107 research outputs found

    Speech Intelligibility Prediction for Hearing Aid Systems

    Get PDF

    Multi-channel dereverberation for speech intelligibility improvement in hearing aid applications

    Get PDF

    Sound source segregation of multiple concurrent talkers via Short-Time Target Cancellation

    Full text link
    The Short-Time Target Cancellation (STTC) algorithm, developed as part of this dissertation research, is a “Cocktail Party Problem” processor that can boost speech intelligibility for a target talker from a specified “look” direction, while suppressing the intelligibility of competing talkers. The algorithm holds promise for both automatic speech recognition and assistive listening device applications. The STTC algorithm operates on a frame-by-frame basis, leverages the computational efficiency of the Fast Fourier Transform (FFT), and is designed to run in real time. Notably, performance in objective measures of speech intelligibility and sound source segregation is comparable to that of the Ideal Binary Mask (IBM) and Ideal Ratio Mask (IRM). Because the STTC algorithm computes a time-frequency mask that can be applied independently to both the left and right signals, binaural cues for spatial hearing, including Interaural Time Differences (ITDs), Interaural Level Differences (ILDs) and spectral cues, can be preserved in potential hearing aid applications. A minimalist design for a proposed STTC Assistive Listening Device (ALD), consisting of six microphones embedded in the frame of a pair of eyeglasses, is presented and evaluated using virtual room acoustics and both objective and behavioral measures. The results suggest that the proposed STTC ALD can provide a significant speech intelligibility benefit in complex auditory scenes comprised of multiple spatially separated talkers.2020-10-22T00:00:00

    Binaural pre-processing for contralateral sound field attenuation and improved speech-in-noise recognition

    Get PDF
    Understanding speech presented in competition with other sounds can be challenging. Here, we reason that in free-field settings, this task can be facilitated by attenuating the sound field contralateral to each ear and propose to achieve this by linear subtraction of the weighted contralateral stimulus. We mathematically justify setting the weight equal to the ratio of ipsilateral to contralateral head-related transfer functions (HRTFs) averaged over an appropriate azimuth range. The algorithm is implemented in the frequency domain and evaluated technically and experimentally for normal-hearing listeners in simulated free-field conditions. Results show that (1) it can substantially improve the signal-to-noise ratio (up to 30 dB) and the short-term objective intelligibility in the ear ipsilateral to the target source, particularly for maskers with speech-like spectra; (2) it can improve speech reception thresholds (SRTs) for sentences in competition with speech-shaped noise by up to 8.5 dB in bilateral listening and 10.0 dB in unilateral listening; (3) for sentences in competition with speech maskers and in bilateral listening, it can improve SRTs by 2 to 5 dB, depending on the number and location of the masker sources; (4) it hardly affects virtual sound-source lateralization; and (5) the improvements, and the algorithm's directivity pattern depend on the azimuth range used to calculate the weights. Contralateral HRTF-weighted subtraction may prove valuable for users of binaural hearing devices

