57,138 research outputs found

    Mostly-Unsupervised Statistical Segmentation of Japanese Kanji Sequences

    Full text link
    Given the lack of word delimiters in written Japanese, word segmentation is generally considered a crucial first step in processing Japanese texts. Typical Japanese segmentation algorithms rely either on a lexicon and syntactic analysis or on pre-segmented data; but these are labor-intensive, and the lexico-syntactic techniques are vulnerable to the unknown word problem. In contrast, we introduce a novel, more robust statistical method utilizing unsegmented training data. Despite its simplicity, the algorithm yields performance on long kanji sequences comparable to and sometimes surpassing that of state-of-the-art morphological analyzers over a variety of error metrics. The algorithm also outperforms another mostly-unsupervised statistical algorithm previously proposed for Chinese. Additionally, we present a two-level annotation scheme for Japanese to incorporate multiple segmentation granularities, and introduce two novel evaluation metrics, both based on the notion of a compatible bracket, that can account for multiple granularities simultaneously.Comment: 22 pages. To appear in Natural Language Engineerin

    Adaptive Sentence Boundary Disambiguation

    Full text link
    Labeling of sentence boundaries is a necessary prerequisite for many natural language processing tasks, including part-of-speech tagging and sentence alignment. End-of-sentence punctuation marks are ambiguous; to disambiguate them most systems use brittle, special-purpose regular expression grammars and exception rules. As an alternative, we have developed an efficient, trainable algorithm that uses a lexicon with part-of-speech probabilities and a feed-forward neural network. After training for less than one minute, the method correctly labels over 98.5\% of sentence boundaries in a corpus of over 27,000 sentence-boundary marks. We show the method to be efficient and easily adaptable to different text genres, including single-case texts.Comment: This is a Latex version of the previously submitted ps file (formatted as a uuencoded gz-compressed .tar file created by csh script). The software from the work described in this paper is available by contacting [email protected]

    Morphological Analysis as Classification: an Inductive-Learning Approach

    Full text link
    Morphological analysis is an important subtask in text-to-speech conversion, hyphenation, and other language engineering tasks. The traditional approach to performing morphological analysis is to combine a morpheme lexicon, sets of (linguistic) rules, and heuristics to find a most probable analysis. In contrast we present an inductive learning approach in which morphological analysis is reformulated as a segmentation task. We report on a number of experiments in which five inductive learning algorithms are applied to three variations of the task of morphological analysis. Results show (i) that the generalisation performance of the algorithms is good, and (ii) that the lazy learning algorithm IB1-IG performs best on all three tasks. We conclude that lazy learning of morphological analysis as a classification task is indeed a viable approach; moreover, it has the strong advantages over the traditional approach of avoiding the knowledge-acquisition bottleneck, being fast and deterministic in learning and processing, and being language-independent.Comment: 11 pages, 5 encapsulated postscript figures, uses non-standard NeMLaP proceedings style nemlap.sty; inputs ipamacs (international phonetic alphabet) and epsf macro

    Integrating Prosodic and Lexical Cues for Automatic Topic Segmentation

    Get PDF
    We present a probabilistic model that uses both prosodic and lexical cues for the automatic segmentation of speech into topically coherent units. We propose two methods for combining lexical and prosodic information using hidden Markov models and decision trees. Lexical information is obtained from a speech recognizer, and prosodic features are extracted automatically from speech waveforms. We evaluate our approach on the Broadcast News corpus, using the DARPA-TDT evaluation metrics. Results show that the prosodic model alone is competitive with word-based segmentation methods. Furthermore, we achieve a significant reduction in error by combining the prosodic and word-based knowledge sources.Comment: 27 pages, 8 figure

    Text Segmentation Using Exponential Models

    Full text link
    This paper introduces a new statistical approach to partitioning text automatically into coherent segments. Our approach enlists both short-range and long-range language models to help it sniff out likely sites of topic changes in text. To aid its search, the system consults a set of simple lexical hints it has learned to associate with the presence of boundaries through inspection of a large corpus of annotated data. We also propose a new probabilistically motivated error metric for use by the natural language processing and information retrieval communities, intended to supersede precision and recall for appraising segmentation algorithms. Qualitative assessment of our algorithm as well as evaluation using this new metric demonstrate the effectiveness of our approach in two very different domains, Wall Street Journal articles and the TDT Corpus, a collection of newswire articles and broadcast news transcripts.Comment: 12 pages, LaTeX source and postscript figures for EMNLP-2 pape

    Prosody-Based Automatic Segmentation of Speech into Sentences and Topics

    Get PDF
    A crucial step in processing speech audio data for information extraction, topic detection, or browsing/playback is to segment the input into sentence and topic units. Speech segmentation is challenging, since the cues typically present for segmenting text (headers, paragraphs, punctuation) are absent in spoken language. We investigate the use of prosody (information gleaned from the timing and melody of speech) for these tasks. Using decision tree and hidden Markov modeling techniques, we combine prosodic cues with word-based approaches, and evaluate performance on two speech corpora, Broadcast News and Switchboard. Results show that the prosodic model alone performs on par with, or better than, word-based statistical language models -- for both true and automatically recognized words in news speech. The prosodic model achieves comparable performance with significantly less training data, and requires no hand-labeling of prosodic events. Across tasks and corpora, we obtain a significant improvement over word-only models using a probabilistic combination of prosodic and lexical information. Inspection reveals that the prosodic models capture language-independent boundary indicators described in the literature. Finally, cue usage is task and corpus dependent. For example, pause and pitch features are highly informative for segmenting news speech, whereas pause, duration and word-based cues dominate for natural conversation.Comment: 30 pages, 9 figures. To appear in Speech Communication 32(1-2), Special Issue on Accessing Information in Spoken Audio, September 200
    corecore