuals fitness

to its reproductive attractiveness, or by some other means of discriminating the less fit individuals

from the more competitive ones. This is applied in such a way as to preserve the current genera-

tion, meaning an individual, or individuals, can be selected to reproduce multiple times in a given

generation. The resulting offspring from such pairings are determined by the next operator.

The crossover operation is analogous to genetic recombination, using two of the selected chromo-

somes (parents) to produce two novel chromosomes with traits from both of the originals. For

example, using the first two individuals of the previously enumerated population, a single point

crossover might yield

(011|00, 110|01)→ (110|00, 011|01)

and a two point crossover

(01|10|0, 11|00|1)→ (11|10|1, 01|00|0)

A mutation operator can be applied before or after the crossover operation, and usually amounts to

13



flipping one or more of the bits in the concerned individual. The purpose of this operator is preserve

a certain genetic diversity within the system, which is needed to avoid premature convergence and

allows for a broader exploration of the design space. We note that a specific generation can only

be said to be more ’fit’ than the ones considered prior. If the initial population lacks a variance

in genetic information, the reproductive ingenuity of succeeding generations is limited, or biased

towards certain results. By introducing random mutations to the chromosomal information of a

population one hopes to limit the effects of inbreeding, which in a GA results from considering the

offspring of a prior generation as the reproductive group generating future offspring. This can also

be helped by providing a large initial population.

2.3 L-system Grammars

In the late 1960’s the theoretical biologist, Aristid Lindemeyer, demonstrated the efficacy of a

novel string rewriting formalism to consider branching and dividing topologies in natural struc-

tures, namely those in plants and simple multi-cellular organisms. These grammar systems, termed

Lindemeyer systems, or L-systems, are distinct from those described by Chomsky in that their pro-

duction rules are applied in parallel, as opposed to in sequence, reflecting their original biological

intent. This formalism was initially described in terms of sequential machines, which consider in-

puts to states generated by prior inputs to states whose origin are an initial input to an initial

state[37]. Modern descriptions of L-systems borrow from the terminology made standard in the

study of formal grammars.

We begin with an alphabet, Σ, which is a finite nonempty set whose elements are referred to as

letters, or symbols. Any two of these elements, say x, y ∈ Σ, can be joined like so

x ∧ y = xy (2.32)

with the non-commutative concatenation operator, ∧. The empty element, λ, is such that λx =

xλ = x ∀x ∈ Σ. Catenation of any two elements in Σ generates an element of the set Σ2. Elements

of this new set can be catenated with elements of Σ to generate Σ3, and so on. For example, if we

take Σ = {λ, 0, 1} then Σ2 = {λ, 0, 1, 00, 01, 10, 11} and Σ3 = {λ, 0, 1, 00, 01, 10, 11, 000, 100, 010, 011

110, 101, 111}. In general

Σk := {w1...wm|w1 ∈ Σn1 , ..., wm ∈ Σnm , n1 + ...+ nm = k} (2.33)

from which we determine ∧ : Σn1 × ...×Σnm → Σn1+...+nm . A word then, or string, is any w ∈ Σk

for k ≥ 0, but is typically reserved ∀k ≥ 2. A letter is the special case of k = 1 - i.e., an element
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of the root alphabet. The reapellated empty-word, λ, is the sole element for k = 0. While Σ is

finite, catenations in the limit k →∞ produce a countably infinite monoid - the set of all words, or

strings, over Σ - designated Σ∗. The associated semi-group is Σ+, which is the set of all nonempty4

words over Σ. Note the order k may be arbitrarily extended by the insertion of the empty word.

A string 0L-system then, is a triple, G = (Σ, ω, P ), where Σ is as above, ω ∈ Σ+ is an initial

generator called the axiom, or seed, and P ⊂ Σ× Σ∗ is a collection of productions. A production,

written x→ χ, is a couple, (x, χ) ∈ P , where x ∈ Σ and χ ∈ Σ∗. Each x ∈ Σ is assumed to have a

production associating it to a particular χ - identity, x→ x, if a unique production is not specified.