    Data-driven Speech Intelligibility Enhancement and Prediction for Hearing Aids

    Get PDF
    Hearing impairment is a widespread problem around the world. It is estimated that one in six people are living with some degree of hearing loss. Moderate and severe hearing impairment has been recognised as one of the major causes of disability, which is associated with declines in the quality of life, mental illness and dementia. However, investigation shows that only 10-20\% of older people with significant hearing impairment wear hearing aids. One of the main factors causing the low uptake is that current devices struggle to help hearing aid users understand speech in noisy environments. For the purpose of compensating for the elevated hearing thresholds and dysfunction of source separation processing caused by the impaired auditory system, amplification and denoising have been the major focuses of current hearing aid studies to improve the intelligibility of speech in noise. Also, it is important to derive a metric that can fairly predict speech intelligibility for the better development of hearing aid techniques. This thesis aims to enhance the speech intelligibility of hearing impaired listeners. Motivated by the success of data-driven approaches in many speech processing applications, this work proposes the differentiable hearing aid speech processing (DHASP) framework to optimise both the amplification and denoising modules within a hearing aid processor. This is accomplished by setting an intelligibility-based optimisation objective and taking advantage of large-scale speech databases to train the hearing aid processor to maximise the intelligibility for the listeners. The first set of experiments is conducted on both clean and noisy speech databases, and the results from objective evaluation suggest that the amplification fittings optimised within the DHASP framework can outperform a widely used and well-recognised fitting. The second set of experiments is conducted on a large-scale database with simulated domestic noisy scenes. The results from both objective and subjective evaluations show that the DHASP-optimised hearing aid processor incorporating a deep neural network-based denoising module can achieve competitive performance in terms of intelligibility enhancement. A precise intelligibility predictor can provide reliable evaluation results to save the cost of expensive and time-consuming subjective evaluation. Inspired by the findings that automatic speech recognition (ASR) models show similar recognition results as humans in some experiments, this work exploits ASR models for intelligibility prediction. An intrusive approach using ASR hidden representations and a non-intrusive approach using ASR uncertainty are proposed and explained in the third and fourth experimental chapters. Experiments are conducted on two databases, one with monaural speech in speech-spectrum-shaped noise with normal hearing listeners, and the other one with processed binaural speech in domestic noise with hearing impaired listeners. Results suggest that both the intrusive and non-intrusive approaches can achieve top performances and outperform a number of widely used intelligibility prediction approaches. In conclusion, this thesis covers both the enhancement and prediction of speech intelligibility for hearing aids. The proposed hearing aid processor optimised within the proposed DHASP framework can significantly improve the intelligibility of speech in noise for hearing impaired listeners. Also, it is shown that the proposed ASR-based intelligibility prediction approaches can achieve state-of-the-art performances against a number of widely used intelligibility predictors

    Beiträge zu breitbandigen Freisprechsystemen und ihrer Evaluation

    Get PDF
    This work deals with the advancement of wideband hands-free systems (HFS’s) for mono- and stereophonic cases of application. Furthermore, innovative contributions to the corr. field of quality evaluation are made. The proposed HFS approaches are based on frequency-domain adaptive filtering for system identification, making use of Kalman theory and state-space modeling. Functional enhancement modules are developed in this work, which improve one or more of key quality aspects, aiming at not to harm others. In so doing, these modules can be combined in a flexible way, dependent on the needs at hand. The enhanced monophonic HFS is evaluated according to automotive ITU-T recommendations, to prove its customized efficacy. Furthermore, a novel methodology and techn. framework are introduced in this work to improve the prototyping and evaluation process of automotive HF and in-car-communication (ICC) systems. The monophonic HFS in several configurations hereby acts as device under test (DUT) and is thoroughly investigated, which will show the DUT’s satisfying performance, as well as the advantages of the proposed development process. As current methods for the evaluation of HFS’s in dynamic conditions oftentimes still lack flexibility, reproducibility, and accuracy, this work introduces “Car in a Box” (CiaB) as a novel, improved system for this demanding task. It is able to enhance the development process by performing high-resolution system identification of dynamic electro-acoustical systems. The extracted dyn. impulse response trajectories are then applicable to arbitrary input signals in a synthesis operation. A realistic dynamic automotive auralization of a car cabin interior is available for HFS evaluation. It is shown that this system improves evaluation flexibility at guaranteed reproducibility. In addition, the accuracy of evaluation methods can be increased by having access to exact, realistic imp. resp. trajectories acting as a so-called “ground truth” reference. If CiaB is included into an automotive evaluation setup, there is no need for an acoustical car interior prototype to be present at this stage of development. Hency, CiaB may ease the HFS development process. Dynamic acoustic replicas may be provided including an arbitrary number of acoustic car cabin interiors for multiple developers simultaneously. With CiaB, speech enh. system developers therefore have an evaluation environment at hand, which can adequately replace the real environment.Diese Arbeit beschäftigt sich mit der Weiterentwicklung breitbandiger Freisprechsysteme für mono-/stereophone Anwendungsfälle und liefert innovative Beiträge zu deren Qualitätsmessung. Die vorgestellten Verfahren basieren auf im Frequenzbereich adaptierenden Algorithmen zur Systemidentifikation gemäß Kalman-Theorie in einer Zustandsraumdarstellung. Es werden funktionale Erweiterungsmodule dahingehend entwickelt, dass mindestens eine Qualitätsanforderung verbessert wird, ohne andere eklatant zu verletzen. Diese nach Anforderung flexibel kombinierbaren algorithmischen Erweiterungen werden gemäß Empfehlungen der ITU-T (Rec. P.1110/P.1130) in vorwiegend automotiven Testszenarien getestet und somit deren zielgerichtete Wirksamkeit bestätigt. Es wird eine Methodensammlung und ein technisches System zur verbesserten Prototypentwicklung/Evaluation von automotiven Freisprech- und Innenraumkommunikationssystemen vorgestellt und beispielhaft mit dem monophonen Freisprechsystem in diversen Ausbaustufen zur Anwendung gebracht. Daraus entstehende Vorteile im Entwicklungs- und Testprozess von Sprachverbesserungssystem werden dargelegt und messtechnisch verifiziert. Bestehende Messverfahren zum Verhalten von Freisprechsystemen in zeitvarianten Umgebungen zeigten bisher oft nur ein unzureichendes Maß an Flexibilität, Reproduzierbarkeit und Genauigkeit. Daher wird hier das „Car in a Box“-Verfahren (CiaB) entwickelt und vorgestellt, mit dem zeitvariante elektro-akustische Systeme technisch identifiziert werden können. So gewonnene dynamische Impulsantworten können im Labor in einer Syntheseoperation auf beliebige Eingangsignale angewandt werden, um realistische Testsignale unter dyn. Bedingungen zu erzeugen. Bei diesem Vorgehen wird ein hohes Maß an Flexibilität bei garantierter Reproduzierbarkeit erlangt. Es wird gezeigt, dass die Genauigkeit von darauf basierenden Evaluationsverfahren zudem gesteigert werden kann, da mit dem Vorliegen von exakten, realen Impulsantworten zu jedem Zeitpunkt der Messung eine sogenannte „ground truth“ als Referenz zur Verfügung steht. Bei der Einbindung von CiaB in einen Messaufbau für automotive Freisprechsysteme ist es bedeutsam, dass zu diesem Zeitpunkt das eigentliche Fahrzeug nicht mehr benötigt wird. Es wird gezeigt, dass eine dyn. Fahrzeugakustikumgebung, wie sie im Entwicklungsprozess von automotiven Sprachverbesserungsalgorithmen benötigt wird, in beliebiger Anzahl vollständig und mind. gleichwertig durch CiaB ersetzt werden kann

