5 research outputs found

    Extracting Rules for Diagnosis of Diabetes Using Genetic Programming

    Get PDF
    Background: Diabetes is a global health challenge that cusses high incidence of major social and economic consequences. As such, early prevention or identification of those people at risk is crucial for reducing the problems caused by it. The aim of study was to extract the rules for diabetes diagnosing using genetic programming. Methods: This study utilized the PIMA dataset of the University of California, Irvine. This dataset consists of the information of 768 Pima heritage women, including 500 healthy persons and 268 persons with diabetes. Regarding the missing values and outliers in this dataset, the K-nearest neighbor and k-means methods are applied respectively. Moreover, a genetic programming model (GP) was conducted to diagnose diabetes as well as to determine the most important factors affecting it. Accuracy, sensitivity and specificity of the proposed model on the PIMA dataset were obtained as 79.32, 58.96 and 90.74%, respectively. Results: The experimental results of our model on PIMA revealed that age, PG concentration, BMI, Tri Fold Thick and Serum Ins were effective in diabetes mellitus and increased risk of diabetes. In addition, the good performance of the model coupled with the simplicity and comprehensiveness of the extracted rules is also shown by the experimental results. Conclusions: GPs can effectively implement the rules for diagnosing diabetes. Both BMI and PG Concentration are also the most important factors to increase the risk of suffering from diabetes. Keywords: Diabetes, PIMA, Genetic programming, KNNi, K-means, Missing value, Outlier detection, Rule extraction

    Extracting Rules for Diagnosis of Diabetes Using Genetic Programming

    Get PDF
    Background: Diabetes is a global health challenge that cusses high incidence of major social and economic consequences. As such, early prevention or identification of those people at risk is crucial for reducing the problems caused by it. The aim of study was to extract the rules for diabetes diagnosing using genetic programming. Methods: This study utilized the PIMA dataset of the University of California, Irvine. This dataset consists of the information of 768 Pima heritage women, including 500 healthy persons and 268 persons with diabetes. Regarding the missing values and outliers in this dataset, the K-nearest neighbor and k-means methods are applied respectively. Moreover, a genetic programming model (GP) was conducted to diagnose diabetes as well as to determine the most important factors affecting it. Accuracy, sensitivity and specificity of the proposed model on the PIMA dataset were obtained as 79.32, 58.96 and 90.74%, respectively. Results: The experimental results of our model on PIMA revealed that age, PG concentration, BMI, Tri Fold Thick and Serum Ins were effective in diabetes mellitus and increased risk of diabetes. In addition, the good performance of the model coupled with the simplicity and comprehensiveness of the extracted rules is also shown by the experimental results. Conclusions: GPs can effectively implement the rules for diagnosing diabetes. Both BMI and PG Concentration are also the most important factors to increase the risk of suffering from diabetes. Keywords: Diabetes, PIMA, Genetic programming, KNNi, K-means, Missing value, Outlier detection, Rule extraction

    Bibliometric of Feature Selection Using Optimization Techniques in Healthcare using Scopus and Web of Science Databases

    Get PDF
    Feature selection technique is an important step in the prediction and classification process, primarily in data mining related aspects or related to medical field. Feature selection is immersive with the errand of choosing a subset of applicable features that could be utilized in developing a prototype. Medical datasets are huge in size; hence some effective optimization techniques are required to produce accurate results. Optimization algorithms are a critical function in medical data mining particularly in identifying diseases since it offers excellent effectiveness in minimum computational expense and time. The classification algorithms also produce superior outcomes when an objective function is built using the feature selection algorithm. The solitary motive of the research paper analysis is to comprehend the reach and utility of optimization algorithms such as the Genetic Algorithm (GA), the Particle Swarm Optimization (PSO) and the Ant Colony Optimization (ACO) in the field of Health care. The aim is to bring efficiency and maximum optimization in the health care sector using the vast information that is already available related to these fields. With the help of data sets that are available in the health care analysis, our focus is to extract the most important features using optimization techniques and work on different algorithms so as to get the most optimized result. Precision largely depends on usefulness of features that are taken into consideration along with finding useful patterns in those features to characterize the main problem. The Performance of the optimized algorithm finds the overall optimum with less function evaluation. The principle target of this examination is to optimize feature selection technique to bring an optimized and efficient model to cater to various health issues. In this research paper, to do bibliometric analysis Scopus and Web of Science databases are used. This bibliometric analysis considers important keywords, datasets, significance of the considered research papers. It also gives details about types, sources of publications, yearly publication trends, significant countries from Scopus and Web of Science. Also, it captures details about co-appearing keywords, authors, source titles through networked diagrams. In a way, this research paper can be useful to researchers who want to contribute in the area of feature selection and optimization in healthcare. From this research paper it is observed that there is a lot scope for research for the considered research area. This kind of research will also be helpful for analyzing pandemic scenarios like COVID-19

    Entropy maximizing evolutionary design optimization of water distribution networks under multiple operating conditions

    Get PDF
    The informational entropy model for flow networks was formulated over 30 years ago by Tanyimboh and Templeman (University of Liverpool, UK) for a single discrete operating condition that typically comprises the maximum daily demands and was undefined for water distribution networks (WDNs) under multiple operating conditions. Its extension to include multiple independent discrete operating conditions was investigated experimentally herein considering the relationships between flow entropy and hydraulic capacity reliability and redundancy. A novel penalty-free multi-objective genetic algorithm was developed to minimize the initial construction cost and maximize the flow entropy subject to the design constraints. Furthermore, optimized designs derived from the maximum daily demands as a single discrete operating condition were compared to those derived from a combination of discrete operating conditions. Optimized designs from a combination of discrete operating conditions outperformed those from a single operating condition in terms of performance and initial construction cost. The best results overall were achieved by maximizing the sum of the flow entropies of the discrete operating conditions. The logical inference from the results is that the flow entropy of multiple discrete operating conditions is the sum of their respective entropies. In addition, a crucial property of the resulting flow entropy model is that it is bias free with respect to the individual operating conditions; hitherto a fundamental weakness concerning the practical application of the flow entropy model to WDNs is thus addressed
    corecore