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Abstract 
 

With the rapid growth of digital communication in recent years, the need for high speed data 

transmission has increased very rapidly. Promising future wireless systems are expected to 

support a wide range of multimedia services such as video, data and voice. All of these 

services require different levels of transmission data rates, and Quality of Service (QoS) 

which imposes a variety of different performance requirements on the newly developed 

Worldwide Interoperability for Microwave Access (WiMAX) Network. Unlike many 

conventional communication networks, the WiMAX composed of only two layers, namely, 

Physical (PHY) and Medium Access Control (MAC) layers. 

In WiMAX physical layer, Orthogonal Frequency Division Multiplexing (OFDM) technique 

is employed to increase the transmission data rate by converting the serial input data to a 

parallel data output. The immunity of channel imperfectness made OFDM a popular scheme 

for wideband digital communication.  It is used in applications such as digital television and 

audio broadcasting and the multimedia transmission that is considered as a real time services.  

Forward Error Coding (FEC) techniques are introduced for system performance 

enhancement, since Viterbi Decoder of high speed decoding capabilities is a vital challenge 

in wide band    transmission systems like WiMAX; Substituting the conventional Viterbi 

decoder by the so-called Parallel Viterbi decoder in order to overcome the aforementioned 

challenge. Promising approach to achieve high throughput have been proposed in this project 

, look-ahead, is studied for extracting vectorized output bits without taking into consideration 

the hardware cost involved. It came out that even with small steps of looking ahead the 

processing gains are very high. 
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In WiMAX system, the conventional method used to implement the OFDM system is by 

using the Inverse Fast Fourier Transform (IFFT) in the transmitter side and FFT in the 

receiver side. Due to the drawbacks of OFDM-FFT based system which are the high peak-to-

average ratio (PAR) and the synchronization, an efficient technique for the OFDM system 

using wavelet transform is proposed. This system shows a superior performance when 

compared with traditional FFT-OFDM systems through an Additive White Gaussian Noise 

(AWGN) channel. The system performance is described in Bit Error Rate (BER) as a 

function of Signal to Noise Ratio (SNR). Furthermore, the proposed system gives nearly a 

perfect reconstruction for the input signal in the presence of Gaussian noise. 
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 WiMAXجودة الخدمة في الطبقة الفيزيائية لنظام الـ تحسين 

  

 الملخص

 

لزيادة معدل نقل البيانات من خلال تحويل البيانات ) OFDM(تقنية  (WiMAX) يستخدم الـ 

 حيث يتم ارسال مجموعة من البيانات بنفس الوقت عن  المتوازيطريقة النقلالمدخلة تسلسلي إلى 

 لانشاء (IFFT/FFT)تستخدم طريقة  .البياناتهذه   منرمزناقل جزئي لكل   تخصيص طريق 

لكن هناك طريقة اخرى وهي . كل منها جزء من البياناتنواقل جزئية متعامدة تنقل 

)IDWT/DWT (ولها ميزات تختلف عن الاولى سوف نذكرها في هذا البحث.  

  : تلخيصها على النحو التالي تم مساهماتنا الرئيسية  

 ـفي  نظام  انشاء النواقل الجزئية     تقنيات   طريقتين من    المقارنة بين     وهي  WiMAX  ال

IFFT/FFT و IDWT/DWT. 

  )Viterbi Algorithm   (قمنـا  بتطبيـق خوارزميـة    وبهدف تعزيز أداء النظـام ،  

.  واحـدة  نبضةفي المرة الواحدة بدلا من      نبضة  بحيث نستطيع فك تشفير اكثر من        المتوازية

وبالتالي فـان فـك   ,   هو من أنظمة الزمن الحقيقي WiMAXفان نظام علاوة على ذلك ، 

  (Algorithmوحيـث ان   . بلة بشكل سريع يزيد من أداء النظـام تشفير المعلومات المستق
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(Viterbi   في نظام    كبيرا تحديا   يمثل WiMAX ,   فك فيتربـي   طرق ل استبدال  لذلك اعتمدنا

 من أجل التغلب علـى  ) Parallel Lock ahead( الموازي  فيتربيالمتتالية بطريقة التقليدية 

 .لاهعالتحدي المذكور أ

 نظام فتيربي المتوازي قد حقق تحسين واضح للنظام من حيـث الـسرعة   اظهرت النتائج ان  

ل يقل قد ادى الى ت    IFFT/FFT  بدلا من     IDWT/DWT  كما ان استخدام الـ      .والانتاجية

 . الخطأ في نظام الوايماكسمعدل
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Chapter 1 Introduction 
 

With the rapid growth of digital communication in recent years the need for high speed data 

transmission has increased very rapidly. Promising future wireless systems are expected to 

support a wide range of multimedia services such as video, data and voice. All of these 

services require different levels of transmission data rates, and QoS which imposes a variety 

of different performance requirements on the newly developed WiMAX Network.  

The WiMAX technology is considered as an attractive one for many researchers overall the 

world, as such technology promises to provide high data rates in a mobile environment 

which cannot be achieved, at least for the time being, by the cellular mobile systems. In 

WiMAX physical layer, however, various parameters should be addressed and considered 

when studying the QoS of the WiMAX network, some of these parameters are, number of 

Sub-carriers, pilots, guard bands, FEC, modulation schemes, etc.1. Studying and analysing 

the effect of these parameters on system performance help designers to achieve the required 

QoS. Delivering high quality of services over the physical layer is considered as the major 

challenge of the WiMAX research area. Several factors and components that affect the 

performance of QoS will be studied in this research, e. g., a proper combination of the 

transmission rate and modulation schemes in the physical layer yields a noticeable 

improvement of the Bit Error Rate (BER) performance in an Additive White Gaussian Noise 

Channel (AWGN). 

                                                 
1 Details of these parameters definition to be introduced in the following chapters. 
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Based on the above introduction, our main objective in this research is to study and propose 

several QoS parameters that decreases the BER and hence and improving the Signal to Noise 

Ratio in a WiMAX network. The overall objectives are: 

1. To gain in-depth knowledge about the WiMAX system and how it works.  

2. To understand the problems related to WiMAX QoS and to determine the controlling 

parameters. 

3. To increase WiMAX throughput2 by employing a high speed Viterbi decoder, that 

decodes a couple of bits simultaneously instead of one. 

4. Improving WiMAX BER performance by utilizing a new method of modulation in 

OFDM. 

Brief details of how the advancement of increasing transmission data rate and the mobility 

issues are achieved by WiMAX technology is presented in the following subsections. 

Toward this end, we introduced a quick revision of the evolution of several mobile systems. 

1.1 Mobility Enhancement and Evolution 

The controlling of mobility issues is a major challenge in mobile system design. Cellular 

mobile systems and WiMAX system are now the main technologies that provide large scale 

mobility. In the following subsections, both systems will be introduced. 

1.1.1 Evolution in Cellular Technologies 

The First Generation (1G) wireless technology evolved in mid-1980’s. It is based on analog 

cellular systems and support only voice transmission. Frequency Division Multiple Access 

(FDMA) was employed as an air interface protocol to control the frequency channels 

distribution. Different systems were developed for the first generation technology in different 

                                                 
2 The throughput is defined as the average successfully received data bits in unit time. 
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regions overall the world, e.g., Advanced Mobile Phone System (AMPS), and Total Access 

Communication System (TACS), were developed in USA, and United Kingdom, 

respectively [1].  

Second Generation (2G) began to evolve in 1990’s [2], in which digital transmission of data 

in wireless cellular networks were introduced for the first time. Examples of the major 

systems developed for the second generation are shown in Figure 1-1. 

 

 
 

  

 

 

Figure  1-1: Major System Developed for Second 
Generation. 

 

Third Generation (3G) families are introduced mainly through Universal Mobile 

Telecommunication System (UMTS), CDMA-2000. These both technologies have high data 

rates and are much more bandwidth efficient than the second generation systems [1]. Now it 

is possible to achieve high data rates in Broadband Wireless Access (BWA). By integrating 

both UMTS and WiMAX technologies, it becomes possible to provide several types of 

services such as video conferencing and wireless broadband services. 

Fourth Generation (4G) cellular mobile system is currently under development stage, it is 

also known as IMT-Advanced [1]. Such a technology is expected to be a bandwidth efficient 

and also to provide data rates up to 100 Mbps in high mobility users' environment and up to 

Second Generation

IS-136 
D-AMPS 

IS-95 
CDMA 

 
GSM 

TDMA-FDMA TDMA-FDMA CDMA-FDMA 



 4

one Gbps for fixed or portable data terminals. Main technologies, commercial examples of 

4G technologies are the Long Term Evolution (LTE) and Ultra Mobile Broadband (UMB). 

Figure 1-2 shows the evolution towards 4G in terms of data rates, starting from 2G. It also 

provides information about the standard and technologies according to their respective 

generation [3]. 

 

 
Figure  1-2: Evolution of Cellular Mobile Systems from 

2G to 4G. 

 
 
1.1.2 Evolution of WiMAX Technology 

WiMAX is a standard-based technology enabling the delivery of last mile wireless 

broadband access and it is considered as an alternative wireless technology to the existing 

wire line Digital Subscriber Line (DSL) technology with mobility capabilities. Moreover, it 

is standardized as IEEE 802.16 and IEEE Wireless-MAN. Various standards of 802.16 were 

developed aiming at improving the standard enhancement, the first 802.16 standard was 
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released in 2000. It provides a standard point-to-multipoint broadcast in 10 to 66 GHz 

frequency range for Line of Sight (LOS) environment. The second version of WiMAX 

standard 802.16a was an amendment of 802.16 standards and has the capability to broadcast 

point-to-multipoint in the frequency range 2 to 11 GHz. It was established in 2003 and 

assigned both licensed and unlicensed frequency bands. Unlicensed bands cover maximum 

distance from 31 to 50 miles. It improves QoS features with supporting protocols, for 

instance, Ethernet, ATM or IP [4].  

The third version of WiMAX standard is 802.16c which is an enhancement of 802.16 

standards which mostly dealt with frequency range from 10 to 66 GHz. This standard 

addressed various issues, such as, performance evaluation, testing and detailed system 

profiling. The system profile is developed to specify the mandatory features to ensure 

interoperability and the optional features that differentiate products by pricing and 

functionality.  

In 2003, a project known as 802.16d began [5] which were deduced in 2004 with the Release 

of 802.16d. Such a standard supports mandatory and optional elements along with Time 

Division Duplex (TDD) and Frequency Division Duplex (FDD) technologies [3]. 

Theoretically, the data rate reaches 70 Mbps, although practically, the performance is near 

about 40 Mbps. However, the real evolution of WiMAX technology started from the 

standard 802.16e which was an amendment of 802.16d standard and completed in 2005, 

sometimes it is referred to as 802.16e-2005. Its main aim is to provide mobility including 

large range of coverage. That’s why people sometimes called it mobile WiMAX. This 

standard is a technical updates of fixed WiMAX which has robust support of mobile 

broadband. 



