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RFID Reader Localization Using Hard Decisions
with Error Concealment

M. Al-Jarrah, A. Al-Dweik, Senior Member, IEEE, E. Alsusa, Senior Member, IEEE, and E. Damiani, Senior
Member, IEEE

Abstract—This paper presents an efficient reader localization
algorithm in radio frequency identification (RFID) networks. In
the proposed algorithm, [ ]it is assumed that no channel state
information is available at the reader and the backscatters of
all RFID tags are converted to hard decisions using an energy
detector. The accuracy of the estimated location is improved
using an error concealment algorithm that utilizes the fact that
adjacent tags are expected to produce similar decisions. The final
location estimates are obtained using Particle Swarm Optimiza-
tion of a maximum likelihood estimator that takes into account
imperfections in the sensing and transmission processes. The
performance of the proposed algorithm is evaluated in terms
of the root mean square error using Monte Carlo simulation,
and compared to other well-established localization algorithms.
Moreover, Cramer-Rao lower bound is derived to assess the
efficiency of the new estimator. The obtained results show that
the proposed algorithm estimation accuracy is up to 26 5%more
than the other benchmark estimators.

Index Terms—RFID, localization, positioning, location estima-
tion, received signal strength.

I. INTRODUCTION
Radio frequency identification (RFID) technology plays a

key role in a wide-range of industrial, commercial, medical,
transportation and environmental applications. Indoor local-
ization using RFID networks is a critical emerging application
which has received extensive attention in the literature [1]-
[12]. Generally speaking, the localization techniques reported
in the literature aim at localizing the reader or one of the
tags. In both cases, the required RFID infrastructure should
include a reader and a grid of tags pre-deployed in the re-
gion of interest (RoI) [13]-[17]. For example, DiGiampaolo
and Martinelli [5] proposed a system to localize a mobile
robot equipped with RFID reader and odometry sensors with
the tags fixed to the ceiling. The localization is based on
measuring the phase of the signals transmitted by the tags
with the aid of a multi-hypothesis Kalman filter. In [6], the
influence of the tag interaction on the localization algorithm
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is studied. A two-dimensional localization system for passive
ultra-high frequency (UHF) RFID tags based evaluating the
backscattered transponder signals is proposed in [7], where
the phase and amplitude of signals are jointly used to provide
accurate localization. The authors of [8] developed methods
for the purpose of pattern matching to mitigate the effect of
measurements’ errors by clustering the tags and considering
only a few at a time, denoted as the neighbors tags, in
the localization process. In [9], localization and tracking of
an RFID reader is proposed to achieve accurate localization
using received signal strength indicator (RSSI) measurements
obtained from multiple distributed passive tags. A new de-
ployment optimization approach for readers with directional
antennas is proposed in [12], where a novel particle swarm
optimization (PSO) is applied. A probabilistic model
based on the recursive Kalman filter is considered in [10]
to reduce errors in the least squares sense, while a Bayesian
filter is applied in [14] using a fixed RF transmission power
model to localize RFID tags. Moreover, hybrid RSSI and
time of arrival (TOA) localization is considered in [16] to
localize multiple targets, where an approximate solution for
the positions is derived based on the weighted least squares
criterion.
Although the aforementioned techniques offer high accu-

racy, their computational complexity and overhead are gen-
erally high. For example, the algorithms reported in [4]-
[8], [12] employ TOA, time difference of arrival (TDOA),
angle of arrival (AOA), or phase of arrival (POA). Such
techniques require perfect time synchronization between all
the transmitters and receivers, and accurate calculation for
the entire cycle phase. Therefore, localization using RSSI can
be considered as an efficient solution to reduce complexity,
but it usually comes at the expense of reduced accuracy due
to the impact of channel effects [6], [9], [18]. A fault-
tolerant RFID reader localization approach, that can handle
regional permanent faults is given in [2]. Although the pro-
posed algorithm may provide reliable location estimates in
certain scenarios, it is limited to dense distributions of passive
tags, and its complexity is , where is the number of
tags. To overcome the fading effects, localization based on
hard decision (HD) RSSI is considered in [19] where a local
voting algorithm (LVA) is used to correct the hard decisions of
certain tags before estimating the reader’s location. However,
the estimator is designed under the assumption of error-free
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link between the tags and the reader, and the distances between
the reader and neighbor tags are equal. Therefore, the LVA
accuracy deteriorates significantly at low signal-to-noise ratios
(SNRs). A simplified version of [19] is reported in [20], but
without local voting, and hence, its performance is worse
than LVA at high SNRs. In addition, a soft range lim-
ited -nearest neighbors (KNNs) localization fingerprinting
algorithm is proposed in [21], where a scale factor related to
the physical distance between the user’s previous position and
reference location is considered.