    Single- and multi-microphone speech dereverberation using spectral enhancement

    Get PDF
    In speech communication systems, such as voice-controlled systems, hands-free mobile telephones, and hearing aids, the received microphone signals are degraded by room reverberation, background noise, and other interferences. This signal degradation may lead to total unintelligibility of the speech and decreases the performance of automatic speech recognition systems. In the context of this work reverberation is the process of multi-path propagation of an acoustic sound from its source to one or more microphones. The received microphone signal generally consists of a direct sound, reflections that arrive shortly after the direct sound (commonly called early reverberation), and reflections that arrive after the early reverberation (commonly called late reverberation). Reverberant speech can be described as sounding distant with noticeable echo and colouration. These detrimental perceptual effects are primarily caused by late reverberation, and generally increase with increasing distance between the source and microphone. Conversely, early reverberations tend to improve the intelligibility of speech. In combination with the direct sound it is sometimes referred to as the early speech component. Reduction of the detrimental effects of reflections is evidently of considerable practical importance, and is the focus of this dissertation. More specifically the dissertation deals with dereverberation techniques, i.e., signal processing techniques to reduce the detrimental effects of reflections. In the dissertation, novel single- and multimicrophone speech dereverberation algorithms are developed that aim at the suppression of late reverberation, i.e., at estimation of the early speech component. This is done via so-called spectral enhancement techniques that require a specific measure of the late reverberant signal. This measure, called spectral variance, can be estimated directly from the received (possibly noisy) reverberant signal(s) using a statistical reverberation model and a limited amount of a priori knowledge about the acoustic channel(s) between the source and the microphone(s). In our work an existing single-channel statistical reverberation model serves as a starting point. The model is characterized by one parameter that depends on the acoustic characteristics of the environment. We show that the spectral variance estimator that is based on this model, can only be used when the source-microphone distance is larger than the so-called critical distance. This is, crudely speaking, the distance where the direct sound power is equal to the total reflective power. A generalization of the statistical reverberation model in which the direct sound is incorporated is developed. This model requires one additional parameter that is related to the ratio between the direct sound energy and the sound energy of all reflections. The generalized model is used to derive a novel spectral variance estimator. When the novel estimator is used for dereverberation rather than the existing estimator, and the source-microphone distance is smaller than the critical distance, the dereverberation performance is significantly increased. Single-microphone systems only exploit the temporal and spectral diversity of the received signal. Reverberation, of course, also induces spatial diversity. To additionally exploit this diversity, multiple microphones must be used, and their outputs must be combined by a suitable spatial processor such as the so-called delay and sum beamformer. It is not a priori evident whether spectral enhancement is best done before or after the spatial processor. For this reason we investigate both possibilities, as well as a merge of the spatial processor and the spectral enhancement technique. An advantage of the latter option is that the spectral variance estimator can be further improved. Our experiments show that the use of multiple microphones affords a significant improvement of the perceptual speech quality. The applicability of the theory developed in this dissertation is demonstrated using a hands-free communication system. Since hands-free systems are often used in a noisy and reverberant environment, the received microphone signal does not only contain the desired signal but also interferences such as room reverberation that is caused by the desired source, background noise, and a far-end echo signal that results from a sound that is produced by the loudspeaker. Usually an acoustic echo canceller is used to cancel the far-end echo. Additionally a post-processor is used to suppress background noise and residual echo, i.e., echo which could not be cancelled by the echo canceller. In this work a novel structure and post-processor for an acoustic echo canceller are developed. The post-processor suppresses late reverberation caused by the desired source, residual echo, and background noise. The late reverberation and late residual echo are estimated using the generalized statistical reverberation model. Experimental results convincingly demonstrate the benefits of the proposed system for suppressing late reverberation, residual echo and background noise. The proposed structure and post-processor have a low computational complexity, a highly modular structure, can be seamlessly integrated into existing hands-free communication systems, and affords a significant increase of the listening comfort and speech intelligibility