 6

The following section covers the basic radio specification of the WiMAX network to in 

depth understanding of the radio frequencies that are applied in such a technology. 

Moreover, a comparison between WiMAX technique and an example of the 4G cellular 

mobile system is also introduced. 

1.2 Radio Specifications of WiMAX Technology 

In this section, we introduce most important radio specifications of the WiMAX technology. 

WiMAX supports multiple physical specifications due to its modular nature. The first 

version of the standard only supported single carrier modulation. Since that time, OFDM and 

OFDMA have been included to operate in (Non-Line of Sight) NLOS environments and to 

provide mobility [4]. The standard has also been extended for use in below 11 GHz 

frequency bands along with initially supported 10-66 GHz bands. The IEEE 802.16 licensed 

and unlicensed bands are as follows: 

1. From 10 to 66 GHz licensed band: In this frequency band, LOS is required due to 

shorter wave length wherein the effect of multipath propagation is neglected. The 

standard is established to provide data rates up to 120 Mb/s within the abundant 

availability of bandwidth that is also another reason to operate in this frequency 

range. Channels within these bands are typically 25 or 28 MHz range [6]. 

2. From 2 to 11 GHz licensed and licensed bands: In this frequency band, both licensed 

and licensed exempt bands are addressed. Additional physical functionality supports 

have been introduced to operate in Near LOS and NLOS environment and to mitigate 

the effect of multipath propagation [6]. Expected data rates are up to 70Mb/s in 

available 14 MHz channel bandwidth. 
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1.3 Comparison between WiMAX and Long Term Evolution (LTE)  

From the extensive studies of the LTE and other broadband systems such as WiMAX, we 

conclude that both technologies are similar to each other in several different aspects, such as 

throughput, latency, and mobility, such similarity can be seen in Table 1-1 below. However, 

the obvious difference is that LTE is standardized by 3GPP group to extend the services 

supported by the 3GPP legacy systems, such as UMTS, GSM, EDGE and GPRS whereas the 

WiMAX is standardized by the IEEE Association [7-10]. 

 
Table  1-1: WiMAX vs. Long Term Evolution 

Aspect LTE WiMAX 

Standardization Body 3GPP WiMAX Forum 

Access Technique OFDMA/SC-FDMA/MIMO OFDMA/MIMO 

Throughput 
Downlink (DL) 
Uplink (UL) 

 
100 Mb/s at 20 MHz 
50 Mb/s at 20 MHz 

802.16m 
128 Mb/s at 20 MHz 
56 Mb/s at 20 MHz 

Band Width 1.4, 3, 5, 10, 15, 20 MHz 5, 8.75, 10 MHz 

Supporters NSN, Ericsson, Alcatel Intel 

Coding Techniques QPSK, 16QAM, 64QAM 
BPSK, QPSK, 16QAM, 

64QAM 

Coverage Range 
5 Km, after 30 Km slightly 

degraded. 
LOS 30 to 50 km NLOS 4 to 9 

km 

Mobility: 
Speed 
Handover 

 
Up to 250 Km/h 

Inter cell soft handover supported 

 
Up to 120 Km/h 

Optimized hard handover 
supported 

Cell Capacity 
>200 users per cell at 5 MHz BW 
>400 users per cell for larger BW 

100-200 users per cell. 

Legacy GSM/GPRS/EDGE/UMTS/HSPA IEEE802.16a through 16e 

Cost to the end user 

Expected to be higher in cost 
especially for the supporting 
devices since there is patent and 
property percentage per device.

Supposed to be cheaper since   
there are no intellectual 

propriety rights. 
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To complete the picture of our proposed system, an OFDM as a multiplexing technique used 

in WiMAX is presented. Moreover, our proposed system includes convolutional 

coding/Viterbi decoding techniques to improve the system performance; hence, forward 

error correction code is given in Sec. 1.5. 

1.4 Basic Concepts of OFDM Technology 

The Multi-Carrier Modulation (MCM) transmission technique was the initiator of the idea of 

OFDM, where the principle concept of MCM is the division of input bit stream into several 

parallel bit streams used to modulate several subcarriers. Each subcarrier is separated by a 

guard band to ensure non overlapping bands and hence the problem of Inter-Carrier 

Interference does not exist. In the receiver side, band pass filters are utilized to gather the 

spectrum of each subcarrier individually. 

A spectral efficient OFDM is a special case of MCM technique, which employs densely 

spaced orthogonal subcarriers and allowing overlapping spectrums. Unlike MCM, the use of 

band pass filters is not required in OFDM because of the orthogonal nature of the employed 

subcarriers. Hence, the available bandwidth is utilized very efficiently without causing Inter-

Carrier Interference (ICI) problem. FFT is used to achieve orthogonality between 

subcarriers. However, very high speed data transmission causes the problem of Inter-Symbol 

Interference (ISI); OFDM provides a high data rate without ISI by transmitting Low data rate 

on each subcarrier, that is, the high data rate transmission is obtained by aggregating of 

multiple low data rate subcarriers. In addition, Cyclic Prefix (CP) [11] also used to reduce 

the effect of ISI in an OFDM system. 
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1.5 Error Control Coding Techniques 

Since we employ the Viterbi decoder in the receiver side of our WiMAX system, the last part 

of our introduction is to briefly revise basic ideas of forward error correction codes, 

techniques employed in digital communication systems to enhance and improve the system 

performance. 

FEC coding technique is a technique usually used in digital communication systems to 

enhance the system performance by correcting the received bits in error, hence, decreasing 

the required signal-to-noise ratio to achieve certain quality. The FEC is carried out using 

several codes, among these codes, the remarkable convolutional code that is sometimes 

concatenated with other code. In OFDM system, the convolutional code and the Reed-

Solomon code are used together in concatenated fashion to correct the bits received in error. 

The outer code is Reed-Solomon (RS) and inner code is Convolutional code (CC). The RS 

outer code corrects burst error at the byte level. It is particularly useful for OFDM links in 

the presence of multipath propagation whereas the CC corrects the errors independently [11]. 

Convolutional coding with Viterbi decoding is a popular and powerful method for FEC in 

communication systems. The decoding process of a convolutional encoded message is based 

on the maximum likelihood estimation principle. This could be achieved by selecting the 

most likely path (survival path) in the trellis structure that describes all possible states [12]. 

However, the implementation of the Viterbi decoder required management of the relevant 

memory contents which is a major design problem for both hardware and software 

realizations [13]. 
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1.6 Synopsis of Thesis  

In Chapter Two, we introduce an overview, background, and literature review of the IEEE 

802.16 physical layer specifications and study the OFDM system model, transmitter, 

receiver and channel, OFDM as a multiplexing technique is also introduced. Since our 

results show a remarkable enhancement in system performance when using parallel Viterbi 

decoder, FEC and Viterbi Decoder implementation is given Chapter Three. Chapter Four 

deals with DWT Algorithm.  The overall system model is presented in Chapter Five, where 

we conclude our results and analysing the numerical figures in this chapter. Finally, future 

works and other problems are opened in Chapter Six. 
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Chapter 2 WiMAX Physical Layer 
 

 
2.1 OFDM Literature Background, and Historical Review 

The concept of OFDM was introduced in the mid of 60s as a parallel transmission scheme. 

At first, the aim was to use available bandwidth more efficiently by removing guard bands 

and setting spacing carriers as close as possible. This aim can be achieved by making all 

carriers orthogonal to each other, which prevent the so-called Inter Carrier Interference (ICI) 

between them. 

Under the limitations of advancement of digital signal processing technology, the OFDM 

system was too expensive and complex to be realized since using a bank of parallel 

modulators to produce multiple carriers. Moreover, the receiver needs tight synchronization 

and precise phasing of the demodulation carriers and sampling times in order to keep 

interference between subchannels acceptable where this requirement cannot be realized by 

the analog modulator. The complexity and other limitations can be solved with the available 

DSP hardware and software. Weinstein and Ebert proposed in their seminal paper [15] the 

usage of the Discrete Fourier Transform (DFT) to parallelize data transmission system to 

produce multiple stable carriers. 

In the 1980s, OFDM had been studied for high speed modems, digital mobile 

communications, and high density recording. In the 1990s, OFDM has been exploited for 

wideband data communications over mobile radio FM channels, high bit rate digital 

subscribers lines (HDSL), asymmetric digital subscriber lines (ADSL), very high speed 

digital subscriber lines (VHDSL), digital audio broadcasting (DAB), digital television and 

HDTV terrestrial broadcasting. During the 1990s, several research documents are published 

wherein an OFDM for mobile communication based on multicarrier FDMA is proposed, in 
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which each user has a set of randomly selected subchannels. Recently, OFDM has been 

successfully implemented in audio broadcasting such as Digital Video Broadcasting (DVB) 

and Digital Audio Broadcasting (DAB). Also, OFDM has been implemented in wireless 

LAN application as well [16]. 

 

2.2 OFDM Technology Basic Concepts 

OFDM is a suitable technique for wireless communications because of its ability to provide 

large data rates with sufficient robustness to radio channel impairments. Many research 

Institutes in the world have expertise teams working on the optimization of OFDM for 

countless applications improvements. 

Because of its ISI resistivity, OFDM is considered as a promising modulation scheme for 

high speed communications. In high data rate communication systems; the time for each 

transmitted symbol have to be shorter. Moreover, multipath cause time delay and hence, 

spreading in frequency domain. ISI is a limitation in a high-data rate communication [1], and 

this limitation is solved in OFDM by sending data of low data rate in parallel simultaneously. 

Figure 2-1 shows two ways to transmit the same four binary data. 

 

 

Figure  2-1: Conventional vs. OFDM Transmission. 
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To clarify the difference between conventional serial and OFDM parallel transmission, 

suppose the bit duration is Tb, then, the time for transmitting four bits is 4Tb as shown in 

Figure 2-1. If a serial transmission is employed, each bit has duration of one Tb, however, in 

OFDM these four bits will be transmitted simultaneously, and each bit has duration of 4Tb. 

This longer duration leads to reduce the ISI effect for the same transmission data rate. 

In an OFDM scheme, a large number of orthogonal, overlapping, narrow band sub-channels 

or subcarriers, transmitted in parallel, divide the available transmission bandwidth. The 

separation of the subcarriers is theoretically minimal such that there is a very compact 

spectral utilization. The "flatness" perceived by a narrow-band channel overcomes the 

selective fading problem3. Using powerful error correcting codes together with time and 

frequency interleaving yields even more robustness against frequency selective fading and 

the insertion of an extra guard interval between consecutive OFDM symbols can reduce the 

effects of ISI. As a result, the conventional solution of equalization in the receiver side is not 

necessary [14]. 

Although, the subcarriers in OFDM are overlapped, but they are orthogonal because the peak 

amplitude value of one subcarrier occurs when other subcarriers amplitudes are zeros, such 

concepts of overlapping and orthogonality are shown in Figure 2-2.  MATLAB numerical 

illustrations of 7 overlapped subcarriers are shown in the figure. It is worthy to assist that 

realizing orthogonality of all subcarriers is achieved mathematically using Inverse Fast 

Fourier Transform (IFFT). 