For words α, β ∈ Σ∗, parallel rewriting is realized by α =⇒G β iff α = x1...xk , β = χ1...χk, and

(xi, χi) ∈ P for each i ∈ {1, ..., k}. Given the transitive, reflexive closure of =⇒G, the language

(or set of all words) generated by G is L(G) := {ν ∈ Σ∗|ω =⇒∗G ν}. We denote the succession of

topologies generated by acting the set productions P on the axiom ω, and its successors, with ωn;

by definition, ωo = ω.

To elucidate this formalism consider the L-system composed of Σ = {0, 1}, P = {0→ 000, 1→ 101},
and ω = 1. According to the axiom, application of the productions to ωn begets the sequence

1

101

101000101

101000101000000000101000101

1010001010000000001010001010000000000000000...

and so on, generating the Cantor set if we identify 1 with a line segment, and 0 and all successors

(000) with a deletion of the middle third of said line segment. Alternatively, using the same alphabet

4Σ+ := Σ∗ − {λ}
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but taking P = {0→ 01, 1→ 0} and ω = 0, application of the productions to ωn yields

0

01

010

01001

01001010

0100101001001

and so on, and is referred to as the Fibonacci series L-system due to the occurrence count of the

axiom at each step: 1, 1, 2, 3, 5, 8,... etc.

map L-systems

As per their original motivation, a map is synonymous with a cellular layer. The individual cells

are regions enclosed by a finite set of walls, or edges, meeting at vertices. Regions are connected in

the sense that there are no cellular voids; all regions within the map correspond to cells. Edges are

connected to each other at vertices, and are labeled and assigned a directionality. Division of a re-

gion, understood similarly to cellular replication, is binary, either producing two ’daughter’ regions

or returning the same ’parent’ region. This process is assumed to propagate, meaning regions can

neither fuse nor disappear - once a region, always a region.

A Binary Propagating Map 0L system with markers, shortened mBPM0L system, is a collection

G = (Σ,Γ, ω, P ) where Σ is an alphabet consisting of edge labels, Γ = {λ,−→,←−,+,−, [, ]} is the set

of allowable markers, ω is an initial map with edge labels and markers from Σ and Γ, respectively,

and P is a set of edge productions, which are applied in parallel to all labels of an axiom. An edge

assigned a label, say A ∈ Σ ,can either be left
←−
A or right

−→
A directed, or can remain neutral A,

though these will not be considered in the sequel. Map division is accomplished by applying, in

parallel, the production rules, which behave like A→ α, mapping a neutral or directed predecessor

A ∈ Σm to a successor edge α ∈ Σ∗Γ comprised of a string of concatenated, marked, edge labels,

Σm = Σ× {λ,−→,←−} and ΣΓ = Σ× Γ.

The inclusion of marked labels, delimited by [ and ], in a successor indicates the potential of an

edge to branch and develop a novel edge (so two novel regions), and is realized from branch to edge

only if an edge on the boundary of an adjacent region provides a compatible connection site. The

labels in the successor outside these delimiters stipulate the relabeling of the predecessor. Enclosed
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Figure 2.4: A simple map L-system and the first two topologies resulting from applying the pro-
ductions to the axiom ω.

within each delimiting pair are two symbols. The first is a +, or −, which indicates whether the

branch is added to the left or right of the predecessor, depending on its directionality. The second

is a directed edge label, marked either by −→, showing the branch points away from the successor,

or ←−, showing the opposite. Branches are considered compatible if they are in the same region,

share the same edge label, and are directed in such a way that joining them produces an edge with

a single, coherent direction.

For example, consider the development of the axiom
−→
Ax
−→
B in Figure 2.2, which defines the initial

map of an L-system constructed from the alphabet Σ = {A,B, x}. Applying the listed production,

the edge marked
−→
A is relabeled

−→
B [+
−→
A ]x, where the prospective branch [+

−→
A ] is positioned on the

left side of (+), and directed away from (−→), the predecessor. The production for
−→
B is similar,

only with its branch directed towards the predecessor, allowing for the creation of a novel edge
−→
A .

