45 research outputs found

    A wireless sensor system for the training of hammer throwers

    Get PDF
    Hammer-throw has a long-standing history in track and field, but unlike other sports events, hammer-throw has not seen a new world record since 1986. One reason for this stagnation is the lack of scientifically based training. In my thesis, we propose to establish scientifically described training targets and routes, which in turn require tools that can measure and quantify characteristics of effective hammer-throw. Towards this goal, we have developed a real-time biomechanical feedback device – a wireless sensor system – to help the training of hammer-throw. The system includes two sensors – an infrared proximity sensor for tracing the hip vertical movement and a load cell for recording the wire tension during a hammer-throw. The system uses XBees for data transmission and an Arduino processor for the wireless system control. It is hypothesized that wire tension and vertical hip displacement measurements would be sufficient to supply key features when analyzing hammer-throw.National Science and Engineering Research Council of Canada (NSERC

    A Reconfigurable and wearable wireless sensor system and its case study in the training of hammer throwers

    Get PDF
    Wearable sensors have been popularly used in many applications with the development of computer science and engineering. However, wearables for biomechanical feedback in motor learning and training are still rare. Therefore, this thesis focuses on developing an efficient and cost-effective wireless sensor system through a case study on the hammer throw. The results have shown that the proposed reconfigurable and wearable system can implement real-time biomechanical feedback in the hammer-throw training. Furthermore, the experimental results suggest that various throw-control patterns could be identified by using one tension-sensor and two inertial measurement units (i.e., more superior practicality than 3D motion capture), indicating that the low-cost wearable system has potential to substitute the expensive 3D motion capture technology. The proposed system can be easily modified and applied to many other applications, including but not limited to healthcare, rehabilitation, and smart homes, etc.National Science and Engineering Research Council of Canada (NSERC

    ISBS 2018 AUCKLAND CONFERENCE SPRINZ-HPSNZ-AUT MILLENNIUM APPLIED PROGRAMME

    Get PDF
    An interactive afternoon of sessions delivered by High Performance Sport New Zealand (HPSNZ) and AUT SPRINZ Biomechanists, Performance Analysts and other biomechanics relevant sport facing practitioners. The 11 sessions are at AUT Millennium (AUTM), which is a satellite site of AUT University and the Auckland training hub for many HPSNZ supported sports such as athletics, sailing, and swimming. These sports and others (cycling, rowing, snow sports etc.) will be represented in the line-up. The applied sessions involve practical demonstrations of aspects of analysis and/or tools used to deliver in the field to directly positively impact athletes performances on the world stage. Following these engaging sessions there will be tasting of New Zealand wine, allowing for further discussion and networking. Sir Graeme Avery will be acknowledged for his contribution to sport science. Mike Stanley is AUT Millennium Chief Executive & NZ Olympic Committee President will explain the partners in the facility. AUT Millennium is a charitable trust established to help New Zealanders live longer and healthier lives, and to enjoy and excel in sport through the provision of world-class facilities, services, research and education. Founded in 2002 as Millennium Institute of Sport and Health (MISH) by Sir Stephen Tindall and Sir Graeme Avery as a premium health and fitness facility for both athletes and the public alike. Partnered with AUT University in 2009, forming AUT Millennium, to expand research and education in the sporting sector. Professor Barry Wilson is an Adjunct Professor with SPRINZ at Auckland University of Technology and will be outlining the research and student opportunities. Martin Dowson is the General Manager Athlete Performance Support at High Performance Sport New Zealand and has overall responsibility for the programme. Simon Briscoe, AUT Millennium Applied Session Coordinator, is the head of the Performance and Technique Analysis discipline within HPSNZ. Simon is coordinating the applied sessions along with technical support from Dr Allan Carman, Research Fellow, AUT SPRINZ. Jodi Cossor and Matt Ingram will provide a demonstration of a multidisciplinary approach driven by biomechanical analysis for Paralympic swimmers. Justin Evans and Sarah-Kate Millar will provide a practical session assessing the athletes rowing stroke to assist the coach on technical changes. This session will demonstrate various rowing traits and how the biomechanist and coach can work together to optimise boat speed. Mike Schofield and Kim Hébert-Losier will provide a session looking at shotput and the evidence based approach to coaching. Dr Craig Harrison and Professor John Cronin will provide examples from the AUTM Athlete Development programme. Kim Simperingham and Jamie Douglas who work with high performance rugby athletes will outline sprinting mechanics in practice. Dr Bruce Hamilton, Fiona Mather, Justin Ralph and Rone Thompson will demonstrate the approach of HPSNZ and Cycling NZ performance health teams in the use of some specific tools for prevention of injury and optimisation of performance. Kelly Sheerin, Denny Wells and Associate Professor Thor Besier will provide examples of using IMU and motion capture methods for running and basketball biomechanics research, education and service. Dr Rodrigo Bini and Associate Professor Andrew Kilding will show how linking of biomechanics and physiology improves injury prevention and performance enhancement. Robert Tang, Andre de Jong and Farhan Tinwala discuss select projects developed by Goldmine, HPSNZ’s in-house engineering team, and how these innovations have enabled unprecedented levels of biomechanics feedback. Cameron Ross and Paul McAlpine demonstrate the technology being used at the Snow Sports NZ training centre in Cadrona to enhance load monitoring of athletes. This application allows greater insight into training performances and biomechanical loads than has been previously possible in the training environment. AUT Millennium tour guides are coordinated by Josh McGeown and include Enora Le Flao, Dustin Oranchuk, Erika Ikeda, Jono Neville, Aaron Uthoff, Andrew Pichardo, Farhan Tinwala, Shelley Diewald, Renata Bastos Gottgtroy, Jessica Yeoman, Casey Watkins, Eric Harbour, Anja Zoellner, Alyssa Joy Spence, Victor Lopez Jr, and Albert Chang