 

                                                 
3 When the bandwidth of the channel is smaller than the signal bandwidth, a selective fading is occurred on a fraction bandwidth 

of the signal when the channel is subjected to fading.  
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Figure  2-2: OFDM Subcarriers in Frequency Domain 

 

Due to OFDM’s immunity to many channel imperfections, it is considered to be the ideal 

modulation scheme for many applications in which signals are transmitted through practical 

environments [14]. 

The following discussion includes mathematical proof of the OFDM concepts. It is meant to 

provide an intuitive understanding of the OFDM system working. 

In a classical parallel-data transmission system, e.g., FDM, the total signal frequency band is 

divided into N non-overlapping frequency subchannels. Each subchannel is modulated with 

separate symbol, and then the N subchannels are frequency multiplexed. Figure 2-3 

illustrates the difference between the conventional non overlapping multicarrier technique 

(FDM) and the overlapping multicarrier modulation technique (OFDM). As shown in the 

figure, high percentage of the bandwidth is kept. The OFDM system comprises of modulator 
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at the transmitter side, and demodulator at the receiver side. In the following subsections, we 

introduce an OFDM system implementation.  

 
Figure  2-3: OFDM Signal (a) Conventional Multi-

carrier (b) Orthogonal Multi-carrier. 

2.3 OFDM System Model 

In this section, the transmitter, receiver and channel environment of an OFDM system is 

presented. 

2.3.1 OFDM Transmitter 

The DFT basic idea is to transform a cyclic time domain signal into its equivalent frequency 

spectrum. This is done by generating a sum of orthogonal sinusoidal components. The 

amplitude and phase of the sinusoidal components represent the frequency spectrum of the 

time domain signal. Figure 2.4 shows the basic OFDM transmitter, the input bits are line 

coded mapped in the mapping block, before entering the IFFT, the mapped bits are 

converted into parallel bit streams. The IFFT block performs the reverse process of the FFT, 

i.e., transforming a spectrum (amplitude and phase of each component) into a corresponding 

time domain signal. After insertion of cyclic prefix symbols used to eliminate the ISI, the 
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data is reversely converted into serial output waveforms, finally, the output waveforms, after 

band pass filtering, modulates a transmission radio carrier.  

 

)2(cos tcfπ

 

 

Figure  2-4: OFDM Transmitter Block Diagram 

Specifically, consider the case of binary digits transmitted at a rate of R bps. The bandwidth 

B required to transmit these bits is R (1 + r), with r the Nyquist roll off factor, or in the ideal 

case (rectangular pulse) the order of R Hz. Now consider a sequence of N bits stored for an 

interval TS = N/R, which is called the OFDM symbol interval. Serial-to parallel conversion is 

then carried out, with each of the N bits stored used to separately modulate a subcarrier. All 

N modulated-carrier signals are then transmitted simultaneously over the TS-long interval. To 

make the various carrier frequencies orthogonal to each other, it suffices to have spacing ∆f 

between carriers equal to 1/TS. Accordingly, we have fkB ∆= , Note that ∆f can be viewed as 

an effective bandwidth of each of the N parallel frequency channels as well. 

The implementation of OFDM using multiple carriers transmitted in parallel can, however, 

produce problem, which is clarified in the following analysis, and such a problem can be 

avoided by the use of the FFT technique.  

Assume N parallel output signals transmitted over a TS-long symbol interval, and the total 

signal which is the sum of these signals is v(t). Define the kth carrier frequency fk as 

10, −≤≤∆+= Nkfkff ck .                                     (2.1) 
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Simply, define the carrier nomenclature as the lowest of the N parallel subcarriers, fc, and the 

rest of all spaced intervals of ∆f. If we write the kth carrier term as ))(2cos( tfkfc ∆+π , then, 

v (t) may be written as 
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If the signal a(t) given in (2.3) is sampled at intervals 
N
Ts apart, i.e., at rate  R samples per 

second, then, it is convenient to replace a(t) by the sampled function a[n], with t replaced by 

N
nTs , for n = 0 . . . N − 1. Recall that 1=∆ sfT . Therefore, a[n] can be written as 

1....0,][
1

0

/2 −== ∑
−

=

Nneana
N

k

Nknj
k

π  .              (2.4) 

It is worthy now to note that the expression in (2.4) is exactly in the form of the IDFT. In 

place of the parallel transmission of N orthogonal carriers which are expressed 

mathematically by (2.2). Accordingly, the process of OFDM data transmission has been 

replaced by or can be viewed as IDFT calculations. 
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2.3.2 OFDM Receiver 

Figure 2-5 shows the OFDM receiver where reverse processes to that of the transmitter are 

carried out on each symbol interval TS after demodulation of the received modulated carrier 

signal. The Discrete Fourier Transform is mathematically processed, from which the N 

coefficients, ak, k = 0 . . . N-1 are recovered and parallel-to-serial conversion is employed to 

generate the desired output bit stream. It is to be noted that N is selected as multiples of 2 in 

order to simplify carrying out the DFT calculations, the proof can be found in reference [16]. 

 

 

 

Figure  2-5: OFDM Receiver Block Diagram. 

This process of generating the OFDM signal from binary input samples using the IDFT may 

be generalized to an operation on BPSK signal samples, allowing higher bit rate data signals 

to be transmitted over a specified bandwidth. 

The form of subcarrier pulse is a rectangular shape. It’s selected as a rectangular shape 

because task of pulse forming and modulation can occur by a simple IDFT which can be 

employed very effectively as an IFFT. On the other hand, at the receiver side, FFT is 

employed to get the opposite of the IFFT operation. 

Fourier Transform theorem will guide to the well-known function )sinc( x type of spectrum 

of the subcarrier from the rectangular pulse shape. Spectrum will still be detached from one 

to another even through subcarriers are overlapped because of their orthogonality. IFFT 
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occurs at the transmitter for modulation of the transmitted symbols. IFFT selects the gap of 

the subcarriers in a specific way, that is, at frequency where we calculate the received signal 

all of the other signals are zero. To satisfy the orthogonality between all subcarriers, there are 

some rules should be carefully addressed [16]: 

1. The receiver and transmitter have to be entirely synchronized. In order to satisfy this 

requirement, it is necessary to guess the same modulation frequency and the same time 

scale for transmission which is not really applicable. 

2. It is also necessary to have the best quality of the analog transmitter and receiver part. 

There should not be any multipath channel among the subcarriers to hold the 

orthogonality. Multipath phenomenon is occurred due to reflection of the transmitted 

signal by different obstacles like walls, mountains, buildings, etc., because the reflected 

signals reach the receiver in various paths and hence different times. Energy leakage can 

occur due to this signal scattering. In order to reduce or optimistically to prevent the 

multipath severe effects, a technique called Cyclic Prefix is employed, as we will see in 

the following discussion.  

Cyclic prefix insertion is commonly used in OFDM systems as a way to mitigate the effects 

of ISI. It copies the end section of an IFFT packet to the beginning of an OFDM symbol. 

Usually the length of the cyclic prefix is longer than the length of the dispersive channel4 to 

completely remove ISI. OFDM modulation, therefore, mostly revolves around cyclic prefix, 

OFDM modulation includes IFFT operation and cyclic prefix insertion, and OFDM 

demodulation includes cyclic prefix removal and FFT operation. 

Passing the signal through a time-dispersive channel causes ISI. In an OFDM system, a loss 

of the orthogonality appears due to ISI, resulting in ICI. For a given system bandwidth the 

symbol rate for an OFDM signal is much lower than a single carrier transmission scheme. It 

is because the OFDM system bandwidth is broken up into Nc subcarriers resulting in a 

                                                 
4 Dispersive channel is due to multipath fading effects.  
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symbol rate that is Nc times lower. This low symbol rate makes OFDM naturally resistant to 

effects of ISI caused by multipath propagation. The multiple signals that appear due to the 

multipath propagation arrive at the receiver side at different times, spreading, this way, the 

symbol boundaries, hence, causing energy leakage between the OFDM symbols. 

Furthermore, in an OFDM signal the amplitude and phase of the subcarrier must remain 

constant over a period of the symbol duration in order to maintain the orthogonality of the 

subcarriers. If they are not constant, the spectral shape will not have nulls at the correct 

frequencies, resulting in ICI. 

To completely eliminate even the very small ISI that results, Figure 2-6 shows a guard time 

introduced for each OFDM symbol. The guard time must be chosen to be larger than the 

expected delay spread, such that multi-path components from one symbol cannot interfere 

with the next symbol. If the guard time is left empty, this may lead ICI, since the carriers are 

no longer orthogonal to each other. To avoid such a cross talk between subcarriers, the 

OFDM symbol is cyclically extended in the guard time. This ensures that the delayed 

replicas of the OFDM symbols always have an integer number of cycles within the FFT 

interval as long as the multipath delay spread is less than the guard time. 

 

Figure  2-6 : Guard time and Cyclic Extension-Effect of 
Multipath 
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As can be seen from the previous discussion, OFDM requires very accurate frequency 

synchronization between the receiver and the transmitter. However, the less sensitivity of the 

OFDM to timing synchronization is considered one of the main features of OFDM. Pilot 

signals and training symbols may also be used for time synchronization (to avoid ISI) [17] 

and frequency synchronization (to avoid ICI, caused by Doppler shift). In order to clarify 

these points, frequency and time synchronization are to be discussed below. 

OFDM is very sensitive to frequency synchronization results low of performance channel 

communication. Frequency error occurs from main two resources that local oscillator error 

and Doppler spread. Figure 2-7 illustrates the frequency synchronization results in a carrier-

frequency offset ∆f = fr − ft due to the mismatch between the oscillators of the transmitter and 

the receiver [15]. 

 

 

Figure  2-7: Frequency Synchronization Error. 

 

The error in timing synchronization, on the other hand, causes a timing offset τ due to 

misplacement of the DFT window. Timing synchronization error is roughly divided into 

the two groups that towards to CP and away from CP can be found out by name. A figure 

2.8 show synchronization error occurs in the transmitting symbol belongs to first group. 
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However, the second group uses a training sequence or pilot symbols for synchronization 

time estimation. It has high accuracy, but low bandwidth and hence, transmission data rate. 

 

 

Figure  2-8: Time Synchronization Error. 

2.3.3 Additive White Gaussian Noise (AWGN) Channel 

In the study of communication systems, the classical AWGN channel, with statistically 

independent Gaussian noise samples corrupting data samples free of ISI, is the usual starting 

point for understanding basic performance relationships. An AWGN channel adds white 

Gaussian noise to the signal that passes through it. The signal subjected to an AWGN and 

received at the receiver is given by 

 

                                                 )()()( tntstr += .                                                            (2.5) 

Where s (t), n (t) and r (t) representing the transmitted signal, the noise process, and the 

received signal, respectively. 