Applying these again yield (2), and so on.
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CHAPTER 3
EVOLUTIONARY DEVELOPMENTAL METHODOLOGY

As suggested in the prequel, the LPand NP problems are efficient local optimizers. Given an initial

ground structure, and the desired material limitations, the LP form guarantees a solution for both

statically determinate and statically indeterminate truss structures. The existence of such solutions

are, in part, due to a duality criterion in linear programming which stipulates that a solution to

minimization problem is an optimum only if it is also the solution to a corresponding maximization

problem, but more specifically through their satisfaction of Michell’s criteria. If the problem is

convex the global optimum is easily obtainable. Otherwise, one expects either non-unique solu-

tions, say a minimum volume that is attainable by several layouts, or a multitude of local optima,

or volumes, such that a global optimum is not readily discernible. The NP form provides a more

robust search as concerns minimum volume trusses, allowing for the structure’s geometry to be

considered in concert with individual member sizing. As with the linear problem, various optima

are attainable, each of which will typically satisfy the first order KKT conditions.

A restriction to either approach is that they can only loosely be interpreted as optimizing the topol-

ogy - that is, by allowing members to vanish from the framework. Those members whose areas

shrink to zero are neglected from dynamic considerations, but are such that they may reappear, as

required, to bear load. This is to say that an initial topology is defined for the structure such that

the subsequent obtainable, or allowable, topologies are understood to be subsets of the original. For

the nonlinear case, melting nodes provide another avenue for topology optimization, in particular

individual members may vanish (li = 0) or reemerge (li = 0→ li 6= 0). This annihilation, or gener-

ation, is restricted, however, because only those predefined members are allowed to participate in

the design-space search.

Either means of topology optimization (vanishing areas and melting nodes) suffer from the same

limitation: they rely on a predefined topology, and therefore are limited in which optimum can

ultimately be expressed. As per Michell’s observation, an optimum framework is optimum only

with respect to the set of possible frameworks considered. To determine the ideal structure we

must consider all those structures satisfying the required dynamic and stress constraints. In the

continuum limit, the entire design space can be actualized. Such a structure would require members

on the order of infintesimal lengths, which is impractical for actual truss constructions. Instead,

one generally considers a finite, discretized search space: a ground structure. An increasingly dense

and connected ground structure can approximate a continuous design space, yet the computational

resources required to do so are correlated with the level of refinement. For example, analyzing a

problem with twice the aspect ratio of a similar, original problem, would require at least twice as
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many design variables to maintain the same ground structure density. Generally speaking, a more

refined ground structure will also produce an overabundance of redundant design variables, which

can add undesired, unwarranted, complexity.

The proposed methodology seeks to avoid these shortcomings, providing a novel program for identi-

fying optimal truss layouts - that is, simultaneous size, shape, and topology optimization, without

the precondition of a ground structure. This approach works in tandem: a GA is encoded to

explore pure topological information using the formalism of map L-systems and a subordinate

program exploits this information and configures the trusses’ geometry and material allocation ac-

cording to NP. To start, we require a simply connected geometry of three or more line segments,

termed the initial map in the sense of an L-system. This topological construct is discretized to be

compatible with later geometric considerations and assumes that possible connections are realized

by (straight) lines. Assigning to each edge a marked label from an alphabet, Σ, begets an axiom,

ω. By specifying a set of productions and applying them in parallel a given number of times we

generate a novel topology from the initial map. In a post processing step the developed topology

is provided a more specific geometry: map vertices become nodes and are given a location, and

connections become members with determined length. This information is provided to the NP

form and the optimum volume, if it exists, is approximated.

For the remainder, the initial map is chosen such that predetermined vertices correspond to restraint

and load sites in the problem. This need not be the case - various approaches can be employed

to mobilize vertices in the bulk as support or load sites, either though direct implementation, or

by exploiting the geometrical symmetries of a problem. Note that by specifying an initial we have

not pre-determined those obtainable topologies; instead, this consideration influences the dynamics

of cellular and evolutionary development1. Consequently, this map exists in a gradation between

Michell’s upper bound (a finite design space with finite boundary) and lower bound (an unbounded,

continuous design space), as we can stretch and refine the topology as desired. It remains to deter-

mine, provided some map, which axiom and productions (which grammar) should be supplied to

develop the topology of an optimum structure. In the sequel we will refer to this methodology as

Evolutionary Programming EP, for brevity.

