2,860 research outputs found

    Scan matching by cross-correlation and differential evolution

    Get PDF
    Scan matching is an important task, solved in the context of many high-level problems including pose estimation, indoor localization, simultaneous localization and mapping and others. Methods that are accurate and adaptive and at the same time computationally efficient are required to enable location-based services in autonomous mobile devices. Such devices usually have a wide range of high-resolution sensors but only a limited processing power and constrained energy supply. This work introduces a novel high-level scan matching strategy that uses a combination of two advanced algorithms recently used in this field: cross-correlation and differential evolution. The cross-correlation between two laser range scans is used as an efficient measure of scan alignment and the differential evolution algorithm is used to search for the parameters of a transformation that aligns the scans. The proposed method was experimentally validated and showed good ability to match laser range scans taken shortly after each other and an excellent ability to match laser range scans taken with longer time intervals between them.Web of Science88art. no. 85

    Comprehensive Investigation and Evaluation of an Indoor 3D System Performance Based on Visible Light Communication

    Full text link
    The abstract discusses the significance of Visible Light Communication (VLC) as an efficient and cost-effective solution in the era of green technology. VLC not only provides illumination but also high-speed data transmission through existing infrastructure, making it ideal for indoor positioning systems (IPS) with minimal interference with the Radio Frequency (RF) spectrum and enhanced security. While previous research has mainly focused on positioning accuracy, this paper delves into the performance evaluation of a VLC-based indoor system. The study examines key performance parameters, namely Signal-to-Noise Ratio (SNR) and path loss, in a Line of Sight (LOS) scenario. It employs a single LED and ten different photodiode (PD) locations in a 3D room. MATLAB simulations demonstrate the system's effectiveness, achieving a good SNR with low path loss. Additionally, the research highlights the importance of optimizing the PD's position to maximize signal strength while minimizing noise and losses

    Modeling the Behavior of Multipath Components Pertinent to Indoor Geolocation

    Get PDF
    Recently, a number of empirical models have been introduced in the literature for the behavior of direct path used in the design of algorithms for RF based indoor geolocation. Frequent absence of direct path has been a major burden on the performance of these algorithms directing researchers to discover algorithms using multipath diversity. However, there is no reliable model for the behavior of multipath components pertinent to precise indoor geolocation. In this dissertation, we first examine the absence of direct path by statistical analysis of empirical data. Then we show how the concept of path persistency can be exploited to obtain accurate ranging using multipath diversity. We analyze the effects of building architecture on the multipath structure by demonstrating the effects of wall length and wall density on the path persistency. Finally, we introduce a comprehensive model for the spatial behavior of multipath components. We use statistical analysis of empirical data obtained by a measurement calibrated ray-tracing tool to model the time-of- arrival, angle-of-arrival and path gains. The relationship between the transmitter-receiver separation and the number of paths are also incorporated in our model. In addition, principles of ray optics are applied to explain the spatial evolution of path gains, time-of-arrival and angle-of-arrival of individual multipath components as a mobile terminal moves inside a typical indoor environment. We also use statistical modeling for the persistency and birth/death rate of the paths

    Synchronization of weak indoor GPS signals with doppler frequency offset using a segmented matched filter and accumulation

    Get PDF
    Recent government regulations for Enhanced 911 locating of wireless handsets require accuracy to within 50 and 300 meters. Two technologies under consideration are triangulation using existing wireless base stations and location using global positioning satellites (GPS). Satellite positioning is the leading candidate, however, reception of GPS signals within large buildings is difficult and considerable research is devoted to this topic. Conventional GPS receivers require line of sight to at least four satellites and, under outdoor conditions, the expected signal level is about -160 dBW. Within large buildings, detection is very difficult because there is high thermal noise and some satellite signals can be attenuated to less than -185 dBW while others can suffer little attenuation. In order to construct the pseudo-ranges necessary for position finding, the receiver must synchronize to the incoming codephase of each satellite and must operate with substantial Doppler frequency offset caused by satellite motion. This thesis investigates the application of a parallel non-coherent spread spectrum synchronizer previously implemented as a very-large-scale integration (VLSI) circuit. The circuit processes one millisecond of incoming signal and uses a segmented matched filter (SMF) by which the segmentation provides some tolerance to Doppler shift. The thesis presents simulation results of averaging for tens of seconds. Through simulation, the SMF is compared with a transversal matched filter (TMF) under conditions of no Doppler shift; coherent and non-coherent integration are discussed. The simulation is conducted at 290 K (17°C) such that the Boltzmann noise is -204 dBW/Hz, with a GPS signal bandwidth of 2 MHz and signal level of -185 dBW, and the receiver input signal-to-noise ratio (SNR) is -44 dB. The SMF is applied using differing segment lengths to high-sensitivity GPS data from indoor and urban simulated GPS data. The results demonstrate the SMF’s ability to tolerate Doppler frequency offsets while allowing for long integration times to detect the weak GPS signals
    corecore