453 research outputs found

    Wavelet-Based Audio Embedding & Audio/Video Compression

    Get PDF
    With the decline in military spending, the United States relies heavily on state side support. Communications has never been more important. High-quality audio and video capabilities are a must. Watermarking, traditionally used for copyright protection, is used in a new and exciting way. An efficient wavelet-based watermarking technique embeds audio information into a video signal. Several highly effective compression techniques are applied to compress the resulting audio/video signal in an embedded fashion. This wavelet-based compression algorithm incorporates bit plane coding, first difference coding, and Huffman coding. To demonstrate the potential of this audio embedding audio/video compression system, an audio signal is embedded into a video signal and the combined signal is compressed. Results show that overall compression rates of 15:1 can be achieved. The video signal is reconstructed with a median PSNR of nearly 33dB. Finally, the audio signal is extracted with out error

    Image Compression using Discrete Cosine Transform & Discrete Wavelet Transform

    Get PDF
    Image Compression addresses the problem of reducing the amount of data required to represent the digital image. Compression is achieved by the removal of one or more of three basic data redundancies: (1) Coding redundancy, which is present when less than optimal (i.e. the smallest length) code words are used; (2) Interpixel redundancy, which results from correlations between the pixels of an image & (3) psycho visual redundancy which is due to data that is ignored by the human visual system (i.e. visually nonessential information). Huffman codes contain the smallest possible number of code symbols (e.g., bits) per source symbol (e.g., grey level value) subject to the constraint that the source symbols are coded one at a time. So, Huffman coding when combined with technique of reducing the image redundancies using Discrete Cosine Transform (DCT) helps in compressing the image data to a very good extent. The Discrete Cosine Transform (DCT) is an example of transform coding. The current JPEG standard uses the DCT as its basis. The DC relocates the highest energies to the upper left corner of the image. The lesser energy or information is relocated into other areas. The DCT is fast. It can be quickly calculated and is best for images with smooth edges like photos with human subjects. The DCT coefficients are all real numbers unlike the Fourier Transform. The Inverse Discrete Cosine Transform (IDCT) can be used to retrieve the image from its transform representation. The Discrete wavelet transform (DWT) has gained widespread acceptance in signal processing and image compression. Because of their inherent multi-resolution nature, wavelet-coding schemes are especially suitable for applications where scalability and tolerable degradation are important. Recently the JPEG committee has released its new image coding standard, JPEG-2000, which has been based upon DWT

    Solutions to non-stationary problems in wavelet space.

    Get PDF

    Wavelet Transform-Based UV Spectroscopy for Pharmaceutical Analysis

    Get PDF
    In research and development laboratories, chemical or pharmaceutical analysis has been carried out by evaluating sample signals obtained from instruments. However, the qualitative and quantitative determination based on raw signals may not be always possible due to sample complexity. In such cases, there is a need for powerful signal processing methodologies that can effectively process raw signals to get correct results. Wavelet transform is one of the most indispensable and popular signal processing methods currently used for noise removal, background correction, differentiation, data smoothing and filtering, data compression and separation of overlapping signals etc. This review article describes the theoretical aspects of wavelet transform (i.e., discrete, continuous and fractional) and its characteristic applications in UV spectroscopic analysis of pharmaceuticals

    NOVEL OFDM SYSTEM BASED ON DUAL-TREE COMPLEX WAVELET TRANSFORM

    Get PDF
    The demand for higher and higher capacity in wireless networks, such as cellular, mobile and local area network etc, is driving the development of new signaling techniques with improved spectral and power efficiencies. At all stages of a transceiver, from the bandwidth efficiency of the modulation schemes through highly nonlinear power amplifier of the transmitters to the channel sharing between different users, the problems relating to power usage and spectrum are aplenty. In the coming future, orthogonal frequency division multiplexing (OFDM) technology promises to be a ready solution to achieving the high data capacity and better spectral efficiency in wireless communication systems by virtue of its well-known and desirable characteristics. Towards these ends, this dissertation investigates a novel OFDM system based on dual-tree complex wavelet transform (D

    Robust Image Watermarking Using QR Factorization In Wavelet Domain

    Get PDF
    A robust blind image watermarking algorithm in wavelet transform domain (WT) based on QR factorization, and quantization index modulation (QIM) technique is presented for legal protection of digital images. The host image is decomposed into wavelet subbands, and then the approximation subband is QR factorized. The secret watermark bit is embedded into the R vector in QR using QIM. The experimental results show that the proposed algorithm preserves the high perceptual quality. It also sustains against JPEG compression, and other image processing attacks. The comparison analysis demonstrates the proposed scheme has better performance in imperceptibility and robustness than the previously reported watermarking algorithms
    corecore