3.1 Genetic Implementation

We would like to optimize a truss problem (TP) with s supports and p applied loads. First, connect

these by a convex polygon of degree at least n ≥ s+ p ≥ 3 to construct a map $. Set an alphabet

1That is, how the topology grows over successive application of productions, and the paths investigated by the
the coupled GA.
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Σ := {λ, 0, ..., ηnt − 1}, where ηnt is a set number of non-terminal tokens. A trial candidate for

TP$ is constructed like

a$candidate = [ηdc, ω, P ] (3.1)

where ηdc is the number of developmental cycles, which are applications of the production rules.

The axiom, ω ∈ Σ∗, is generated by assigning a marked label to each of the maps edges taken

from {0, ..., ηnt}. Production rules P = [P0, ..., Pηnt−1] are like those described for map L-systems,

and are applied to the axiom ηdc many times. Passing the resulting topology to NP yields an

optimum volume V $
candidate which is, for all intents, determined, up to the attainable minima of

TP$, according to a$candidate. These genetic attributes are readily encoded in a binary string such

as

a$candidate = b
(ηdc)
1 ...b(ηdc)η1 b

(ω)
1 ...b(ω)

η2 b
(P )
1 ...b(P )

η3 (3.2)

where ηdc is relegated to a η1 = 4 bit representation, providing for (at most) seventeen develop-

mental cycles. In other words, we consider ηdc = (2 + (b1...b4)2mod m1) possible divisions, with

bi ∈ {0, 1} and 1 ≤ m1 ≤ (10000)2 = 16. A minimum ηdc ≥ 2 is required so that progress is made

away from the axiom; the maximum number is set by choosing a value m1 ∈ N at most one greater

than the maximum value expressed by η1 bits. For example, if m1 = 3 there are six ways to obtain

ηdc = 2 and five to obtain ηdc = 3 or ηdc = 4. Depending on the level of refinement we might insist

on a larger m1, expanding the bit count as needed; that is, choosing m1 ≥ 17 has no effect for

η1 = 4. The axiom is stored in η2 = 17n bits, seventeen for each element, or label. Directionality

(−→,←−) is assigned to each label using the first entry, b1, of the seventeen; the remaining bits set

the edge label (b2...b17)2mod ηnt ∈ Σ. To each nonterminal we assign a production of the form

Y → Z1...Zm2

where Y ∈ Σm is mapped to a sequence of Zi, each denoted by a bit string b1...bm3 representing

either: a directed non-terminal Xi ∈ Σm, a terminal x ∈ Σ, the empty token λ, or a possible divi-

sion site [Xi]. Observe the homology between biological optimization through cellular division and

this parametrization for a truss layout. Organisms begin their development as single cells which

develop to some characteristic topology according to biological processes that compile and execute

the objectives encoded in DNA. In analogy to this encoding of developmental source over helical

structures, the axiom wraps the initial map with directed labels from Σ (acting as the nucleotides)

and is matured according to the productions, which are representative of those biological processes

actualizing the primordial instructions in DNA; the resulting topology, as opposed to the driving

biochemical mechanisms, being of import.

Such are the Npop individuals considered by the GA, which are assigned a fitness value according to
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the volume determined from NP. In the processing of each fitness evaluation, the axiom is developed

to its final state and the initial geometry is supplied. To avoid potential geometric instabilities a

constrained Delaunay triangulation is employed to “ shore up” the geometry. This operation

takes an initial set of points with predefined edges, or regions, and triangulates (produces a grid of

triangles) in such a way to maximize the minimal angle of the resulting regions[38]. From an initial,

randomly generated, pool of genetic information, the population is subjected to Ngen generations

of competition according to the selection, crossover, and mutation. Selection is accomplished by

the tournament method, which pits m4 randomly determined individuals against each other until

a set percentage of the future generations genetic inheritance is selected; the remaining individuals

are chosen from the fittest (elite) of the current generation. A single point crossover, as described

in the prequel, is used for mutation. After each crossover step a bit flip operator is applied to each

daughter individual. As the name suggests, this operator produces a mutant by assigning to each

bit in its binary representation a chance µ that it flips - that is, 0 → 1 or 1 → 0, and are applied

to non-elite individuals.
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CHAPTER 4
TEST CASES