    Challenges and Future of Wearable Technology in Human Motor-Skill Learning and Optimization

    Get PDF
    Learning how to move is a challenging task. Even the most basic motor skill of walking requires years to develop and can quickly deteriorate due to aging and sedentary lifestyles. More specialized skills such as ballet and acrobatic kicks in soccer require “talent” and years of extensive practice to fully master. These practices can easily cause injuries if conducted improperly. 3D motion capture technologies are currently the best way to acquire human motor skill in biomechanical feedback training. Owing to their tremendous promise for a plethora of applications, wearable technologies have garnered great interest in biofeedback training. Using wearable technology, some physical activity parameters can be tracked in real time and a noninvasive way to indicate the physical progress of a trainee. Yet, the application of biomechanical wearables in human motor-skill learning, training, and optimization is still in its infant phase due to the absence of a reliable method. This chapter elaborates challenges faced by developing wearable biomechanical feedback devices and forecasts potential breakthroughs in this area. The overarching goal is to foster interdisciplinary studies on wearable technology to improve how we move

    Effects of a lighter discus on shoulder muscle activity in elite throwers, implications for injury prevention

    Get PDF
    Background: Performance in discus throw requires high forces and torques generated from the shoulder of the throwing arm, making shoulder muscles at risk of overuse injury. Little is known on muscle activation patterns in elite discus throw. Hypothesis/Purpose: The purpose of this study was to examine the kinetics and shoulder muscle activation during discus throws by using two discs of different mass. It was hypothesized that the use of a lighter discus would modify the activation of the shoulder musculature compared to a standard discus. Study design: Case-control laboratory study Methods: Seven male elite discus throwers performed five throws using a standard discus (STD, 2.0 kg) and five throws using a lighter weight discus (LGT, 1.7 kg). Surface EMG was recorded for the biceps brachii (BB), deltoideus anterior (DA), deltoideus medialis (DM), clavicular head of the pectoralis major (PM), latissimus dorsi (LD), and trapezius medialis (TM). Three-dimensional high-speed video analysis was utilised to record discus speed and identify the different temporal phases of each throw from the preparation phase (P1) to the delivery phase (P5). Results: The EMG activation of LD lasted longer (p < 0.01) in P1 and was initiated later in P5 with the LGT discus compared to STD. In P5, the EMG intensity of BB decreased (p = 0.02) with LGT (%EMGmax = 50.4 ± 49.6%) compared to STD (64.8 ± 77.9%) and the activation of PM increased (p < 0.01) with LGT (86.2 ± 40.3%) compared to STD (66.2 ± 26.9%). The discus speed at release was increased (p = 0.04) by using the LGT discus (20.62 ± 0.75m.s-1) compared to STD (19.61 ± 0.57m.s-1). The throwing distance was also increased (P < 0.01) with the LGT (43.1 ± 4.3m) discus compared to STD (39.4 ± 3.4m). Conclusion: A lighter discus could be used by elite athletes in training t 50 o add variability in muscle solicitation and thus limit the overload on certain muscles of the shoulder region. These results may have implications to lower the risk of injury in discus throw. Clinical relevance: The increase in shoulder muscle activity combined with the accelerated forward swing of the throwing arm in P5 may help explain the incidence of muscle and tendon injuries clinically observed in discus throw. Using a lighter discus in training may add variability in muscle activity and motion kinetics to lower the mechanical load on the shoulder and tendons