To the best of the authors’ knowledge, there is no
work in the literature that tackled the RFID reader localiza-
tion problem while considering imperfect transmission and
error concealment. Therefore, we propose an efficient reader
localization algorithm for RFID networks where it is assumed
that some of the tags do not receive the reader’s signal, and
hence do not respond to the reader interrogation signal (RIS).
Moreover, the algorithm is designed while considering the
impact of channel fading and the fact that adjacent tags are not
necessarily at equal distance from the reader. The localization
process is based on the maximum likelihood (ML) principle
combined with a low complexity error concealment process to
provide accurate location estimates. The system performance
is evaluated in terms of the root mean square error (RMSE)
for which the Cramer-Rao lower bound (CRLB) is derived.
The rest of the paper is organized as follows. In Section II,

the systemmodel is presented, followed by the proposed local-
ization algorithm in Section III. In Section IV, the CRLB of the
proposed localization algorithm is derived. Section V presents
the analytical and simulation results. Finally, conclusions are
provided in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider an RFID network that consists of one reader and
tags distributed in the RoI with known positions. The

reader sends its radio frequency (RF) interrogation signals at
a particular frequency, and then listens to the return signals
transmitted by the tags. A tag that detects the RIS responds
by transmitting a confirmation signal back to the reader, oth-
erwise it remains silent. As such, the reader and tags have two
operating modes, the transmission and listening modes. To
increase the probability of detecting its interrogation signals
by the tags, the reader may send a sequence of signals to
enable the tag to combine these signals before it decides to
respond back to the reader. In the listening mode, the reader
receives only signals, where is the number of tags
that have successfully detected the RIS. The tags do
not respond because they are outside the coverage range of
the reader, or due to channel fading and/or system noise. The
reader’s objective is to determine its location based on the
received signals.

A. Received signal model at the tag

The baseband representation of the received signal at the
th tag during the th signaling period can be written as

, ,
(1)

where is the reader transmit power,
is a complex Gaussian distributed channel gain,

is the additive white Gaussian noise (AWGN) and
is the free space path loss,

. (2)

The wavelength of the RIS in (2) is denoted as and the
distance between the th tag and the reader is denoted as ,
which can be computed as

(3)

where and , are the Cartesian coordinates
of the reader and th tag, respectively.

To mitigate the impact of channel fading and noise, the
participant tags may take repeated votes before deciding to
respond to the RIS. Under power and delay constraints, the
polling frequency may be adaptable to minimize the prob-
ability of error [22]. However, such optimization could be
computationally prohibitive in RFID scenarios due to com-
putational power constraints, and thus, this work considers a
fixed for all tags. Given that the reader sends a sequence
of polling signals during its transmission mode that last for

seconds, combining the RISs can be performed using
various techniques, however equal gain combining is adopted
in this context due to its simple implementation. Therefore,
the combined RISs can be written as

(4)

where , , , and
. For large values of , the ensemble aver-

age can be approximated by the statistical average, and thus
, where represents the expecta-

tion process. Finally, the signal is applied to the detector,
which makes a binary decision (hard decision) whether to
respond to the RIS or not. The decision at the tag can be
described by

,
, (5)

The detection threshold that can be selected to control the
tags’ sensitivity to the received signals. More specifically,
can be adjusted to limit the number of tags that may receive
and respond to the RIS. By noting that



3

and using (2), can be expressed as

(6)

where is the radius of the reader coverage area. It
is worth noting that the effect of the free space path loss
in (6) is based on the assumption that the radiation pattern
of the reader is circular. Although it might be infeasible to
design perfectly circular radiation patterns in practice, there
are several antennas designed for RFID applications that has
near-ideal omnidirectional antennas [25]-[27]. Consequently,
the reader radiation pattern can be closely approximated by a
circular pattern, and the free space path loss for all tags at a
distance from the reader can be considered equivalent.
Based on (4) and (5), the probability that a tag successfully

detects the RIS is given by

(7)

where is the Q-function. After the detection process,
each tag with will respond back to the reader by
sending a continuous signal with average transmit power
and duration of seconds.