In this section we examine three structural benchmark problems and provide the optimum frame-

work according to LP, NP, and EP. Aside from Allison’s results, we compare EP against the

benchmark values generated by Achtziger [30] with the Sparse Nonlinear OPTimizer (SNOPT),

an implementation of the SQP method developed by Gill et al.[39] that approximates the QP

subproblem with a reduced-Hessian algorithm. The eigenresults were determined using the SciPy

incarnation of Kraft’s [40] Sequential Least SQuares Programming (SLSQP) method, an SQP solver

that replaces the quadratic subproblem with a linear least squares subproblem. The results from

Wendorff et al., [41] who compared the efficacy of several “off the shelf” nonlinear optimizers for

aircraft design, suggest that SNOPT is, in general, a more robust solver than SLSQP, having out-

performed all solvers tested and converged in all cases. As such, one expects variance from the

benchmark values aside what might be expected from different solvers.

(a) (b)

(c) (d)

Figure 4.1: Michell optimum cantilevers: (a) the initial case presented by Michell with a single
fixed support, (b) the variant solved by Chan with two fixed supports, and Prager cantilevers: (c)
N = 6 (left) and N = 11 (right) node optima for a symmetric cantilever with two pinned supports
and a single applied load, (d) optimum non-symmetric cantilever.
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The first is a two load cantilever solved by Allison[8] using a method differing from our own in several

ways. Because minimum bounds are set on the attainable member areas the basic formulation

requires a Sequential Linear Programming (SLP) solution and no global optimum is secured. It

ignores direct geometry optimization, or variations of nodal positions, by choosing a parameter

Ci,j ∈ {0, 1} (i and j are two connected vertices) which removes bar li,j from the system if Ci,j = 0,

completely disregarding a vertex (node) if all members connected to it vanish. This should really

be understood in the sense of mobilizing sub-topologies of the initial topology determined from

ωηdc - solutions otherwise attained directly by application of LP, and thus not necessarily solutions

which are optimum with respect to the geometry. To enforce geometric stability the initial map is

chosen as a region connecting restrained and loaded joints, as ours, but is pre-divided into triangles.

To maintain these triangular regions the allowed production divisions are restricted to compatible

sites occurring adjacent to different vertices. A peculiarity in their formulation

min
A,C

∑
ρCi,jAi,jli,j

s.t. σmin ≤ σi,j ≤ σmax

where ρ, Ai,j , and li,j are the density, area and length of a member connecting nodes i to j, is the

seeming lack of consideration for Newtons equilibrium criteria. It is indicated however, that (al-

lowable) stresses are determined from member areas using the force method solved by SLP iteration.

The second is a finite variant of the optimum cantilever investigated by Michell in which a vertical

load applied at a point A is ultimately supported by a force and couple acting on point B a hori-

zontal distance AB from A. The resulting analytical, or Michell optimum, solution is given in Fig

4.1a. Chan[11] concentrated this problem to truss like boundary conditions, considering a similar

scenario: two pinned support aligned vertically to accommodate the lack of a flexural capacity in

rods (Fig 4.1b), albeit for limited aspect ratios. Observe that no moment is required, and that equi-

librium is satisfied by a pair of equivalent forces, either acting on one or the other support. Lewinski

et al. extended these solutions to provide optima for all aspect ratios and load directions[42][43].

Pager explored the finite limits of such frameworks using a circle of relative displacement , first

for symmetric cantilevers [44], and later extending to the general finite cantilever with a single

load and two vertically aligned supports[45][46]. Of particular note is his recognition that Michell

optima are arrived at by the limiting case of ideal (weightless) nodes, and that practical optima

are determined respective to the node count of the finite structure.

The third is a five load bridge whose exact solution was provided only recently by Lewinski[12] in

chapter 7. This result extends Michell’s solution for a single load situated between two supports to
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Figure 4.2: Optimum Michell framework for a span of five symmetric loads between two supports.

an arbitrary number of evenly spaced loads. In total, these developments provide minimum bounds

for the volumes of the examined frameworks, and suggest the topologies solutions might hope to

attain.

Henceforth, all values are normalized and, as such, given without units to simplify the numerical

treatment. Each force (member or applied) is taken proportional to a typical applied force F . The

member stresses are taken against the stress bound σ, which is equivalent to setting σ = 1; their

areas are non-dimensionalized by the ratio F
σ ; their lengths are scaled by a typical length, l, and is

enforced through the ground structure or initial map. and V by the quantity Fl
σ . A scaled Young’s

modulus, E = 1 is used, and d = 2 (as is the case for planar problems) for each.