 

2.4 Features of OFDM System 

Sum of looked out OFDM parameters below can be generally separated into pros and cons 

aspects. Brief mentions of the major features of OFDM are given below: 

• Can easily adapt to severe channel conditions without complex equalization 

• Robust against narrow-band co-channel interference 

• Robust against ISI and fading caused by multipath propagation 
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• High spectral efficiency5 

• Efficient implementation using FFT 

• Unlike conventional FDM, tuned sub-channel receiver filters are not required. 

On the other hand, however, there are some disadvantages of the OFDM system need to be 

mentioned, such as 

• Sensitive to Doppler shift 

• Sensitive to frequency synchronization problems[17] 

• High peak-to-average-power ratio (PAPR), requiring linear transmitter circuitry, 

which suffers from poor power efficiency. 

                                                 
5 The spectral efficiency is defined as the number of bits per second per hertz. 
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Chapter 3 Channel Coding and Viterbi Algorithm 
 

In typical digital communications system, bits are transmitted through a communication 

channel and are therefore susceptible to several kinds of noises. When employing a Forward 

Error Correction (FEC) technique in a digital communication system, the transmitted data is 

encoded in such a way so that the receiver can correct, as well as detect, errors caused by 

channel noise. The following section describes briefly several types of coding techniques 

used broadly in digital communication systems. 

 

3.1 FEC Coding Techniques  

FEC is widely used in digital telecommunications systems. Although, a number of redundant 

bits are to be added to the information message, coding allows reducing of received BER, 

and hence, improves the system performance. There are several types of FEC employed in 

digital systems, such as, Repeated Codes, Hamming Codes, Extended Codes, Reed-Solomon 

(RS) Codes, Convolutional Codes, etc.  In general, the FEC technique adds redundant bits to 

the transmitted information that are used, in the receiver, to either detect or correct the error. 

Accordingly, redundant bits hold no information (data), and hence, they are used to correct 

the error and enhance the performance of the system on the expenses of the available 

bandwidth. 

Simply, in the repeated codes, each bit is repeated a certain n times and then use the majority 

as the correct bit.  If less than n/2 errors occur in each group then the message will be 

decoded correctly. As the number of repetitions (n) increases, the probability of error 

decreases.  But that’s means an increase in the amount of data being sent.  

This is a very simple method of error correction. It's suitable when there is unlimited 

bandwidth, but it is cost much on a practical scale. Moreover, when there is a need to encrypt 
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the data for security; knowing that the information is repeated allows for significantly easier 

cracks [18]. 

To overcome the problem occurred in the repeated codes, it would be more efficient 

utilization of the available bandwidth to add only one redundant bit to detect whether the 

received codeword is corrupted by error or not. Such a technique is called a parity check 

code, where if it is required to even the number of 1’s in a single codeword, we add bit “1” to 

the tail of the codeword if the codeword was of odd number of 1’s. In this case, we have an 

even parity check. Similar analogy is applied to odd parity check.  

The parity-check adds “1” when the number of 1’s is odd and adds “0” when the number of 

1’s is even to the end of the chunk of these data. For example, if we were attempt to send the 

string “00111”, and then the encoded data are “001111”. Therefore if one bit is flipped, the 

receiver knows that there is an error occurred. However, it would not be able to determine 

which bit was flipped. Moreover, when two bits were flipped the receiver can’t detect that 

there is an error occurs.  

Therefore a single parity-check bit could only check the accuracy of a message and would be 

unable to fix it. More complicated methods used multiple parity bits to gain corrective 

capabilities [19]. 

Hamming Code is considered as the first leap towards error correcting codes which was 

firstly introduced by R. W. Hamming in 1950. The method is still under improvement until 

these days. Hamming Codes send d information bits padded with a specific k parity-check 

bits. They have the ability to correct any single mistake. The positions of the k bits in a 

codeword is distributed as 20, 21, 22,…, 2k-1.  

This code is significantly more efficient than pure repetition but it only has the capacity to 

correct one error per block of code. If two bits are flipped it will incorrectly decode to a 

different string. Hamming added a further adjustment to his code to allow for the detection of 
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up to two errors. By adding an additional parity-checking bit to the end of the string which 

checks the entire string. Hamming codes can detect any two bit errors even though they can 

still only correct a single error [21]. 

Reed-Solomon codes are systematic linear block codes. It is considered as a block code 

because the original message is split into fixed length blocks and each block is split into m-

bits symbols, linear because each m-bits symbol is a valid symbol, and systematic because 

the transmitted information contains the original data with extra Cyclic Redundancy Check 

(CRC) or 'parity' bits appended. 

The Reed-Solomon encoder reads k data symbols computes the r parity symbols, and 

appends the parity symbols to the k data symbols for a total of n symbols. The encoder is 

essentially a 2t tap shift register where each register is of m bits wide. The multiplier 

coefficients are the coefficients of the RS generator polynomial. The general idea is the 

construction of a polynomial where the produced coefficients will be symbols such that the 

generator polynomial exactly divides the data/parity polynomial. 

A Reed-Solomon decoder can correct up to t symbols that contain errors in a codeword, 

where 2t = r = n-k [20]. Figure 3-1 shows a typical Reed-Solomon codeword. 

 

 

Figure  3-1: Reed-Solomon Codeword 
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3.2  Convolutional Codes 

In the aforementioned FEC techniques, each block of data encoded as an independent entity. 

Convolutional encoders encode bits based upon a state which is determined by summing a 

fixed set of previous bits. Each input bit produces several outputs bits and state key passed 

from encoder to decoder. Because of the integral part this key used for decoding, these codes 

are often used for cryptography [18]. 

The encoding algorithms depend on two variables; the constraint length, which is the length 

or the number of states in the shift register flow, and the coding rate that is defined as the 

ratio of output bits to the input bits. In general, convolutional codes are significantly better at 

approaching the theoretical Shannon limit than prior error correcting codes. They are fast, 

efficient and accurate. Unfortunately, their accuracy varies significantly depending on the 

input. In specific, convolution codes have specific codewords where their accuracy 

decreased, some codewords are only separated by a Hamming distance of one. 

The Convolutional encoder can be implemented by shift registers. The outputs of the 

encoder are the logical exclusive sum of the values in the certain register's cells. These 

generated outputs are presented by mathematical polynomials. Let m be the maximum 

degree of the polynomials generating a code, then K = m + 1 is a constraint length of the 

code. For example, in Figure 3-2, the polynomials functions are given by 

2
1 1)( zzG +=  

21
2 1)( zzzG ++=  

The generator polynomials are usually denoted in the octal notation. For the above example, 

these designations are “101” = 5 and “111” = 7, respectively.  
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Figure  3-2: State Diagram and Convolutional Encoder  

A convolutional encoder is often seen as a finite state machine. Each state corresponds to 

some value of the encoder's register. Given the input bit value, from a certain state the 

encoder can move to two other states. These state transitions constitute a diagram which is 

called a state diagram that is shown in Figure 3-2. 

A trellis diagram derived from the above state diagram is shown in Figure 3-3 which is 

related to the convolutional encoder shown in the Figure 3-2. A solid line corresponds to 

input 0 and dotted line to input 1. Sequences from the encoder's output can be represented as 

a path on the trellis diagram. One of the possible paths for a specific data is illustrated by the 

bold line. 

 

Figure  3-3: Example of Trellis Diagram. 
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For a convolutional encoder of coding rate equal to 2, as shown in the previous example, 

each state transition on the diagram corresponds to a pair of output bits. There are only two 

allowed transitions for every state, so there are two allowed pairs of output bits, and the two 

other pairs are not defined. If an error occurs, it is very likely that the receiver will get a set 

of undefined pairs, which do not constitute a path on the trellis diagram. So, the task of the 

decoder is to find a path (hereinafter, we call it the survival path) on the trellis diagram which 

is the closest match to the received sequence [18]. 

3.3  Viterbi Algorithm 

We will use the code generated by the encoder in Figure 3-2 as an example. Ideally, Viterbi 

algorithm reconstructs the maximum-likelihood path (survival path) for a given input 

sequence. Bits are receiving from the channel with some kind of reliability estimate. There 

are two types of decisions taken on the decoded data, Hard Decision and Soft Decision.  

The distance between the received pair of bits and one of the outputs (“00”, “01”, “10”, 

“11”) is called branch metric and the sum of metrics of all branches in the path called path 

metric.  

Let's suppose that for every possible encoder state we know a path with minimum metric 

ending in this state. For any given encoder state,  there are two states from which the encoder 

can move to that state, and for both of these transitions we know branch metrics. So, there 

are only two paths ending in any given state on the next step. One of them has smaller 

metric, it is a survivor path. The other path is dropped. Thus we know a path with minimum 

metric on the next step, and the above procedure can be repeated, for more details on the 

decoding process, please consult as examples, the references  [23] [24].  

In the following, the implementation of the Viterbi decoder is given in brief. The Viterbi 

algorithm consists of three major parts shown in Figure 3-4. 
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Figure  3-4: Viterbi Decoder Block Diagram. 

Branch Metric Calculation: As mentioned before, methods of branch metric calculation are 

different for hard decision and soft decision decoders. For hard decision decoders, a branch 

metric is measured using the Hamming distance. Therefore, a branch metric can take values 

of 0, 1 and 2. Thus for every input pair we have 2 branch metrics. 

For a soft decision decoder, a branch metric is measured using the Euclidean distance. To 

explain this let xR  be the first received bit in the pair and yR  is the second, 0x  and 0y  are 

the ideal values. Then branch metric is [24]: 

                                        2
0

2
0 )()( yRxRBM yx −+−= .                                                     (3.1) 

Furthermore, when we calculate 2 branch metrics for a soft decision decoder, we don't 

actually need to know absolute metric values, only the difference between them makes sense. 

So, nothing will change if we subtract one value from the two branch metrics, 
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22* yRyxRxRyRxBMBM yx −+−=+−=                         (3.2) 

Path Metric Calculation: Path metrics are calculated using the Add-Compare-Select (ACS). 

This procedure is repeated for every encoder state [25]. 

1. Add – for a given state, there are only two previous states that yield to this state, and 

the output bit pairs that correspond to these transitions. To calculate new path 

metrics, we add the old path metrics with the new branch metrics. 
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2. Compare, select – we now have two paths, ending in a given state. The one with 

minimum metric, i.e., minimum hamming distance, is considered. 

While there are 2K-1 encoder states, we have 2K-1 survivor paths at any given time [26]. The 

problem with path metrics is that they tend to grow constantly and will eventually overflow. 

But, since the absolute values of path metric don't actually matter we can at any time subtract 

an identical value from the metric of every path. It is usually done when all path metrics 

exceed a chosen threshold. This method is simple, but not very efficient when implemented 

in hardware. Another way allows overflow, but uses a sufficient number of bits to be able to 

detect whether the overflow took place or not. The compare procedure must be modified in 

this case [27].  

Trace back: The general approach to trace back is to accumulate path metrics for up to five 

times the constraint length, find the node with the minimal accumulated cost, and begin trace 

back from this node. However, computing the node which has accumulated the minimal cost 

smallest integral path metric involves finding the minima of four states in our example. 