    Objective Assessment of Machine Learning Algorithms for Speech Enhancement in Hearing Aids

    Get PDF
    Speech enhancement in assistive hearing devices has been an area of research for many decades. Noise reduction is particularly challenging because of the wide variety of noise sources and the non-stationarity of speech and noise. Digital signal processing (DSP) algorithms deployed in modern hearing aids for noise reduction rely on certain assumptions on the statistical properties of undesired signals. This could be disadvantageous in accurate estimation of different noise types, which subsequently leads to suboptimal noise reduction. In this research, a relatively unexplored technique based on deep learning, i.e. Recurrent Neural Network (RNN), is used to perform noise reduction and dereverberation for assisting hearing-impaired listeners. For noise reduction, the performance of the deep learning model was evaluated objectively and compared with that of open Master Hearing Aid (openMHA), a conventional signal processing based framework, and a Deep Neural Network (DNN) based model. It was found that the RNN model can suppress noise and improve speech understanding better than the conventional hearing aid noise reduction algorithm and the DNN model. The same RNN model was shown to reduce reverberation components with proper training. A real-time implementation of the deep learning model is also discussed

    Assessment of a hybrid numerical approach to estimate sound wave propagation in an enclosure and application of auralizations to evaluate acoustical conditions of a classroom to establish the impact of acoustic variables on cognitive processes

    No full text
    In this research, the concept of auralization is explored taking into account a hybrid numerical approach to establish good options for calculating sound wave propagation and the application of virtual sound environments to evaluate acoustical conditions of a classroom, in order to determine the impact of acoustic variables on cognitive processes. The hybrid approach considers the combination of well-established Geometrical Acoustic (GA) techniques and the Finite Element Method (FEM), contemplating for the latter the definition of a real valued impedance boundary condition related to absorption coefficients available in GA databases. The realised virtual sound environments are verified against real environment measurements by means of objective and subjective methods. The former is based on acoustic measurements according to international standards, in order to evaluate the numerical approaches used with established acoustic indicators to assess sound propagation in rooms. The latter comprises a subjective test comparing the virtual auralizations to the reference ones, which are obtained by means of binaural impulse response measurements. The first application of the auralizations contemplates an intelligibility and listening difficulty subjective test, considering different acoustic conditions of reverberation time and background noise levels. The second application studies the impact of acoustic variables on the cognitive processes of attention, memory and executive function, by means of psychological tests
    • …
    corecore