B. Received signal model at the reader

In this work, it is assumed that the RFID system
employs an anti-collision protocol, and hence there is no
interference between the signals transmitted by the active
tags [4], [6]. Therefore, the received signal from the th tag
can be written as

(8)

where is the overall channel
coefficient that captures the small and large scale fading
effects, and is the AWGN. Thus, can
be written as

(9)

To estimate its location, defined by , the reader
initially detects the responses collected from the tags. To
avoid the channel estimation overheads for signals, the
reader may use blind detection schemes such as energy detec-
tion [18], where the received signal energy can be expressed
as

. (10)

Based on (10), the ML estimator (MLE) using
, , . . . , is given by

(11)

where

. (12)

It is worth noting that in (12) is implicitly included in .
Since , then is exponentially
distributed with mean , where

. Consequently, the MLE can be written as

SDE .

(13)
Because the MLE in (13) is based on the unquantized values,
i.e. soft values, of , it is denoted as soft decision estimator
(SDE) [18]. As can be noted from (13), it is infeasible to
compute analytically, and thus, exhaustive search methods
should be used.
An alternative approach to estimate the location of the

reader is to use to generate hard decisions (binary de-
cisions), for each tag individually, and then the likelihood
function is derived based on the hard decisions, and hence it is
denoted as the HD estimator (HDE) [20]. In other words, the
reader tries to estimate , and use the estimated values,
denoted as to estimate its location. The
optimum HD detector can be formulated as,

, , , ,

(14)

After some manipulations, (14) can be written as

,
, (15)

where , and

. (16)

Thereafter, the MLE based on can be formulated as

HDE .

(17)
The pairwise probability can be derived from (15)
and (16),

(18)

where .
In high signal to noise ratio (SNR) scenarios, the channel

can be considered error free and is equal for nearby
tags. Consequently, the decisions made by a particular tag can
be corrected at the reader based on the decisions of the nearest
tags [19], and hence, this approach is denoted as the local

voting algorithm (LVA). Given that the set of all tags in the RoI
is denoted as , and the set of neighboring tags is denoted
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as , where , the decision correction process for each
signal in can be described as

,
, (19)

where , is the Hamming weight,
is the corrected decision and , where is the

ceiling function. Therefore, the corrected decisions have the
following probabilities,

(20)

and . Therefore, the MLE
based on the LVA algorithm is

LVA . (21)

Generally speaking, the signal transmitted/received by
the tag depends on the tag model and frequency band used. In
this work, we consider that all RFID tags are omnidirectional
in both horizontal and vertical dimensions. Therefore, the
transmitted/received signal models of the tags are independent
of the tag orientation. The design of such tags at MHz
frequency is reported in [28].

III. THE PROPOSED LOCALIZATION ALGORITHM

To maintain low complexity of the MLE with hard de-
cisions, the proposed algorithm is based on binary energy
detection as the first stage to produce the vector as described
in (15). In the second stage, error concealment is applied
to correct the erroneous decisions and produce a new set of
decisions denoted as . Finally, the MLE is applied to estimate
the location of the reader. The proposed localization algorithm
with error concealment (LEC) and the MLE are derived in the
following two subsections.

A. The error concealment process
Due to channel impairments, it is highly likely that
, and hence the performance of the MLE may deteriorate.

