233,785 research outputs found

    A Better-response Strategy for Self-interested Planning Agents

    Full text link
    [EN] When self-interested agents plan individually, interactions that prevent them from executing their actions as planned may arise. In these coordination problems, game-theoretic planning can be used to enhance the agents¿ strategic behavior considering the interactions as part of the agents¿ utility. In this work, we define a general-sum game in which interactions such as conflicts and congestions are reflected in the agents¿ utility. We propose a better-response planning strategy that guarantees convergence to an equilibrium joint plan by imposing a tax to agents involved in conflicts. We apply our approach to a real-world problem in which agents are Electric Autonomous Vehicles (EAVs). The EAVs intend to find a joint plan that ensures their individual goals are achievable in a transportation scenario where congestion and conflicting situations may arise. Although the task is computationally hard, as we theoretically prove, the experimental results show that our approach outperforms similar approaches in both performance and solution quality.This work is supported by the GLASS project TIN2014-55637-C2-2-R of the Spanish MINECO and the Prometeo project II/2013/019 funded by the Valencian Government.Jordán, J.; Torreño Lerma, A.; De Weerdt, M.; Onaindia De La Rivaherrera, E. (2018). A Better-response Strategy for Self-interested Planning Agents. Applied Intelligence. 48(4):1020-1040. https://doi.org/10.1007/s10489-017-1046-5S10201040484Aghighi M, Bäckström C (2016) A multi-parameter complexity analysis of cost-optimal and net-benefit planning. In: Proceedings of the Twenty-Sixth International Conference on International Conference on Automated Planning and Scheduling. AAAI Press, London, pp 2–10Bercher P, Mattmüller R (2008) A planning graph heuristic for forward-chaining adversarial planning. In: ECAI, vol 8, pp 921–922Brafman RI, Domshlak C, Engel Y, Tennenholtz M (2009) Planning games. In: IJCAI 2009, Proceedings of the 21st international joint conference on artificial intelligence, pp 73–78Bylander T (1994) The computational complexity of propositional strips planning. Artif Intell 69(1):165–204Chen X, Deng X (2006) Settling the complexity of two-player nash equilibrium. In: 47th annual IEEE symposium on foundations of computer science, 2006. FOCS’06. IEEE, pp 261–272Chien S, Sinclair A (2011) Convergence to approximate nash equilibria in congestion games. Games and Economic Behavior 71(2):315–327de Cote EM, Chapman A, Sykulski AM, Jennings N (2010) Automated planning in repeated adversarial games. In: 26th conference on uncertainty in artificial intelligence (UAI 2010), pp 376–383Dunne PE, Kraus S, Manisterski E, Wooldridge M (2010) Solving coalitional resource games. Artif Intell 174(1):20–50Fabrikant A, Papadimitriou C, Talwar K (2004) The complexity of pure nash equilibria. In: Proceedings of the thirty-sixth annual ACM symposium on theory of computing, STOC ’04, pp 604–612Friedman JW, Mezzetti C (2001) Learning in games by random sampling. J Econ Theory 98(1):55–84Ghallab M, Nau D, Traverso P (2004) Automated planning: theory & practice. ElsevierGoemans M, Mirrokni V, Vetta A (2005) Sink equilibria and convergence. In: