444 research outputs found

    Constructing bilayer and volumetric atrial models at scale.

    Get PDF
    To enable large in silico trials and personalized model predictions on clinical timescales, it is imperative that models can be constructed quickly and reproducibly. First, we aimed to overcome the challenges of constructing cardiac models at scale through developing a robust, open-source pipeline for bilayer and volumetric atrial models. Second, we aimed to investigate the effects of fibres, fibrosis and model representation on fibrillatory dynamics. To construct bilayer and volumetric models, we extended our previously developed coordinate system to incorporate transmurality, atrial regions and fibres (rule-based or data driven diffusion tensor magnetic resonance imaging (MRI)). We created a cohort of 1000 biatrial bilayer and volumetric models derived from computed tomography (CT) data, as well as models from MRI, and electroanatomical mapping. Fibrillatory dynamics diverged between bilayer and volumetric simulations across the CT cohort (correlation coefficient for phase singularity maps: left atrial (LA) 0.27 ± 0.19, right atrial (RA) 0.41 ± 0.14). Adding fibrotic remodelling stabilized re-entries and reduced the impact of model type (LA: 0.52 ± 0.20, RA: 0.36 ± 0.18). The choice of fibre field has a small effect on paced activation data (less than 12 ms), but a larger effect on fibrillatory dynamics. Overall, we developed an open-source user-friendly pipeline for generating atrial models from imaging or electroanatomical mapping data enabling in silico clinical trials at scale (https://github.com/pcmlab/atrialmtk)

    Personalized ablation vs. conventional ablation strategies to terminate atrial fibrillation and prevent recurrence

    Get PDF
    Aims The long-term success rate of ablation therapy is still sub-optimal in patients with persistent atrial fibrillation (AF), mostly due to arrhythmia recurrence originating from arrhythmogenic sites outside the pulmonary veins. Computational modelling provides a framework to integrate and augment clinical data, potentially enabling the patient-specific identification of AF mechanisms and of the optimal ablation sites. We developed a technology to tailor ablations in anatomical and functional digital atrial twins of patients with persistent AF aiming to identify the most successful ablation strategy. Methods and results Twenty-nine patient-specific computational models integrating clinical information from tomographic imaging and electro-anatomical activation time and voltage maps were generated. Areas sustaining AF were identified by a personalized induction protocol at multiple locations. State-of-the-art anatomical and substrate ablation strategies were compared with our proposed Personalized Ablation Lines (PersonAL) plan, which consists of iteratively targeting emergent high dominant frequency (HDF) regions, to identify the optimal ablation strategy. Localized ablations were connected to the closest non-conductive barrier to prevent recurrence of AF or atrial tachycardia. The first application of the HDF strategy had a success of >98% and isolated only 5–6% of the left atrial myocardium. In contrast, conventional ablation strategies targeting anatomical or structural substrate resulted in isolation of up to 20% of left atrial myocardium. After a second iteration of the HDF strategy, no further arrhythmia episode could be induced in any of the patient-specific models. Conclusion The novel PersonAL in silico technology allows to unveil all AF-perpetuating areas and personalize ablation by leveraging atrial digital twins

    Insight into the Gating Mechanism of Mechanosensitive Ion Channels using a simple structure: A step in the analysis of commotio cordis

    Get PDF
    Mechanosensation in cells is a well known phenomenon that is associated with cellular responses to force. Our knowledge of the trigger mechanism of this phenomenon is, however, limited. Earlier studies in this field have used atomic simulations, which although being accurate, are limited in their feasibility in multi-length scenarios like a mechanosensitive channel that undergoes micro-level changes in the composition of the protein to cause a macro-level change in the state of a biological structure such as the muscle. Finite Element Analysis has been used in various engineering fields to study the mechanical response of complex structures. The current study is a step in utilizing the phenomenal capabilities of Finite Element Analysis in developing and studying a 3D model (Membrane-Channel) of a mechanosensitive channel of large conductance (MscL). A simplified CAD structure of Mycobacterium tuberculosis (TbMscL) was developed in the first stage of this study. The authenticity of this model was tested by applying two types of loading conditions, namely (i) In-plane stretch and (ii) Out-of-plane bending. The results obtained from the first step of analysis are in accordance with previous experimental data, which elucidates the fact that tension within the membrane guides the gating mechanism of the channel and not the curvature of the membrane. The second stage of the analysis involved the use of the same model to study the disease commotio cordis. This was achieved by calculating the loading conditions during the onset of the condition in the human heart and then transferring those conditions to the Membrane-Channel model developed in the first stage. The result showed that although the channel did not fully open but there was a significant change in the channel‟s radius that might cause the flow of ions, thereby changing the state of the channel. It is anticipated that this model will help future research in areas that conventionally have been difficult to model

    Wavelength and Fibrosis Affect Phase Singularity Locations During Atrial Fibrillation

    Get PDF
    The mechanisms underlying atrial fibrillation (AF), the most common sustained cardiac rhythm disturbance, remain elusive. Atrial fibrosis plays an important role in the development of AF and rotor dynamics. Both electrical wavelength (WL) and the degree of atrial fibrosis change as AF progresses. However, their combined effect on rotor core location remains unknown. The aim of this study was to analyze the effects of WL change on rotor core location in both fibrotic and non-fibrotic atria. Three patient specific fibrosis distributions (total fibrosis content: 16.6, 22.8, and 19.2%) obtained from clinical imaging data of persistent AF patients were incorporated in a bilayer atrial computational model. Fibrotic effects were modeled as myocyte-fibroblast coupling + conductivity remodeling; structural remodeling; ionic current changes + conductivity remodeling; and combinations of these methods. To change WL, action potential duration (APD) was varied from 120 to 240ms, representing the range of clinically observed AF cycle length, by modifying the inward rectifier potassium current (IK1) conductance between 80 and 140% of the original value. Phase singularities (PSs) were computed to identify rotor core locations. Our results show that IK1 conductance variation resulted in a decrease of APD and WL across the atria. For large WL in the absence of fibrosis, PSs anchored to regions with high APD gradient at the center of the left atrium (LA) anterior wall and near the junctions of the inferior pulmonary veins (PVs) with the LA. Decreasing the WL induced more PSs, whose distribution became less clustered. With fibrosis, PS locations depended on the fibrosis distribution and the fibrosis implementation method. The proportion of PSs in fibrotic areas and along the borders varied with both WL and fibrosis modeling method: for patient one, this was 4.2–14.9% as IK1 varied for the structural remodeling representation, but 12.3–88.4% using the combination of structural remodeling with myocyte-fibroblast coupling. The degree and distribution of fibrosis and the choice of implementation technique had a larger effect on PS locations than the WL variation. Thus, distinguishing the fibrotic mechanisms present in a patient is important for interpreting clinical fibrosis maps to create personalized models
    • …
    corecore