In practical scenarios, tags in the vicinity of each other are
expected to produce similar decisions, i.e.,
. Therefore, the LEC is designed to exploit such correlation

to correct the errors before the location estimation process. An
example for the LEC using is given in Algorithm 1.
The correction threshold should be dynamically adjusted

to consider the variable number of tags in that detected the
RIS as well as the imbalanced probability induced by the hard
decision detector. By noting that is typically set to in
error free transmissions [19], it can be dynamically changed
by considering the channel effects on the signals sent from the

Algorithm 1: Error Concealment Process
Input: ^ , = f1, 2, , g,
1. Form the matrix Û :  ^ , = p , =

mod
p

+ 1

2. for = 2 :
p
 1

3. for = 2 :
p
 1

4. compute Û(  1 : + 1  1 : + 1)

5. set ~ =
1, W �
0, otherwise

6. end for
7. end for
8. return: ~ , = f1, 2, , g

tags to the reader. Thus,

(22)

By noting that when , then (22) can
be simplified to

. (23)

Using the law of total probability, the summand in (23) can be
written as

(24)

Given that , then
, and thus

(25)

where and are
given in (18).
In the special case that the average SNRs of the received

signals from the tags in are equal, then the probability of
error for all tags in is equal, which is mostly the case since
all tags in have approximately the same path loss. Moreover,
by noting that for for , then
. By substituting in (25), and substituting (25)

in (23), then can be computed as

. (26)

Fig. 1 shows an example selected from one of the simulation
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Fig. 1. Example of the error concealment process for = 9.

result for the error concealment process for an grid.
The sliding window started from the top-left corner where

and . As can be noted from the figure, the con-
cealment process inverted values, tags were excluded
( ) and were included ( ). In this scenario,
about of the excluded tags are close to the reader and should
have been considered. nevertheless, the number of eliminated
outliers is much larger than the number of legitimate tags that
were erroneously excluded, which implies that the localization
accuracy will eventually improve.

1) LEC based maximum likelihood estimator: The MLE is
formulated based on the corrected decisions obtained from the
LEC, and thus

LEC . (27)

By noting that , the summand in (27)
LEC can be expressed as

LEC

. (28)

Since is a sum of independent Bernoulli random
variables with different probability of success, then is a
Poisson-binomial distributed random variable with a cumula-

Fig. 2. Block Diagram of the proposed LEC.

Algorithm 2: Proposed LEC
Input: , , , ,
1. for
2. Compute using ((10)
3. Compute using (15)
4. end for
5. Compute using Algorithm 1
6. for
7. Compute using (30)
8. Compute using (29)
9. end for
10. Compute LEC using (28)
11. Compute in (27) using PSO
12. return

tive distribution function (CDF) given by [23]

(29)

where is given by

. (30)

Finally, (29) is substituted in (28), and PSO is applied to
compute which maximizes LEC
To summarize the proposed system, Fig. 2 and Algorithm

2 are presented, where the figure shows the system level block
diagram while Algorithm 2 describes the system in a step-by-
step manner.
Generally speaking, all HD based estimators [18]-[20] have

comparable computational complexity, which is mostly de-
termined by the maximization of the likelihood function.
However, the proposed LEC and LVA [19] have some ad-
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ditional complexity over [20] caused by the error correction
process. Nevertheless, the correction process is based on a
low complexity majority voting operation within a small size
sliding window, and hence, the computational complexity of
the proposed LEC and [18]-[20] can be considered equivalent.

IV. CRLB OF THE PROPOSED ESTIMATOR
The variance of an unbiased estimator is bounded by ,

where is the Fisher information matrix [24],

(31)

where is the Hermitian operator. The Fisher information
matrix of LEC is given by

LEC

LEC LEC

LEC LEC
(32)

where and are the gradient and transpose operators,
respectively. The elements of are

(33)

(34)

(35)
(36)

and the derivative is given by

(37)

where , and

(38)

It can be noted that
and
since

. Moreover, in (37) and (38)
can be replaced by to find .

100100
5050

00
-50-50

-100-100

Fig. 3. The log-likelihood function where = 256, = 50, SNR = 50
dB and ( ) = (0 0).