Proceedings of the 46th annual IEEE symposium on foundations of computer science, FOCS ’05, pp 142–154Hadad M, Kraus S, Hartman IBA, Rosenfeld A (2013) Group planning with time constraints. Ann Math Artif Intell 69(3):243–291Hart S, Mansour Y (2010) How long to equilibrium? the communication complexity of uncoupled equilibrium procedures. Games and Economic Behavior 69(1):107–126Helmert M (2003) Complexity results for standard benchmark domains in planning. Artif Intell 143(2):219–262Helmert M (2006) The fast downward planning system. J Artif Intell Res 26(1):191–246Jennings N, Faratin P, Lomuscio A, Parsons S, Wooldrige M, Sierra C (2001) Automated negotiation: prospects, methods and challenges. Group Decis Negot 10(2):199–215Johnson DS, Papadimtriou CH, Yannakakis M (1988) How easy is local search? J Comput Syst Sci 37 (1):79–100Jonsson A, Rovatsos M (2011) Scaling up multiagent planning: a best-response approach. In: Proceedings of the 21st international conference on automated planning and scheduling, ICAPSJordán J, Onaindía E (2015) Game-theoretic approach for non-cooperative planning. In: 29th AAAI conference on artificial intelligence (AAAI-15), pp 1357–1363McDermott D, Ghallab M, Howe A, Knoblock C, Ram A, Veloso M, Weld D, Wilkins D (1998) PDDL: the planning domain definition language. Yale Center for Computational Vision and Control, New HavenMilchtaich I (1996) Congestion games with player-specific payoff functions. Games and Economic Behavior 13(1):111–124Monderer D, Shapley LS (1996) Potential games. Games and Economic Behavior 14(1):124–143Nigro N, Welch D, Peace J (2015) Strategic planning to implement publicly available ev charching stations: a guide for business and policy makers. Tech rep, Center for Climate and Energy SolutionsNisan N, Ronen A (2007) Computationally feasible vcg mechanisms. J Artif Intell Res 29(1):19–47Nisan N, Roughgarden T, Tardos E, Vazirani VV (2007) Algorithmic game theory. Cambridge University Press, New YorkPapadimitriou CH (1994) On the complexity of the parity argument and other inefficient proofs of existence. J Comput Syst Sci 48(3):498–532Richter S, Westphal M (2010) The LAMA planner: guiding cost-based anytime planning with landmarks. J Artif Intell Res 39(1):127–177Rosenthal RW (1973) A class of games possessing pure-strategy nash equilibria. Int J Game Theory 2(1):65–67Shoham Y, Leyton-Brown K (2009) Multiagent systems: algorithmic, game-theoretic, and logical foundations. Cambridge University PressTorreño A, Onaindia E, Sapena Ó (2014) A flexible coupling approach to multi-agent planning under incomplete information. Knowl Inf Syst 38(1):141–178Torreño A, Onaindia E, Sapena Ó (2014) FMAP: distributed cooperative multi-agent planning. Appl Intell 41(2):606– 626Torreño A, Sapena Ó, Onaindia E (2015) Global heuristics for distributed cooperative multi-agent planning. In: ICAPS 2015. 25th international conference on automated planning and scheduling. AAAI Press, pp 225–233Von Neumann J, Morgenstern O (2007) Theory of games and economic behavior. Princeton University Pressde Weerdt M, Bos A, Tonino H, Witteveen C (2003) A resource logic for multi-agent plan merging. Ann Math Artif Intell 37(1):93–130Wooldridge M, Endriss U, Kraus S, Lang J (2013) Incentive engineering for boolean games. Artif Intell 195:418–43