4.1 The two load cantilever

We consider the scenario described in Fig 4.3a of two vertically applied unit loads, one at coor-

dinate (1,0) and the other at (2,0), and two pinned supports aligned vertically at (0,1) and (0,2).

The ground structure consists of a 2× 1 grid of N = 6 nodes (see Fig 4.3b), each connected to its

nearest neighbors for a total m = 10 potential members. The initial geometry is collected in the

vector ȳ ∈ RNd, where Nd = 12. With two pinned supports there are n = 2(6 − 2) = 8 reduced

global degrees of freedom, so f ∈ R8.

The optimum structure obtained by Allison using the initial map Fig 4.3c is the framework shown

in Fig 4.3d, which obtains an actual volume of VSLP = 15880 cu-in. Using the stress bound

σ = 25 cu-in, the typical load P = 100 kip, and the typical length L = 360 in the volume normalized
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.3: Two load non-symmetric cantilever: (a) the general structural scenario, (b) the ground
structure used for the LP and NP solutions to the scenario, (c) the axiom used by Allison, (d) the
optimum structure generated by Allison, (e) LP solution, (f) the NP solution, (g) the the initial
map applied to conform with the load and restrain sites, (h) the EP solution.

25



to VSLP = 11.03. By (2.10)-(2.12) the LP solution (t̄
′
, t̄

′′
) ∈ R10

+ ×R10
+ gives the framework in Fig

4.3e with an optimal, or minimal volume V = 11.00. To determine an NP solution according (2.22)-

(2.25) we stipulate the set of admissible geometries, Y = {y ∈ R8 | yp = ȳp for p = n+ 1, ..., Nd},
and commence from the feasible point (t̄

′
, t̄

′′
, ȳ) towards a KKT point, (t

′
, t
′′
,y) ∈ R10

+ ×R10
+ × Y .

According to SLSQP the optimum volume in the nonlinear program is VSLSQP = 10.7952. Starting

from the initial map Fig 4.3g EP determines the minimum structure Fig 4.3h with a a volume

VEP = 10.3741. This simple solution is 5.95% less than the Allison and LP minimums, and 3.90%

less than the NP solution, which illustrates (in a small way) the gains attainable by EP.

4.2 The single load cantilever

We turn to the scenario described in Fig 4.4a of a vertically applied unit load load at coordinate

(3,1), and three pinned supports aligned vertically at (0,1), (0,2), and (0,3). The topological do-

main consists of a 3×2 grid of N = 12 nodes (see Fig 4.4b), each connected to its nearest neighbors

for a total m = 27 potential members. The initial geometry is collected in the vector ȳ ∈ RNd,
where Nd = 24. Given three pinned supports there are n = 2(12− 3) = 18 reduced global degrees

of freedom, so f ∈ R18.

The LP solution (t̄
′
, t̄

′′
) ∈ R27

+ × R27
+ to this ground structure evidently yields a single framework

(reflected in Fig 4.4c&e) with an optimal, or minimal volume V = 10. We stipulate the set of

admissible geometries, Y = {y ∈ R24 | yp = ȳp for p = n + 1, ..., Nd}, and start from the linear

solution (t̄
′
, t̄

′′
, ȳ) towards the nonlinear solution (t

′
, t
′′
,y) ∈ R27

+ ×R27
+ ×Y . The resulting solutions

differ, with that from SNOPT (Fig 4.4d) yielding a smaller optimal volume, VSNOPT = 9.114, than

that from SLSQP, VSLSQP = 9.133, by approximately 0.2%. It is interesting that, where SLSQP

converges to and terminates at Prager’s symmetric N = 6 layout, SNOPT finds the same N = 6

solution in one iteration, yet continues to an optimum approaching, but not quite converging to, the

symmetric N = 11 optimum. Inspecting the whole geometry, so both stressed and zero potential

connections, it seems SLSQP only mobilizes nodes 2, 5, and 10; conversely, the sparse method fixes

node 8 and varies the remaining free variables. Further numerical investigations reveal this topol-

ogy is attained by SLSQP only for initial (feasible) geometries in a neighborhood of that optimum.