Figure 3-5 show a trills diagram with all survivor paths. The decoding depth D is an 

important parameter and should be large for quality of decoding, no less than 5K. Increasing 

D decreases the probability of decoding error. On the other hand, increases latency. 
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Figure  3-5: Survivor Path Graph Example 

Another important parameter is the number of bits we are sending to the output after each 

trace back. For example, if N = 1, the latency is minimal, but the decoder needs to trace the 

whole tree every step. It is computationally ineffective. In hardware implementations N 

optimally equals D [22]. 

3.4 Performance Issues  

The amount of space is linear in K, the constraint length, and the encoder is much easier to 

implement than the Viterbi decoder. The decoding time depends mainly on K, it is 

represented by the exponential function O(2K), so the time complexity is exponential in K.  

Moreover, as described, we can decode the first bits of the message only at the end. 

Although a little future knowledge is useful, it is unlikely that what happens at bit time 1000 

will change our decoding decision for bit 1, if the constraint length is 5, as an example. 

Practically, the decoder starts to decode bits once it has reached a time step that is a small 

multiple of the constraint length [28]. In simulation, we considered the trace back and start 

decoding bits when all the bits are received. 
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Chapter 4 FFT and DWT Based OFDM 
 

In general, signals in their nature representation forms, are time-amplitude representations, 

called time-domain signals which are often needed to be transformed into other different 

domains for analysis and processing, like frequency domain, time-frequency domain, etc. 

Transformation of signals helps in identifying distinct information which might otherwise be 

hidden in the original signal. Depending on the application, the transformation technique is 

chosen, and each technique has its advantages and disadvantages [30]. 

In most Digital Signal Processing (DSP) applications, the frequency content of the signal is 

very important. The Fourier transform is probably the most popular transform used to obtain 

the frequency spectrum of a signal. But the Fourier transform is only suitable for stationary 

signals, i.e., signals whose frequency content does not change with time. The Fourier 

transform tells how much of each frequency exists in the signal, but does not tell at which 

time these frequency components occur.  

The major drawback of the FFT is that it uses a fixed window width. On the other hand, the 

Wavelet transform, which was developed in the last two decades, provides a better time-

frequency representation of the signal than any other existing transforms. 

 

4.1 Comparison between Fourier Transform and Wavelet Transform 

The FFT is a modified version of the Fourier transform. The Fourier transform separates the 

waveform into a sum of sinusoids of different frequencies and identifies their respective 

amplitudes. Thus it gives us a frequency-amplitude representation of the signal. In FFT, the 

non-stationary signal is divided into small portions, which are assumed to be stationary. This 

is done using a window function of a chosen width, which is shifted and multiplied with the 
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signal to obtain the small stationary signals. The Fourier transform is then applied to each of 

these portions to obtain the Short Time Fourier transform of the signal.  

The problem with FFT goes back to the Heisenberg uncertainty principle [32] which states 

that it is impossible for one to obtain which frequencies exist at which time instance, but, one 

can obtain the frequency bands existing in a time interval. This gives rise to the resolution 

issue where there is a trade-off between the time resolution and frequency resolution. To 

assume stationary, the window is supposed to be narrow, which results in a poor frequency 

resolution, i.e., it is difficult to know the exact frequency components that exist in the signal; 

only the band of frequencies that exist is obtained. If the width of the window is increased, 

frequency resolution improves but time resolution becomes poor, i.e., it is difficult to know 

what frequencies occur at which time intervals. Also choosing a wide window may violate 

the condition of stationary. Consequently, depending on the application, a compromise on 

the window size has to be made. Once the window function is decided, the frequency and 

time resolutions are fixed for all frequencies and all times. 

The Wavelet transform solves the above problem to a certain extent. In contrast to FFT, 

which uses a single analysis window, the Wavelet transform uses short windows at high 

frequencies and long windows at low frequencies. This results in multi-resolution analysis by 

which the signal is analyzed with different resolutions at different frequencies, i.e., both 

frequency resolution and time resolution vary in the time-frequency plane without violating 

the Heisenberg inequality.  

In Wavelet transform, as frequency increases, the time resolution increases; likewise, as 

frequency decreases, the frequency resolution increases. Thus, a certain high frequency 

component can be located more accurately in time than a low frequency component and a 

low frequency component can be located more accurately in frequency compared to a high 

frequency component. 
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Figure 4-1(a) shows the time-frequency tiling in the time-domain plane and Figure 4-1 (b) 

shows the frequency-domain plane. It is seen that Figure 4-1 (a) does not give any frequency 

information and Figure 4-1 (b) does not give any time information. Similarly Figure 4-1 (c) 

shows the tiling in FFT and Figure 4-1 (d) shows the tiling in Wavelet transform. It is seen 

that FFT gives a fixed resolution at all times, whereas Wavelet transform gives a variable 

resolution. 

 

 

Figure  4-1: Time-Frequency (a) Time-Domain (b)    
Frequency-Domain (c) FFT (d) DWT 

 

4.2 Wavelet Transform Technology 

The wavelet idea can be analyzed in a similar manner to that of FFT. The signal to be 

analyzed is multiplied with a wavelet function just as it is multiplied with a window function 

in FFT, and then the transform is computed for each segment generated. However, unlike 
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FFT, in Wavelet Transform, the width of the wavelet function changes with each spectral 

component. The Wavelet Transform, at high frequencies, gives good time resolution and 

poor frequency resolution, while at low frequencies; the Wavelet Transform gives good 

frequency resolution and poor time resolution [34]. 

4.2.1 Continuous Wavelet Transform (CWT)  

The Continuous Wavelet Transform (CWT) is given in (4-1), where we assume that x(t) is 

the signal under consideration, i.e., the signal to be analyzed. Ψ(t) is the “mother wavelet” or 

the basis function. All the wavelet functions used in the transformation are derived from the 

mother wavelet through shifting and scaling  

                                dt
s

ttx
s

sX WT )().(1),( * ττ −
Ψ= ∫                                          (4-1) 

The mother wavelet used to generate all the bases functions is designed according to some 

desired characteristics associated with that function. The translation parameter τ relates to the 

location of the wavelet function as it is shifted through the signal. Thus, it corresponds to the 

time information in the Wavelet Transform. The scale parameter s is defined as |1/frequency| 

and corresponds to frequency information. Scaling either expands or compresses a signal. 

Low frequencies expand the signal and provide detailed information hidden in the signal, 

while high frequencies compress the signal and provide global information about the signal. 

Notice that the Wavelet Transform simply performs the convolution operation of the signal 

and the basis function. The above analysis becomes very useful as in most practical 

applications, high frequencies (low scales) do not last for a long duration, but instead, appear 

as short bursts, while low frequencies (high scales) usually last for entire duration of the 

signal. 
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The Wavelet Series is obtained by forming discretized CWT. This aids in computation of 

CWT using computers and is obtained by sampling the time-scale plane. The sampling rate 

can be changed accordingly with scale change without violating the Nyquist criterion. 

Nyquist criterion states that, the minimum sampling rate that allows reconstruction of the 

original signal is 2ω radians, where ω is the highest frequency in the signal. Therefore, as the 

scale goes higher (lower frequencies), the sampling rate can be decreased thus reducing the 

number of computations. 

4.2.2 The Discrete Wavelet Transform (DWT) 

The Wavelet Series is just a sampled version of CWT and its computation may consume 

significant amount of time and resources, depending on the resolution required. The DWT 

which is based on sub-band coding is found to yield a fast computation of Wavelet 

Transform. It is easy to implement and reduces the computation time and resources required.  

In CWT, the signals are analyzed using a set of bases functions which relate to each other by 

simple scaling and translation. In the case of DWT, a time-scale representation of the digital 

signal is obtained using digital filtering techniques. The signal to be analyzed is passed 

through filters with different cutoff frequencies at different scales. 

 

4.3 DWT and Filter Banks  

4.3.1 Multi-Resolution Analysis using Filter Banks 

Filters are one of the most widely used signal processing functions. Wavelets can be realized 

by iteration of filters with rescaling. The resolution of the signal, which is a measure of the 

amount of detail information in the signal, is determined by the filtering operations, and the 

scale is determined by up-sampling and down-sampling (sub-sampling) operations [35].  
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The DWT is computed by successive lowpass and highpass filtering of the discrete time-

domain signal as shown in Figure 4-2. This is called the Mallat algorithm or Mallat-tree 

decomposition. Its significance is in the manner it connects the continuous-time multi-

resolution to discrete-time filters. In the figure, the signal is denoted by the sequence x[n], 

where n is an integer. The lowpass filter is denoted by G0 while the highpass filter is denoted 

by H0. At each level, the highpass filter produces detail information d[n], while the lowpass 

filter associated with scaling function produces rough approximations, a[n]. 

 

 

Figure  4-2: Three-Level Wavelet Decomposition Tree. 

At each decomposition level, the half band filters produce signals spanning only half the 

frequency band. This doubles the frequency resolution as the uncertainty in frequency is 

reduced by half. In accordance with Nyquist rule if the original signal has a highest 

frequency of ω0, which requires a sampling frequency of 2ω0 radians, then it has a highest 

frequency of ω0/2 radians. It can now be sampled at a frequency of ω0 radians thus 

discarding half the samples with no loss of information. This decimation by 2, halves the 

time resolution as the entire signal is now represented by only half the number of samples. 

Thus, while the half band lowpass filtering removes half of the frequencies and thus halves 

the resolution, the decimation by 2 doubles the scale. 
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With this approach, the time resolution becomes arbitrarily good at high frequencies, while 

the frequency resolution becomes arbitrarily good at low frequencies. The time-frequency 

plane is thus resolved as shown in Figure 4-1(d). The filtering and decimation process is 

continued until the desired level is reached. The maximum number of levels depends on the 

length of the signal. The DWT of the original signal is then obtained by concatenating all the 

coefficients, a[n] and d[n], starting from the last level of decomposition, 

 

 

Figure  4-3: Three-Level Wavelet Reconstruction Tree. 

Figure 4-3 shows the reconstruction of the original signal from the wavelet coefficients. 

Basically, the reconstruction is the reverse process of decomposition. The approximation and 

detail coefficients at every level are up-sampled by two, passed through the lowpass and 

highpass synthesis filters and then added. This process is continued through the same number 

of levels as in the decomposition process to obtain the original signal. The Mallat algorithm 

works equally well, if the analysis filters, G0 and H0, are exchanged with the synthesis filters, 

G1 and H1. 

4.3.2 Conditions for Perfect Reconstruction  

In most Wavelet Transform applications, it is required that the original signal be synthesized 

from the wavelet coefficients. To achieve perfect reconstruction the analysis and synthesis 
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filters have to satisfy certain conditions. Let ( )zG0 and ( )zG1 be the lowpass analysis and 

synthesis filters, similarly, let ( )zH0 and ( )zH1 the highpass analysis and synthesis filters 

respectively. Then the filters have to satisfy the following two conditions as given in  

                                       ( ) ( ) ( ) ( ) 01010 =−+− zHzHzGzG                                                 (4.2) 

                                                           ( ) ( ) ( ) ( ) dzzHzHzGzG −=+ 21010
                                                                           (4.3) 

The first condition implies that the reconstruction is aliasing-free and the second condition 

implies that the amplitude distortion has amplitude of one. It can be observed that the perfect 

reconstruction condition does not change if we switch the analysis and synthesis filters.  