    An Abstract Framework for Non-Cooperative Multi-Agent Planning

    Full text link
    [EN] In non-cooperative multi-agent planning environments, it is essential to have a system that enables the agents¿ strategic behavior. It is also important to consider all planning phases, i.e., goal allocation, strategic planning, and plan execution, in order to solve a complete problem. Currently, we have no evidence of the existence of any framework that brings together all these phases for non-cooperative multi-agent planning environments. In this work, an exhaustive study is made to identify existing approaches for the different phases as well as frameworks and different applicable techniques in each phase. Thus, an abstract framework that covers all the necessary phases to solve these types of problems is proposed. In addition, we provide a concrete instantiation of the abstract framework using different techniques to promote all the advantages that the framework can offer. A case study is also carried out to show an illustrative example of how to solve a non-cooperative multi-agent planning problem with the presented framework. This work aims to establish a base on which to implement all the necessary phases using the appropriate technologies in each of them and to solve complex problems in different domains of application for non-cooperative multi-agent planning settings.This work was partially funded by MINECO/FEDER RTI2018-095390-B-C31 project of the Spanish government. Jaume Jordan and Vicent Botti are funded by Universitat Politecnica de Valencia (UPV) PAID-06-18 project. Jaume Jordan is also funded by grant APOSTD/2018/010 of Generalitat Valenciana Fondo Social Europeo.Jordán, J.; Bajo, J.; Botti, V.; Julian Inglada, VJ. (2019). An Abstract Framework for Non-Cooperative Multi-Agent Planning. Applied Sciences. 9(23):1-18. https://doi.org/10.3390/app9235180S118923De Weerdt, M., & Clement, B. (2009). Introduction to planning in multiagent systems. Multiagent and Grid Systems, 5(4), 345-355. doi:10.3233/mgs-2009-0133Dunne, P. E., Kraus, S., Manisterski, E., & Wooldridge, M. (2010). Solving coalitional resource games. Artificial Intelligence, 174(1), 20-50. doi:10.1016/j.artint.2009.09.005Torreño, A., Onaindia, E., Komenda, A., & Štolba, M. (2018). Cooperative Multi-Agent Planning. ACM Computing Surveys, 50(6), 1-32. doi:10.1145/3128584Fikes, R. E., & Nilsson, N. J. (1971). Strips: A new approach to the application of theorem proving to problem solving. Artificial Intelligence, 2(3-4), 189-208. doi:10.1016/0004-3702(71)90010-5Hoffmann, J., & Nebel, B. (2001). The FF Planning System: Fast Plan Generation Through Heuristic Search. Journal of Artificial Intelligence Research, 14, 253-302. doi:10.1613/jair.855Dukeman, A., & Adams, J. A. (2017). Hybrid mission planning with coalition formation. Autonomous Agents and Multi-Agent Systems, 31(6), 1424-1466. doi:10.1007/s10458-017-9367-7Hadad, M., Kraus, S., Ben-Arroyo Hartman, I., & Rosenfeld, A. (2013). Group planning with time constraints. Annals of Mathematics and Artificial Intelligence, 69(3), 243-291. doi:10.1007/s10472-013-9363-9Guo, Y., Pan, Q., Sun, Q., Zhao, C., Wang, D., & Feng, M. (2019). Cooperative Game-based Multi-Agent Path Planning with Obstacle Avoidance*. 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE). doi:10.1109/isie.2019.8781205v. Neumann, J. (1928). Zur Theorie der Gesellschaftsspiele. Mathematische Annalen, 100(1), 295-320. doi:10.1007/bf01448847Mookherjee, D., & Sopher, B. (1994). Learning Behavior in an Experimental Matching Pennies Game. Games and Economic Behavior, 7(1), 62-91. doi:10.1006/game.1994.1037Ochs, J. (1995). Games with Unique, Mixed Strategy Equilibria: An Experimental Study. Games and Economic Behavior, 10(1), 202-217. doi:10.1006/game.1995.1030Applegate, C., Elsaesser, C., & Sanborn, J. (1990). An architecture for adversarial planning. IEEE Transactions on Systems, Man, and Cybernetics, 20(1), 186-194. doi:10.1109/21.47820Sailer, F., Buro, M., & Lanctot, M. (2007). Adversarial Planning Through Strategy Simulation. 