Notice that the SNOPT result is not simple, yet produces a framework of orthogonally intersecting

members. It would be interesting to compare those results to SNOPT solution allowing joints at

those intersections. The EP solution, initial map and structure in Figs 4.4g&h, yields a volume

VEP = 9.120 - less than SLSQP alone, but not as much as SNOPT.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.4: Single load symmetric cantilever: (a) the general structural scenario, aspect ratio 1.5,
(b) the ground structure used for the LP and NP solutions to the scenario, (c) LP solution using
SNOPT, (d) the NP solution using SNOPT, (e) the LP solution using SLSQP, (f) the NP solution
using SLSQP, (g) the the initial map applied to conform with the load and restraint sites, (h) the
EP solution. 27



The volumes obtained by all three methods agree1 with the lower limit for a symmetric cantilever

with 1.5 aspect ratio, Vcant,1.5 ≈ 9.

4.3 The five load span

The next scenario (see Fig 4.5a) entails a span of five unit loads evenly spaced on a unit interval

between a pinned support (0,0), and a roller (6,0). The domain is set by N = 12 nodes arranged

in a 6× 1 grid (see Fig 4.5b), each connected to its nearest neighbors for a total m = 33 potential

members. The initial geometry is again collected in a vector ȳ ∈ R24. For a single pinned support

and roller there are n = 2(12− 1)− 1 = 21 reduced global degrees of freedom.

LP sizing provides a multitude of solutions (t̄
′
, t̄

′′
) ∈ R33×R33 (two cases are shown in Fig 4.5c&e),

each with the same minimal volume, V = 56. For simultaneous sizing and geometry optimization

we again stipulate the set of admissible geometries, Y = {y ∈ R24 | yp = ȳp for p = 22, ..., 24},
and embark from the linear solution. In contrast to the prior scenario, SLSQP yields a solution,

VSLSQP = 34.9881, which is marginally smaller than the SNOPT value, VSNOPT = 34.9924. SLSQP

generates a symmetric structure that seems a reasonable extension of the SNOPT estimate. The

base geometry suggests this layout is arrived at by sliding node 9 away from 10, towards 8, which

disengages member l39 and and activates l29, forming the second triangle. Observe that the ground

structure disallows topologies with five support triangles, and that both reproduce the vanishing

bars l01 and l56. The optimum solution generated by EP, the initial map and structure given

in Figs 4.5g&h, avoids these topological shortcomings, generating a symmetric framework in ac-

cords with Fig 4.2 and a superior volume VEP = 34.6056, about 1% lighter than either NP solution.

The volumes obtained by all three methods agree with the lower limit for a five load span with

total length Lspan = 6, that is Vspan,5 = 34.2284. So much for spans.

1For a given aspect ratio the optimum, non-dimensionalized volume is developed by an iterative scheme and
plotted in [34]. Due to the quality of our copy, reading for 1.5 gives a volume between 8.8 and 9.0.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.5: The five load span: (a) the general structural scenario, aspect ratio, (b) the ground
structure used for the LP and NP solutions, (c) LP solution using SNOPT, (d) NP solution using
SNOPT, (e) the LP solution using SLSQP, (f) the NP solution using SLSQP, (g) the the initial
map applied to conform with the load and restrain sites, (h) the EP solution.
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CHAPTER 5
CONCLUSIONS

In the preceding material we have successfully applied Kobayashi’s evolutionary programme using

map L-systems to optimum truss layouts - that is, sizing, geometry and topology optimization.

This method was shown to perform similar or better to the methods employing sparse ground

structures, and significantly better than those of Allison, which does not accomplish shape opti-

mization. In addition to this, there are no stipulations on the form of the initial map or the allowed

edge connections. In particular, it was seen that certain initial topologies can resist the appearance

of optimum structure, and that one should instead search from a less limited pool. We note that

a proper testing of this method requires a more complex application than any demonstrated here.

Further work should consider the dynamics of map divisions and the benefits from exploiting

symmetries to reduce the required topological search, as well as the inclusion of more realistic

constraints for seismic loadings, buckling, and fault tolerance.
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