There are a number of filters which satisfy these conditions. But not all of them give accurate 

Wavelet Transforms, especially when the filter coefficients are quantized. The accuracy of 

the Wavelet Transform can be determined after reconstruction by calculating the SNR of the 

signal. Some applications like pattern recognition do not need reconstruction, and in such 

applications, the above conditions need not apply. But in OFDM implementation we need 

both of them. 

4.4  Classification of wavelets  

We can classify wavelets into two classes, orthogonal wavelet and biorthogonal wavelet. 

Based on the application, either of them can be used. 

4.4.1 Orthogonal wavelet filter banks 

The coefficients of orthogonal filters are real numbers. The filters are of the same length and 

are not symmetric. The lowpass filter G0 and the highpass filter H0 are related to each other 

by 

                                                            ( ) ( )1
00

−−= − zGzzH N                                               (4.4) 



 44

The two filters are alternated flip of each other. The alternating flip automatically gives 

double-shift orthogonality between the lowpass and highpass filters, i.e., the scalar product 

of the filters, for a shift by two is zero. i.e., [ ] [ ] 02 =−∑ lkHkG , where Zlk ∈, [30]. Filters 

that satisfy (4.4) are known as Conjugate Mirror Filters (CMF). Perfect reconstruction is 

possible with alternating flip.   

Furthermore, for perfect reconstruction, the synthesis filters are identical to the analysis 

filters except for a time reversal. Orthogonal filters offer a high number of vanishing 

moments. This property is useful in many signal and image processing applications. They 

have regular structure which leads to easy implementation and scalable architecture.  

4.4.2 Biorthogonal wavelet filter banks  

In the case of the biorthogonal wavelet filters, the lowpass and the highpass filters do not 

have the same length. The lowpass filter is always symmetric, while the highpass filter could 

be either symmetric or asymmetric. The coefficients of the filters are either real numbers or 

integers. 

For perfect reconstruction, biorthogonal filter bank has all odd length or all even length 

filters. The two analysis filters can be symmetric with odd length or one symmetric and the 

other asymmetric with even length. Also, the two sets of analysis and synthesis filters must 

be dual. The linear phase biorthogonal filters are the most popular filters for data 

compression applications. 

4.5 Wavelet Families 

There are a number of bases functions that can be used as the mother wavelet for Wavelet 

Transformation. Since the mother wavelet produces all wavelet functions used in the 

transformation through translation and scaling, it determines the characteristics of the 
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resulting Wavelet Transform. Therefore, the details of the particular application should be 

taken into account and the appropriate mother wavelet should be chosen in order to use the 

Wavelet Transform effectively. 

 

 

Figure  4-4:Wavelet Families (a) Haar (b) Daubechies4 (c) 
Coiflet1 (d) Symlet2 (e) Meyer (f) Morlet (g) Mexican Hat. 

Figure 4-4 illustrates some of the commonly used wavelet functions. Haar wavelet is one of 

the oldest and simplest wavelet. Therefore, any discussion of wavelets starts with the Haar 

wavelet. Daubechies wavelets are the most popular wavelets. They represent the foundations 

of wavelet signal processing and are used in numerous applications. These are also called 

Maxflat wavelets as their frequency responses have maximum flatness at frequencies 0 and 

π. This is a very desirable property in some applications. The Haar, Daubechies, Symlets and 

Coiflets are compactly supported orthogonal wavelets. These wavelets along with Meyer 

wavelets are capable of perfect reconstruction. The Meyer, Morlet and Mexican Hat 
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wavelets are symmetric in shape. The wavelets are chosen based on their shape and their 

ability to analyze the signal in a particular application [33]. 
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Chapter 5 Simulation Model, and Results 
 

In this chapter, we discuss the simulation model and results of a system employed in our 

research. As we have mentioned before, the research goal is to improve QoS in WiMAX 

physical layer. This task involves modeling of the physical layer as well as the propagation 

environment. Simulation was chosen to be the primary tool for our study. We employed 

MATLAB software to develop the simulator. Let us first define the OFDM symbol parameters 

that are used in our simulation. 

5.1 Simulated OFDM System Model 

OFDM is a multi-carrier technique based on a very simple modulation scheme that uses IFFT / 

FFT at its core for transmission and reception respectively. The performance of the OFDM 

receiver is significantly affected in the presence of noise in the wireless channel. In this work a 

receiver that has built-in capacity with additional computation as proposed. It is based on a DWT 

or FFT algorithm. Experiments using MATLAB are conducted to verify the feasibility of this 

algorithm on OFDM signals.  

This structure corresponds to the physical layer of the IEEE 802.16-2004 air interface. In this 

setup, I have just implemented the mandatory features of the specification. Channel coding part 

is very important one. Through the rest of the sections, the individual block of the system will be 

discussed with implementation technique. 

5.1.1  FFT-based OFDM 

For the current FFT-based OFDM compute a long-length IFFT at the modulator, and the 

demodulator needs to compute a long- length FFT. For such computations, a great number of 

complex multiplications are required. Clearly, the complexity of a FFT-OFDM would be 
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reduced if the corresponding modulator and demodulator could be replaced by DWT transforms 

[33]. Figure 5-1 shows the diagram of FFT-based OFDM: 
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Figure  5-1: FFT-WiMAX Block Diagram. 

The system model for FFT-based OFDM will not be discussed in detail as it is well known in 

the literature. Thus, a brief description will be presented about it. The data generator 

produces   in random binary form. It is first being processed by a constellation mapping. 

BPSK modulator is used for this work to map the raw binary data to appropriate BPSK 

symbols. These symbols are then input into the IFFT block. This involves taking N parallel 

streams of BPSK symbols and performing an IFFT operation on this parallel stream. The 

output in discrete time domain is  
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Where   is a sequence in the discrete time domain and   are complex numbers in the discrete 

frequency domain. Then the CP is lastly added before transmission and the signal will be 

transmitted.  

At the receiver, the process is reversed to obtain the decoded data. The CP is removed to 

obtain the data in the discrete time domain and then processed to FFT for data recovery. The 

output of the FFT in the frequency domain is as follows: 

                     )2exp()()(
1

0
i

N
njnUiU

N

n
km π−= ∑

−

=

                                             (5.2) 

The MATLAB functions “ifft”,”fft” are used to incorporate the IFFT/FFT functions. 

5.1.2 DWT-based OFDM 

The DWT of a signal x is calculated by passing it through a series of filters. First the samples 

are passed through a low pass filter with impulse response “g” resulting in a convolution of 

the two: 

                              ∑
∞

−∞=

−==
k

kngkxgxny ][][)*(][                                          (5.3) 

The signal is also decomposed simultaneously using a high-pass filter “h”. The output gives 

the detail coefficients (from the high-pass filter) and approximation coefficients (from the 

low-pass). It is important that the two filters are related to each other and they are known as a 

quadrature mirror filters. However, since half the frequencies of the signal have now been 

removed, half the samples can be discarded according to Nyquist’s rule. The filter outputs 

are then sub sampled by two. The outputs of the low-pass filter and the high-pass filter are 

shown below and are the convolutions of the input data with the respective filter responses: 

                                   ∑
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The decomposition has halved the time resolution since only half of each filter output 

characterizes the signal. However, each output has half the frequency band of the input so 

the frequency resolution has been doubled. 

mX kd

)(ty

)(tr

kUn
mD

 

Figure  5-2: DWT-WiMAX Block Diagram. 

In a DWT based system, the wavelet transform blocks, inverse discrete wavelet transform 

(IDWT) and discrete wavelet transform (DWT) replace the IFFT and FFT of FFT-OFDM 

system in modulation and demodulation processes. 

One of the advantages of using wavelet transform is that due to the overlapping nature of 

wavelet properties, the wavelet based OFDM does not need cyclic prefix to deal with delay 

spreads of the channel. As a result, it has higher spectral containment than that of Fourier-

based OFDM [34]. The input data is processed as per FFT-OFDM. However, the difference 
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is that the system does not require CP to be added to the OFDM symbol. The output of the 

inverse discrete wavelet transform (IDWT) can be represented as: 

                                      ∑ ∑
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m nkDkd                                  (5.5) 

Where n
mD are the wavelet coefficients and ψ(t) is the wavelet function with compressed 

factor m times and shifted n times for each subcarrier (number k, 0 ≤ k ≤ N – 1). The wavelet 

coefficients are the representation of signals in scale and position or time.  

At the receiver side, the process is inversed. The output of discrete wavelet transform (DWT) 

is: 
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Wavelet transforms have been considered as replacing the IFFT/FFT by using the 

IDWT/DWT blocks. In MATLAB, I used the function “dwt” and “idwt”. 

5.1.3  Constellation Mapper 

The data are entered serially to the constellation mapper. In MATLAB, constellation mapper 

support BPSK, grey mapped QPSK, 16QAM, and 64QAM. The complex constellation 

points are normalized with the specified multiplying factor for different modulation scheme 

so that equal average power is achieved for the symbols. The constellation mapped data are 

assigned to all allocated data subcarriers of the OFDM symbols. 

5.1.4  Convolutional Encoder 

Figure 5-3 shows the implementation of the convolutional encoder with rate of ½ (generate two 

code bits). The generator polynomials for C1 and C2 are [7, 5] in octal format. 
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Figure  5-3: 1/2 Coding Rate Convolutional Encoder 

5.1.5  Viterbi Algorithm 

We can view the Viterbi algorithm as a dynamic programming algorithm for finding the 

shortest path through a trellis, and the algorithm can be broken down into the following 

steps: 

• Weigh the trellis; that is, calculate the branch metrics. 

• Recursively compute the shortest paths to time n, in terms of the shortest paths to 

time n-1. In this step, decisions are used to recursively update the survivor path of 

the signal. This is known as add-compare-select (ACS) recursion.  

• Recursively find the shortest path leading to each trellis state using the decisions 

from Step 2. The shortest path is called the survivor path for that state and the 

process is referred to as survivor path decode. Finally, when all survivor paths are 

traced back in time, they merge into a unique path, which is the most likely signal 

path that we are trying to find. 

• Associated with each trellis state S at time n is a state metric PMs,n  which is the 

accumulated metric along the shortest path leading to that state. The state metrics 

at time n can be recursively calculated in terms of the state metrics of the 

previous iteration as follows[36]: 

 

                                   { }1,1,1 ,min +++ ++= ijjiiii BMPMBMPMPM                      (5.7) 
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Where i is a predecessor state of j and BMij, n-1 is the branch metric on the transition from 

state i to state j. The qualitative interpretation of this expression is as follows. By definition, 

the shortest path into state j must pass through a predecessor state. If the shortest path into j 

passes through i, then the state metric for the path must be given by the state metric for i plus 

the branch metric for the state transition from i to j. The final state metric for j is given by the 

minimum of all possible paths. The recursive update described by (5.7)  is the ACS operation 

and is implemented as shown in Figure 5-4 for the four-state trellis example [19]. 
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Figure 5-4: (a) Predecessor States of State i (b) State Metric Update for State i Implemented 

Using 2-way ACS 

The update unit is referred to as a two-way ACS unit, because there are two input branches 

for each state, In general, a state with m-input branches requires an m- way ACS unit. As 

well as calculating the updated state metric, the ACS unit outputs decision ds, n, which 

identify the entering path of the minimum metric [19].  