2007 IEEE Symposium on Computational Intelligence and Games. doi:10.1109/cig.2007.368082Willmott, S., Richardson, J., Bundy, A., & Levine, J. (2001). Applying adversarial planning techniques to Go. Theoretical Computer Science, 252(1-2), 45-82. doi:10.1016/s0304-3975(00)00076-1Nau, D. S., Au, T. C., Ilghami, O., Kuter, U., Murdock, J. W., Wu, D., & Yaman, F. (2003). SHOP2: An HTN Planning System. Journal of Artificial Intelligence Research, 20, 379-404. doi:10.1613/jair.1141Knuth, D. E., & Moore, R. W. (1975). An analysis of alpha-beta pruning. Artificial Intelligence, 6(4), 293-326. doi:10.1016/0004-3702(75)90019-3Vickrey, W. (1961). COUNTERSPECULATION, AUCTIONS, AND COMPETITIVE SEALED TENDERS. The Journal of Finance, 16(1), 8-37. doi:10.1111/j.1540-6261.1961.tb02789.xClarke, E. H. (1971). Multipart pricing of public goods. Public Choice, 11(1), 17-33. doi:10.1007/bf01726210Groves, T. (1973). Incentives in Teams. Econometrica, 41(4), 617. doi:10.2307/1914085Savaux, J., Vion, J., Piechowiak, S., Mandiau, R., Matsui, T., Hirayama, K., … Silaghi, M. (2016). DisCSPs with Privacy Recast as Planning Problems for Self-Interested Agents. 2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI). doi:10.1109/wi.2016.0057Buzing, P., Mors, A. ter, Valk, J., & Witteveen, C. (2006). Coordinating Self-interested Planning Agents. Autonomous Agents and Multi-Agent Systems, 12(2), 199-218. doi:10.1007/s10458-005-6104-4Ter Mors, A., & Witteveen, C. (s. f.). Coordinating Non Cooperative Planning Agents: Complexity Results. IEEE/WIC/ACM International Conference on Intelligent Agent Technology. doi:10.1109/iat.2005.60Hrnčíř, J., Rovatsos, M., & Jakob, M. (2015). Ridesharing on Timetabled Transport Services: A Multiagent Planning Approach. Journal of Intelligent Transportation Systems, 19(1), 89-105. doi:10.1080/15472450.2014.941759Galuszka, A., & Swierniak, A. (2009). Planning in Multi-agent Environment Using Strips Representation and Non-cooperative Equilibrium Strategy. Journal of Intelligent and Robotic Systems, 58(3-4), 239-251. doi:10.1007/s10846-009-9364-4Rosenthal, R. W. (1973). A class of games possessing pure-strategy Nash equilibria. International Journal of Game Theory, 2(1), 65-67. doi:10.1007/bf01737559Jordán, J., Torreño, A., de Weerdt, M., & Onaindia, E. (2017). A better-response strategy for self-interested planning agents. Applied Intelligence, 48(4), 1020-1040. doi:10.1007/s10489-017-1046-5Veloso, M., Muñoz-Avila, H., & Bergmann, R. (1996). Case-based planning: selected methods and systems. AI Communications, 9(3), 128-137. doi:10.3233/aic-1996-9305VOORNEVELD, M., BORM, P., VAN MEGEN, F., TIJS, S., & FACCHINI, G. (1999). CONGESTION GAMES AND POTENTIALS RECONSIDERED. International Game Theory Review, 01(03n04), 283-299. doi:10.1142/s0219198999000219Han-Lim Choi, Brunet, L., & How, J. P. (2009). Consensus-Based Decentralized Auctions for Robust Task Allocation. IEEE Transactions on Robotics, 25(4), 912-926. doi:10.1109/tro.2009.2022423Monderer, D., & Shapley, L. S. (1996). Potential Games. Games and Economic Behavior, 14(1), 124-143. doi:10.1006/game.1996.0044Friedman, J. W., & Mezzetti, C. (2001). Learning in Games by Random Sampling. Journal of Economic Theory, 98(1), 55-84. doi:10.1006/jeth.2000.2694Aamodt, A., & Plaza, E. (1994). Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches. AI Communications, 7(1), 39-59. doi:10.3233/aic-1994-7104Bertsekas, D. P. (1988). The auction algorithm: A distributed relaxation method for the assignment problem. Annals of Operations Research, 14(1), 105-123. doi:10.1007/bf02186476Bertsekas, D. P., & Castanon, D. A. (1989). The auction algorithm for the transportation problem. Annals of Operations Research, 20(1), 67-96. doi:10.1007/bf0221692