V. NUMERIC RESULTS
This section presents the simulation results for the proposed

localization algorithm and compares them to those of the
algorithms reported in [18]-[20]. The Monte Carlo simulation
is configured to perform runs for each simulation point,
where a PSO with particles and generations is applied
to find the global maximum of the log-likelihood function.
The RFID tags with known positions are uniformly distributed
over a grid with an area of m m . The obtained
results are generated for various operating scenarios such as
the reader location, SNR and number of tags. The system
and channel parameters for the downlink (reader tag) are:

, W/Hz, dBW,
dBW, , m, and m.

The RMSE is defined as .
Fig. 3 depicts the log-likelihood function in three dimen-

sional representation, where tags are distributed over the
RoI to localize an RFID reader located at
position. The is set to dB and the number
of RISs . As can be noted from the figure, the log-
likelihood function has a global maximum that corresponds to
the Cartesian coordinates of the reader estimated location.
Fig. 4 shows the RMSE of the proposed estimator for

different values of using dB, ,
and . The figure also presents the RMSE of the LVA
[19], SDE [18], HDE [20], KNN [21], and the CRLB. The
results in the figure show that the proposed LEC outperforms
all the other considered estimators for the entire range of .
However, the improvement depends on the values of . The
average relative improvement over the considered range of
with respect to the LVA, SDE, HDE and KNN is about ,

, , and , respectively. Moreover, it
can be noted that the LVA performs poorly at low values of
since the correction window may include readings from
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Fig. 4. RMSE of the estimated position using the proposed LEC, LVA [19],
SDE [20] HDE [18] and [ ]KNN [21] using SNR = 8 dB.
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25

Fig. 5. RMSE of the estimated position using the proposed LEC, LVA [19],
SDE [20] HDE [18] [ ] and KNN [21] using SNR = 15 dB.

distant tags. The KNN algorithm outperforms the HDE and
SDE for the entire range of , and the LVA for . The
KNN and LEC demonstrate equivalent RMSE at .
Fig. 5 is generated using the same parameters used for

Fig. 4 except that dB. As can be seen from the
figure, all the considered algorithms exhibit significant RMSE
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30

35

40

45

50

Fig. 6. The RMSE of the estimated position using the proposed LEC, LVA
[19], SDE [20] HDE [18] [ ]and KNN [21] versus SNR, = 100.

reduction, particularly the LVA one since the assumption that
the tag reader channel is error free becomes plausible at such
high SNRs. The average relative improvement of the proposed
LEC algorithm over the LVA, SDE, HDE, and KNN algo-
rithms is about , , , and , respectively.

The figure also shows that the KNN RMSE improves by
increasing the , though at a slower rate in comparison
to the other considered techniques. Moreover, the results in
Figs. 4 and 5 show that the RMSE of the proposed estimator
approaches the CRLB when there is a large number of tags
and high SNRs.
Fig. 6 shows the RMSE of the considered estimators versus

SNR using , , and the reader is located at
, . The results in the figure show that the

proposed LEC noticeably outperforms the SDE and HDE for
the considered range of SNRs, and the LVA at low SNRs. For

dB, the RMSE of the LEC and LVA converge since
the tag reader link becomes nearly error free. The KNN
outperforms the proposed LEC at SNRs dB, which is
due to the fact the error concealment process fails to improve
the performance at very low SNRs. The average improvement
with respect to the LVA, SDE, HDE and KNN is about ,

, , and , respectively.

VI. CONCLUSION AND FUTURE WORK

In this paper, the problem of RFID reader localization using
distributed tags was considered. To mitigate the impact of
channel impairments, a novel maximum likelihood estimator
was proposed based on the signals received from the tags. By
considering that the reader performs hard decisions on the
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signals received from the tags, a simple error concealment
process is applied to improve the estimator’s accuracy. The
system was simulated for different cases of interest and the
RMSE results were compared to four benchmark estimators.
The obtained results showed that the proposed estimator con-
siderably outperforms the other considered localization tech-
niques. Moreover, the CRLB for the RMSE of the proposed
algorithm was derived to asses its efficiency.

To capture the impact of various practical imperfec-
tions, evaluating the performance of the proposed algorithm
experimentally is indispensable. Therefore, our future work
includes developing a testbed to collect a large set of results
in different channel conditions and compare the experimental
results with the simulation and analytical results obtained in
this work.
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