Similarly, taking the look-ahead step M=2, skipping a node and each time jump to every 

third node after adding the respective branch metrics with the state metric. So instead of two 

possible paths now four have to be calculated which are as follows: 
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5.1.6  Channel Model 

Noise exists in all communications systems operating over an analog physical channel, 

such as radio channel. It is therefore important to study the effects of noise on the 

communications error rate and some of the tradeoffs that exist between the level of noise 

and system spectral efficiency. Most types of noise present in radio communication 

systems can be modeled accurately using AWGN. This noise has a uniform spectral 

density (making it white), and a Gaussian distribution in amplitude (this is also referred to 

as a normal distribution). Thermal and electrical noise from amplification, primarily have 

white Gaussian noise properties, allowing them to be modeled accurately with AWGN. 

Also most other noise sources have AWGN properties due to the transmission being 

OFDM. OFDM signals have a flat spectral density and a Gaussian amplitude distribution 

provided that the number of carriers is large (greater than about 20 subcarriers), because of 

this the inter-cellular interference from other OFDM systems have AWGN properties. For 

the same reason ICI, ISI, and IMD also have AWGN properties for OFDM signals. 

5.2 Simulation Results 

The main contribution of the thesis is divided into two parts. The first part was to optimize 

Viterbi algorithm which supposed to lead to decrease the decoding time and increase the 

system throughput. The second one is to increase the BER performance using IDWT/DWT 

instead of IDFT/DFT. The following sections show the results for the proposed approaches 

and the overall system enhancement. 
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5.2.1 Viterbi Decoder Results 

MATLAB simulations have been done in order to establish the authenticity of the proposed 

optimization in the Algorithm. The results are collected for two versions of the simulation, 

namely: 

• Parallel Viterbi Decoding 

• Serial Viterbi Decoding  

The simulation parameters are selected according to the IEEE 802.16e standard with 1024 

FFT size (number of subcarriers), symbol duration 94 (µs) and the number of symbols per 

frame 104 symbols. More details on the simulation parameters are listed in Table 5-1. 

Seeking for simplicity, the constraint length K is chosen to be 3 and the encoding 

rate 2/1=r . Based on system requirement, our results can be generalized to any other 

suitable parameters according to the system requirements and applications. Another 

important parameter to be considered through simulation is decoding strategy; here we chose 

the soft-decision decoding strategy, although it is superior than the hard-decision in broad 

sense. Block processing; in the soft-decision decoding of data has been used instead of 

sample by sample processing. Unlike the hard-decision decoding, the branch metrics can be 

computed in the initial stage without waiting for the next bit to be received.  

 

Table  5-1: Simulation Parameters 

Parameter specification Parameter value 

Data length 105 bits 
FFT size 32, 64, 128, 512, 1024 

Symbol duration 94 µs 
Number of symbols/Frame 104 

Cyclic Prefix 1/4 ,1/8, 1/16, 1/32, 1/64, 1/128 
Generating polynomial  [1 1 1; 1 0 1]* 

Coding rate  r = ½ 
Modulation techniques BPSK, QPSK, 16QPSK, 64QPSK 

Decision strategy Soft-decision 
*  The polynomial values showed in octal 
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MATLAB codes for serial and parallel Viterbi algorithms produced promising results; the 

decoding time of parallel decoder is much less than the time of the serial one, our results 

given in Figure 5-4, shows the time needed to decode 20000 bits is 0.4 second in case of 

parallel Viterbi while 1.75 second in the serial case, which reflects a tangible decoding time 

decreasing. Moreover, our results shows a decreasing time of approximately one forth, i.e., ¼ 

of the serial time. Furthermore, it is worthy to notice that, the tangibility of the difference 

getting higher in increasing the number of decoded bits. One should note that the ration 

between the time consuming in both cases, serial and parallel, is increased exponentially 

with number of decoded bits.  
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Figure  5-4: Time Needed to Decode Bits Using Serial 
and Parallel Viterbi Decoder (M=2). 

The throughput enhancement of using parallel Viterbi decoding (M=2) over serial Viterbi is 

shown in Figure 5-5, where as a numerical examples, we can see that the parallel Viterbi 
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decoder increases the system throughput by 400% at 0 dB of the SNR, 530% at 5 dB and 

550% above 7 dB. 

0 5 10 15 20
0

2000

4000

6000

8000

10000

12000

14000

16000

SNR

T
hr

ou
gh

pu
t(

B
/s

)

 

 
Serial Viterbi Decoder
Parallel Viterbi Decoder

 

Figure  5-5: Throughput Enhancement for Parallel 
Viterbi Decoder with M=2. 

 

While increasing the system throughput, for the same simulation parameter, one should care 

about the system performance expressed in the bit error rate. Comparing serial and parallel 

BER for the same simulation parameters, Figure 5-6 shows that both serial and parallel 

Viterbi decoders have approximately similar BER performance. That is to say, achieving 

throughput enhancement without deteriorating the BER system performance.  
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Figure  5-6: BER Performance for Serial and Parallel 

Viterbi with M=2. 

Hereinafter, the Decoding Length is defined as the number of trellis steps, M, which is 

required to determine the decoding block of transmitted bits. Longer decoding lengths 

require larger amount of memory as paths should be stored before being discarded. The 

storage requirements grow exponentially with constraint length K. Based on theoretical 

analysis, numerically, for a coding rate, r, of 1/2, a set of 2K-1 path must be stored after each 

step.  

So far, the previous results were shown for M = 2, in Figure 5-7, the number of decoding 

steps is increased to M = 3, and M = 4. Our results show that the higher superiority is 

obtained when M = 2, and decreases as long as M getting larger. 
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Figure  5-7: The Decoding Time for Serial, Parallel with 
M=2, 3, 4. 

The left side of Figure 5-8 shows that when M = 2; each state have to calculate four different 

paths and chose the minimum weight of them. The other three paths will drop and will not 

enter the calculations again. That means 12 paths will be dropped each clock cycle in two 

bits Parallel Viterbi. When M=3 we need to calculate another eight paths for each state. 

When M=4, 16 and so on the number of different paths will be 2n where n is the number of 

decoded bits.  

 

 

 

 

 

Figure  5-8: Number of Pathes for M=2 and M=3. 

  When the number of steps increased the number of branches needs to be compared increase 

exponentially as shown in Figure 5-9.  
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Figure  5-9: Number of branches Need to be calculated. 

In terms of hardware complexity; When, M=2, K=3, the number of states is 42 1 =−K . The 

number of required 2-input adders and CS units can be given as 11 22 −− × KK  and 

( )122 11 −−− KK   respectively. When, M=3, K=3, the number of required 2-input adders 

and CS units can be given as ( )KK 222 21 +−   and 11 22 −− × KK respectively and the 

latency is K=3 clock cycles.  

In general for K=3, and M>3, the number of required 2-input adders and CS units can be 

given as ( ) ( )1221242 111 +−×+−× −−− KMKKKK  and ( )122 11 +−× −− KMKK . The 

latency is ( ) ( )KMKKM −+=− 22   clock cycles. [31] 

Figure 5-10 shows the number of Adders, Compare select Units and Latency with number of 

Viterbi steps M. It is cleared that the hardware complexity and the latency increased when 

the number of steps increased and affect the performance. 
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Figure  5-10: The Number of Adders, Compare Select 
Units and Latency with Number of Viterbi Steps M. 

Figure 5-11 shows the system throughput for serial and parallel with M=2, 3 and 4. 

0 2 4 6 8 10 12 14 16 18 20
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

SNR

T
hr

ou
gh

pu
t(

B
/s

)

 

 

Serial

Parallel M=2
Parallel M=3

Parallel M=4

 

Figure  5-11: Throughput Enhancement for Parallel 
Viterbi Decoder. 
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The BER performance not affected when M increased as shown in Figure 5-12. 

 

Figure  5-12: BER Performance for Serial, Parallel Viterbi 
(M=2, 3, 4) with QPSK Modulation Scheme.  

The data are modulated after they are encoded; it has been found that there is no effect of 

Parallel Viterbi if different modulation schemes are used. But in term of system 

enhancement, it’s clear from the Figure 5-13 that BPSK has the best BER performance, so it 

will be used in the next part which using DWT instead of FFT. 
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Figure  5-13: BER Performance for Serial and Parallel 
Viterbi with Different Modulation Techniques. 

5.2.2  IDWT Instead of IFFT 

The structure and algorithm of IFFT, FFT, the conventional method used in modulation 

/demodulation process in OFDM system, has matured today. Researchers have developed 

new transforms in an effort to replace this traditional structure, FFT-based structure. In this 

section, DWT and FFT will be implemented in MATLAB to acquire their BER 

performances, and the results will be compared and analyzed. 

Figure 5-14 shows that DWT-OFDM performs much better than the FFT-OFDM over 

AWGN channel. 
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Figure  5-14: BER for OFDM Based FFT vs. OFDM Based 
DWT (Haar) 

In Figure 5-14 the FFT length used is 256 and with no CP.  It is well known that the insertion 

of the CP decrease the BER. Figure 5-15 show the effect of CP on the BER performance, but 

still the DWT has much better performance.   
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Figure  5-15: FFT with CP vs DWT (Haar). 
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Figure 5-16 shows the effect of FFT length and DWT length on the BER performance. It’s 

clear from the figure that there is no effect on the DWT.  
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Figure  5-16: FFT and DWT (Haar) size Effect on BER. 

The BER performance can be observed for different wavelet families; Biorthogonal, 

Reverse-biorthogonal are compared with FFT-OFDM.  

 

Figure  5-17: DWT Families BER Performance. 
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Figure 5-17shows in the left that ‘bior5.5’ has the best performance in the the Biorthogonal 

family, the right side of the figure show the Reverse-biorthogonal family and the best is 

‘rbio3.3’. Comparing the best from the two families with the ‘haar’ and Daubechies ‘db3’ as 

shown in Figure 5-18.  
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Figure  5-18: BER for OFDM Based FFT vs. OFDM 
Based DWT Biorthogonal Family. 