    Schelling, von Neumann, and the Event that Didn’t Occur

    Get PDF
    Thomas Schelling was recognized by the Nobel Prize committee as a pioneer in the application of game theory and rational choice analysis to problems of politics and international relations. However, although he makes frequent references in his writings to this approach, his main explorations and insights depend upon and require acknowledgment of its limitations. One of his principal concerns was how a country could engage in successful deterrence. If the behavioral assumptions that commonly underpin game theory are taken seriously and applied consistently, however, nuclear adversaries are almost certain to engage in devastating conflict, as John von Neumann forcefully asserted. The history of the last half century falsified von Neumann’s prediction, and the “event that didn’t occur” formed the subject of Schelling’s Nobel lecture. The answer to the question “why?” is the central concern of this paper

    Computational Mechanism Design: A Call to Arms

    No full text
    Game theory has developed powerful tools for analyzing decision making in systems with multiple autonomous actors. These tools, when tailored to computational settings, provide a foundation for building multiagent software systems. This tailoring gives rise to the field of computational mechanism design, which applies economic principles to computer systems design

    Making The Policy-Makers: Askesis, Or To Continuously Work On Oneself

    Get PDF
    This paper uses a Foucauldian discursive approach to shed light into how organisational actors are ‘made’ to act as strategists, incorporating into their work practices the demands and expectations of what it means to be a strategist in a specific context at a specific time. It draws on a Foucauldian understanding of governing and self formation to explore the ways in which actors work on themselves in order to act meaningfully as strategists. I argue that, rather than organisational identities being static or finished, organisational actors actively say and do things in their continual attempts to attain a more complete, acceptable and congruent identity. In contexts with high degrees of uncertainty and heavily power- and conflict-laden relationships, both discourses of how strategy is made and the practices involved in it can be seen as exercises (askesis) which strategists actively perform to better embrace their responsibility of rendering the future governable for others. The paper brings together the literatures on identity and on strategic practices to show the dialectic relationship between them

    The 2007 Nobel Prize in Economics: Mechanism Design Theory

    Get PDF
    The 2007 Nobel Prize in Economics has been awarded to Leonid Hurwicz, Eric Maskin, and Roger Myerson, for their contributions to mechanism design theory. The article discusses the importance of mechanism design theory for modern economics, focusing on some of its implications for economic policy making.Nobel Prize, mechanism design, economic policy

    Comparing Mutuality and Solidarity in Its Application to Disaster Ethics

    Get PDF
    Often it has been observed that in disaster situations, people (including victims) become altruistic and are very willing to listen, obey and act in a manner that would help bring an end to the situation. In this chapter, linking disaster ethics and human rights, it is argued that this indeed is how it should be, disaster or otherwise, and that we have moral duties to oneself and to others. An individual exhibiting solidarity, comradery and altruism during a disaster is indeed behaving as a reasonable Self, and exercising ethical individualism as per Gewirthian philosophy. It is the duty of the State and society to act as a supportive State and a caring society. In order to do this, we need to be conditioned for ethical rationality before any whiff of disaster arises, i.e. in our day-to-day conduct and decision-making, at a personal, institutional and transnational level. Our ethical resilience during disasters can only be as robust as our rational moral compass during ‘peace-time’. This chapter argues that Gewirthian solidarity ethics (GSE) should play a role in European policy and action in order to provide a system that conditions ethical rationality and in order to fulfil human rights. This involves addressing our current understanding of human rights as distinct categories of civil, political, economic, social and cultural rights and to effect a shift towards a more holistic understanding of human rights, whereby the hierarchy of fulfilment does not always prioritise civil and political rights.Peer reviewe
    corecore