    Environmental impact and performance assessment of a new Zigbee-based shotgun training system

    Get PDF
    Only a few research works have studied the risks involving young athletes in shooting activities such as noise and risk of projectile impact. Besides, limited studies have explored the environmental concerns caused by remaining projectile fragments scattered into the environment. In recent years, there has been an increasing interest in integrating computing, modeling, and IoT-based applications and used connected add-ons (e.g., steams Virtual Reality VR, virtual guns, and game controllers) in sports activities displayed in virtual reality gaming environments. The aim of this paper is, first, to present a multi-aspect Zigbee-based protocol system used to assess and to improve reaction time and score prediction abilities of Shotgun sports practitioners indoor and outdoor. Second, B-percept would be presented as a training solution to reduce environmental scattered wastes of used Clays. After 8 weeks of training, there was significant improvement (p < .001) of participants' reaction time by using the B-percept simulator. In addition, improvement in real clay shotgun results (p < .0002) but it was difficult to correctly predict more than 60% of correct scores after the test. The results of this study encourage continuing to improve the B-percept to use wireless moving targets for training purposes

    Estimating hand-grip forces causing Cumulative Trauma Disorder

    Get PDF
    Wearable sensors have garnered considerable interest because of their potential for various applications. However, much less has been studied about the Stretchsense pressure sensor characteristics and its workability for industrial application to prevent potential risk situations such as accidents and injuries. The proposed study helps investigate Stretchsense pressure sensors\u27 applicability for measuring hand-handle interface forces under static and dynamic conditions. The BendLabs sensors - a multi-axis, soft, flexible sensing system was attached to the wrist to evaluate the wrist angle deviations. In addition, the StretchSense stretch sensors were attached to the elbow joint to help estimate the elbow flexion/extension. The research tests and evaluates the real-time pressure distribution across the hand while performing given tasks and investigates the relationship between the wrist and elbow position and grip strength. The research provides objective means to assess the magnitudes of high pressures that may cause pressure-induced discomfort and pain, thereby increasing the hand\u27s stress. The experiment\u27s most significant benefit lies in its applicability to the actual tool handles outside the laboratory settings

    Analysis of the backpack loading efects on the human gait

    Get PDF
    Gait is a simple activity of daily life and one of the main abilities of the human being. Often during leisure, labour and sports activities, loads are carried over (e.g. backpack) during gait. These circumstantial loads can generate instability and increase biomechanicalstress over the human tissues and systems, especially on the locomotor, balance and postural regulation systems. According to Wearing (2006), subjects that carry a transitory or intermittent load will be able to find relatively efficient solutions to compensate its effects.info:eu-repo/semantics/publishedVersio

    Proceedings of the 11th International Conference on Kinanthropology

    Get PDF
    The 11th International Conference on Kinantropology was held on the Nov 29 – Dec 1, 2017 in Brno and was organized by the Faculty of Sports Studies, Masaryk University and the Faculty of Kinesiology, University of Zagreb. This year was divided into several themes: sports medicine, sport and social science, sport training, healthy lifestyle and healthy ageing, sports management, analysis of human movement. Part of the conference was also a symposium Atletika and Ortoreha that gathered specialists in physiotherapy
    corecore