 

 

 

 

Now, comparing the overall system BER performance; coded with Serial and Parallel Viterbi 

and uncoded (serial and parallel Viterbi) DWT and FFT based OFDM are simulated and the 

results are shown in Figure 5-19.  
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Figure  5-19: BER Performance Comparison between Coded and 
Uncoded FFT and DWT (Haar). 
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CHAPTER SIX 
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Chapter 6 Conclusions and Future Works 
 

In this thesis look-ahead technique has been exploited to create the desired level of 

concurrency in the sequential design of Viterbi Algorithm. It’s clear from the results that 

Viterbi decoding can be using the Look-Ahead transformation technique to give a vectorized 

output. It’s quite interesting that the decrease in execution time is extremely high with only a 

single look-ahead step. This may lead the designers to optimize for this approach despite the 

expected large hardware requirements. 

Although this algorithm can be implemented in a few lines of code, its storage space 

increases exponentially with each additional level of look-ahead. Also the computational 

complexity increases exponentially to compute the next set of matrices. The table for 

decoding storage increases exponentially with the increase of look-ahead step. Therefore, for 

large levels of look-ahead this algorithm would be hard to use. 

The next logical step would be to go for a hardware implementation of the proposed 

algorithm. This will be more challenging as while designing the VA no consideration has 

been put on the hardware cost. 

In BER performance simulation, orthogonal based OFDM systems (DFT-based OFDM, 

DWT-based OFDM, were compared over AWGN channel. DWT-based OFDM system 

performs much DFT-based OFDM systems on AWGN channel. It is worthy to introduce the 

effect of Rayleigh Fading channel and other types of channels.  

 

DWT-based OFDM was only recently introduced to be applied in OFDM system but it holds 

even better potential to produce low hardware complexity because it doesn’t need a CP. With 

its strong BER performance shown in this study, it is worth starting/continuing the 
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development of its hardware architecture and algorithm. Also it's interesting to design such 

wavelet which produces better BER performance.  
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APPENDIX  MATLAB  CODES 

%Sequential Viterbi 
function ipHat_v= vt(y) 
ref = [0 0 ; 0 1; 1 0  ; 1 1 ]; 
ipLUT = [ 0   0   0   0;... 
          0   0   0   0;... 
          1   1   0   0;... 
          0   0   1   1 ]; 
   pathMetric  = zeros(4,1);  % path metric 
   survivorPath_v  = zeros(4,length(y)/2); % survivor path 
   p=[]; 
   for ii = 1:length(y)/2 
      r = y(2*ii-1:2*ii); % taking 2 coded bits 
      % computing the Hamming distance between  [00;01;10;11] 
      rv = kron(ones(4,1),r); 
      hammingDist = sum(xor(rv,ref),2); 
         % branch metric and path metric for state 0 
         bm1 = pathMetric(1,1) + hammingDist(1); 
         bm2 = pathMetric(2,1) + hammingDist(4); 
         [pathMetric_n(1,1) idx] = min([bm1,bm2]); 
         survivorPath(1,1)  = idx;  
         % branch metric and path metric for state 1 
         bm1 = pathMetric(3,1) + hammingDist(3); 
         bm2 = pathMetric(4,1) + hammingDist(2); 
         [pathMetric_n(2,1) idx] = min([bm1,bm2]); 
         survivorPath(2,1)  = idx+2 ; 
         % branch metric and path metric for state 2 
         bm1 = pathMetric(1,1) + hammingDist(4); 
         bm2 = pathMetric(2,1) + hammingDist(1); 
         [pathMetric_n(3,1) idx] = min([bm1,bm2]); 
         survivorPath(3,1)  = idx;  
         % branch metric and path metric for state 3 
         bm1 = pathMetric(3,1) + hammingDist(2); 
         bm2 = pathMetric(4,1) + hammingDist(3); 
         [pathMetric_n(4,1) idx] = min([bm1,bm2]); 
         survivorPath(4,1)  = idx+2;  
     
   pathMetric = pathMetric_n; 
   p=[p pathMetric]; 
   survivorPath_v(:,ii) = survivorPath; 
   end 
   % trace back unit 
   currState = 1; 
   ipHat_v = zeros(1,length(y)/2); 
   for jj = length(y)/2:-1:1 
      prevState = survivorPath_v(currState,jj); 
      ipHat_v(jj) = ipLUT(currState,prevState); 
      currState = prevState; 
   end 
   for jj = length(y)/2:-1:1 
        [xxx id]=min(p(:,jj)); 
       
      prevState = id; 
      ipHat_v(jj) = ipLUT(currState,prevState); 
      currState = prevState; 
   end 
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    ipHat_v=[ipHat_v(1,length(ipHat_v)) ipHat_v(1,1:length(ipHat_v)-1) ] 
; 
end 
 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Parallel Viterbi Decoder 
function [ipHat_v]= vt_p(y) 
oy=0; 
oe=0; 
% y=[1 1 1 0 0 1 0 0 1 0 1] 
ref = [0 0 ; 0 1; 1 0  ; 1 1 ]; 
 [r1,c1]=size(y); 
   if (mod(c1,4)~=0) 
       y=[y zeros(1,4-mod(c1,4))]; 
   end 
   [r1,c1]=size(y); 
   yx=reshape(y,4,c1/4); 
   ix=1; 
   pathMetric  = zeros(4,1);  % path metric 
   p=[]; 
   for ii = 1:2:length(y)/2 
 
    r = yx(:,ix); % taking 2 coded bits 
      % computing the Hamming distance between  [00;01;10;11] 
      rv = kron(ones(4,1),r'); 
      hammingDist(:,1) = sum(xor(rv(:,1:2),ref),2); 
      hammingDist(:,2) = sum(xor(rv(:,3:4),ref),2); 
         % branch metric and path metric for state 0 
         bm1 = hammingDist(1,1)+hammingDist(1,2); 
         bm2 =hammingDist(4,1)+hammingDist(1,2); 
         bm3 = hammingDist(3,1)+hammingDist(4,2); 
         bm4 = hammingDist(2,1)+hammingDist(4,2); 
        pathMetric_n(1,1)  = min([bm1,bm2,bm3,bm4]); 
         
         % branch metric and path metric for state 1 
         bm1 =hammingDist(4,1)+hammingDist(3,2); 
         bm2 = hammingDist(1,1)+hammingDist(3,2); 
         bm3 = hammingDist(2,1)+hammingDist(2,2); 
         bm4 =hammingDist(3,1)+hammingDist(2,2); 
       pathMetric_n(2,1) = min([bm1,bm2,bm3,bm4]); 
 
         % branch metric and path metric for state 2 
         bm1 =hammingDist(1,1)+hammingDist(4,2); 
         bm2 = hammingDist(4,1)+hammingDist(4,2); 
         bm3 = hammingDist(3,1)+hammingDist(1,2); 
         bm4 =hammingDist(2,1)+hammingDist(1,2); 
          pathMetric_n(3,1)  = min([bm1,bm2,bm3,bm4]); 
 
         % branch metric and path metric for state 3 
         bm1 = hammingDist(4,1)+hammingDist(2,2); 
         bm2 = hammingDist(1,1)+hammingDist(2,2); 
         bm3 =hammingDist(2,1)+hammingDist(3,2); 
         bm4 = hammingDist(3,1)+hammingDist(3,2); 
          pathMetric_n(4,1) = min([bm1,bm2,bm3,bm4]);     
  pathMetric = pathMetric_n; 
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   p=[p pathMetric]; 
   ix=ix+1; 
   
   end 
   tic 
survivorPath_v =[0 0;1 0; 0 1; 1 1]; 
   ipHat_v = []; 
   for jj = length(y)/4:-1:1 
        [xxx id]=min(p(:,jj)); 
      ipHat_v =  [survivorPath_v(id,:)  ipHat_v]; 
   end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Convolutional Encoder ; input=1 bit -> output=2 bits with 3 memory elements, Code 
%Rate=1/2 
function [encoded_sequence]=convlenc(message)  
enco_mem=[0 0 0];   %# of memory elements=3 
encoded_sequence=zeros(1,(length(message))*2); 
        
       enco_mem(1,3)=enco_mem(1,2); 
       enco_mem(1,2)=enco_mem(1,1); 
       enco_mem(1,1)=message(1,1); 
  
       temp=xor(enco_mem(1),enco_mem(2));       
       o1=xor(temp,enco_mem(3));             %generator polynomial=111 
       o2=xor(enco_mem(1),enco_mem(3));      %generator polynomial=101 
       encoded_sequence(1,1)=o1; 
       encoded_sequence(1,2)=o2; 
  
msg_len=length(message); 
c=3; 
for i=2:msg_len 
          
       enco_mem(1,3)=enco_mem(1,2); 
       enco_mem(1,2)=enco_mem(1,1); 
       if(i<=msg_len) 
       enco_mem(1,1)=message(1,i); 
       else 
       enco_mem(1,1)=0; 
       end 
               
       temp=xor(enco_mem(1),enco_mem(2));     
       o1=xor(temp,enco_mem(3)); 
       o2=xor(enco_mem(1),enco_mem(3)); 
        
       encoded_sequence(1,c)=o1;    %o1 generating polynomial(1,1,1) 
       c=c+1; 
       encoded_sequence(1,c)=o2;    %o2 generating polynomial(1,0,1) 
       c=c+1; 
end 
  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%DWT-OFDM vs FFT-OFDM 
clear 
hold all 
c=512;         %  
bits=1000;      %  
n=c*bits;       % × 
data= 2*round(rand(1,n))-1;     % 
s = reshape(data,c,[]);        %  
for i=1:c 
    bpsk_sig(i,:)=s(i,:); %  
    fin(i,:)=ifft(bpsk_sig(i,:));  % 
    fin2(i,:)=idwt(bpsk_sig(i,:),zeros(size(bpsk_sig(i,:))),'haar');  
end 
transmit=reshape(fin,1,[]); 
transmit2=reshape(fin2,1,[]); 
snr=[0:2:35]; 
for t=1:length(snr) 
    signal_in_dB=10*log10(std( bpsk_sig(1,:))^2); 
    noise_in_dB=signal_in_dB-snr(t);  
    noise=wgn(size(transmit, 1),size(transmit, 2),noise_in_dB); % 
Generate White Gaussian Noise with variance "noise_in_dB" 
    noise2=wgn(size(transmit2, 1),size(transmit2, 2),noise_in_dB); % 
Generate White Gaussian Noise with variance "noise_in_dB" 
    rxdata=transmit+ noise; 
    rxdata2=transmit2+ noise2; 
    rec=reshape(rxdata,c,[]); 
    rec2=reshape(rxdata2,c,[]); 
    for i=1:c 
        rxdataf(i,:)=fft(rec(i,:));  % 
        uncarry(i,:)=rxdataf(i,:); % 
        rxdataf2(i,:)=dwt(rec2(i,:),'haar');   
        uncarry2(i,:)=rxdataf2(i,:);  
    end 
    rdata=sign(real(uncarry)); 
    num(t)=biterr(rdata+1,s+1)/n; 
    rdata2=sign(real(uncarry2)); 
    num2(t)=biterr(rdata2(:,1:size(s,2))+1,s+1)/n; 
end 
 semilogy(snr,num,'-*r') 
semilogy(snr,num2,'-*m') 
legend('FFT','DWT') 
xlabel('SNR') 
ylabel('BER') 
grid  
  
 
 


