3,772 research outputs found

    A Process Modelling Framework Based on Point Interval Temporal Logic with an Application to Modelling Patient Flows

    Get PDF
    This thesis considers an application of a temporal theory to describe and model the patient journey in the hospital accident and emergency (A&E) department. The aim is to introduce a generic but dynamic method applied to any setting, including healthcare. Constructing a consistent process model can be instrumental in streamlining healthcare issues. Current process modelling techniques used in healthcare such as flowcharts, unified modelling language activity diagram (UML AD), and business process modelling notation (BPMN) are intuitive and imprecise. They cannot fully capture the complexities of the types of activities and the full extent of temporal constraints to an extent where one could reason about the flows. Formal approaches such as Petri have also been reviewed to investigate their applicability to the healthcare domain to model processes. Additionally, to schedule patient flows, current modelling standards do not offer any formal mechanism, so healthcare relies on critical path method (CPM) and program evaluation review technique (PERT), that also have limitations, i.e. finish-start barrier. It is imperative to specify the temporal constraints between the start and/or end of a process, e.g., the beginning of a process A precedes the start (or end) of a process B. However, these approaches failed to provide us with a mechanism for handling these temporal situations. If provided, a formal representation can assist in effective knowledge representation and quality enhancement concerning a process. Also, it would help in uncovering complexities of a system and assist in modelling it in a consistent way which is not possible with the existing modelling techniques. The above issues are addressed in this thesis by proposing a framework that would provide a knowledge base to model patient flows for accurate representation based on point interval temporal logic (PITL) that treats point and interval as primitives. These objects would constitute the knowledge base for the formal description of a system. With the aid of the inference mechanism of the temporal theory presented here, exhaustive temporal constraints derived from the proposed axiomatic system’ components serves as a knowledge base. The proposed methodological framework would adopt a model-theoretic approach in which a theory is developed and considered as a model while the corresponding instance is considered as its application. Using this approach would assist in identifying core components of the system and their precise operation representing a real-life domain deemed suitable to the process modelling issues specified in this thesis. Thus, I have evaluated the modelling standards for their most-used terminologies and constructs to identify their key components. It will also assist in the generalisation of the critical terms (of process modelling standards) based on their ontology. A set of generalised terms proposed would serve as an enumeration of the theory and subsume the core modelling elements of the process modelling standards. The catalogue presents a knowledge base for the business and healthcare domains, and its components are formally defined (semantics). Furthermore, a resolution theorem-proof is used to show the structural features of the theory (model) to establish it is sound and complete. After establishing that the theory is sound and complete, the next step is to provide the instantiation of the theory. This is achieved by mapping the core components of the theory to their corresponding instances. Additionally, a formal graphical tool termed as point graph (PG) is used to visualise the cases of the proposed axiomatic system. PG facilitates in modelling, and scheduling patient flows and enables analysing existing models for possible inaccuracies and inconsistencies supported by a reasoning mechanism based on PITL. Following that, a transformation is developed to map the core modelling components of the standards into the extended PG (PG*) based on the semantics presented by the axiomatic system. A real-life case (from the King’s College hospital accident and emergency (A&E) department’s trauma patient pathway) is considered to validate the framework. It is divided into three patient flows to depict the journey of a patient with significant trauma, arriving at A&E, undergoing a procedure and subsequently discharged. Their staff relied upon the UML-AD and BPMN to model the patient flows. An evaluation of their representation is presented to show the shortfalls of the modelling standards to model patient flows. The last step is to model these patient flows using the developed approach, which is supported by enhanced reasoning and scheduling

    Ontology-based Classification and Analysis of non- emergency Smart-city Events

    Full text link
    Several challenges are faced by citizens of urban centers while dealing with day-to-day events, and the absence of a centralised reporting mechanism makes event-reporting and redressal a daunting task. With the push on information technology to adapt to the needs of smart-cities and integrate urban civic services, the use of Open311 architecture presents an interesting solution. In this paper, we present a novel approach that uses an existing Open311 ontology to classify and report non-emergency city-events, as well as to guide the citizen to the points of redressal. The use of linked open data and the semantic model serves to provide contextual meaning and make vast amounts of content hyper-connected and easily-searchable. Such a one-size-fits-all model also ensures reusability and effective visualisation and analysis of data across several cities. By integrating urban services across various civic bodies, the proposed approach provides a single endpoint to the citizen, which is imperative for smooth functioning of smart cities

    A Model of Workflow Composition for Emergency Management

    Get PDF
    AbstractThe common-used workflow technology is not flexible enough in dealing with concurrent emergency situations. The paper proposes a novel model for defining emergency plans, in which workflow segments appear as a constituent part. A formal abstraction, which contains four operations, is defined to compose workflow segments under constraint rule. The software system of the business process resources construction and composition is implemented and integrated into Emergency Plan Management Application System

    Modeling an ontology on accessible evacuation routes for emergencies

    Get PDF
    Providing alert communication in emergency situations is vital to reduce the number of victims. However, this is a challenging goal for researchers and professionals due to the diverse pool of prospective users, e.g. people with disabilities as well as other vulnerable groups. Moreover, in the event of an emergency situation, many people could become vulnerable because of exceptional circumstances such as stress, an unknown environment or even visual impairment (e.g. fire causing smoke). Within this scope, a crucial activity is to notify affected people about safe places and available evacuation routes. In order to address this need, we propose to extend an ontology, called SEMA4A (Simple EMergency Alert 4 [for] All), developed in a previous work for managing knowledge about accessibility guidelines, emergency situations and communication technologies. In this paper, we introduce a semi-automatic technique for knowledge acquisition and modeling on accessible evacuation routes. We introduce a use case to show applications of the ontology and conclude with an evaluation involving several experts in evacuation procedures. © 2014 Elsevier Ltd. All rights reserved
    • …
    corecore