97 research outputs found

    Design and Realization of Fully-digital Microwave and Mm-wave Multi-beam Arrays with FPGA/RF-SOC Signal Processing

    Get PDF
    There has been a constant increase in data-traffic and device-connections in mobile wireless communications, which led the fifth generation (5G) implementations to exploit mm-wave bands at 24/28 GHz. The next-generation wireless access point (6G and beyond) will need to adopt large-scale transceiver arrays with a combination of multi-input-multi-output (MIMO) theory and fully digital multi-beam beamforming. The resulting high gain array factors will overcome the high path losses at mm-wave bands, and the simultaneous multi-beams will exploit the multi-directional channels due to multi-path effects and improve the signal-to-noise ratio. Such access points will be based on electronic systems which heavily depend on the integration of RF electronics with digital signal processing performed in Field programmable gate arrays (FPGA)/ RF-system-on-chip (SoC). This dissertation is directed towards the investigation and realization of fully-digital phased arrays that can produce wideband simultaneous multi-beams with FPGA or RF-SoC digital back-ends. The first proposed approach is a spatial bandpass (SBP) IIR filter-based beamformer, and is based on the concepts of space-time network resonance. A 2.4 GHz, 16-element array receiver, has been built for real-time experimental verification of this approach. The second and third approaches are respectively based on Discrete Fourier Transform (DFT) theory, and a lens plus focal planar array theory. Lens based approach is essentially an analog model of DFT. These two approaches are verified for a 28 GHz 800 MHz mm-wave implementation with RF-SoC as the digital back-end. It has been shown that for all proposed multibeam beamformer implementations, the measured beams are well aligned with those of the simulated. The proposed approaches differ in terms of their architectures, hardware complexity and costs, which will be discussed as this dissertation opens up. This dissertation also presents an application of multi-beam approaches for RF directional sensing applications to explore white spaces within the spatio-temporal spectral regions. A real-time directional sensing system is proposed to capture the white spaces within the 2.4 GHz Wi-Fi band. Further, this dissertation investigates the effect of electro-magnetic (EM) mutual coupling in antenna arrays on the real-time performance of fully-digital transceivers. Different algorithms are proposed to uncouple the mutual coupling in digital domain. The first one is based on finding the MC transfer function from the measured S-parameters of the antenna array and employing it in a Frost FIR filter in the beamforming backend. The second proposed method uses fast algorithms to realize the inverse of mutual coupling matrix via tridiagonal Toeplitz matrices having sparse factors. A 5.8 GHz 32-element array and 1-7 GHz 7-element tightly coupled dipole array (TCDA) have been employed to demonstrate the proof-of-concept of these algorithms

    Frequency-Multiplexed Array Digitization for MIMO Receivers: 4-Antennas/ADC at 28 GHz on Xilinx ZCU-1285 RF SoC

    Get PDF
    Communications at mm-wave frequencies and above rely heavily on beamforming antenna arrays. Typically, hundreds, if not thousands, of independent antenna channels are used to achieve high SNR for throughput and increased capacity. Using a dedicated ADC per antenna receiver is preferable but it\u27s not practical for very large arrays due to unreasonable cost and complexity. Frequency division multiplexing (FDM) is a well-known technique for combining multiple signals into a single wideband channel. In a first of its kind measurements, this paper explores FDM for combining multiple antenna outputs at IF into a single wideband signal that can be sampled and digitized using a high-speed wideband ADC. The sampled signals are sub-band filtered and digitally down-converted to obtain individual antenna channels. A prototype receiver was realized with a uniform linear array consisting of 4 elements with 250 MHz bandwidth per channel at 28 GHz carrier frequency. Each of the receiver chains were frequency-multiplexed at an intermediate frequency of 1 GHz to avoid the requirement for multiple, precise local oscillators (LOs). Combined narrowband receiver outputs were sampled using a single ADC with digital front-end operating on a Xilinx ZCU-1285 RF SoC FPGA to synthesize 4 digital beams. The approach allows MM -fold increase in spatial degrees of freedom per ADC, for temporal oversampling by a factor of MM

    Feasibility and systems definition study for Microwave Multi-Application Payload (MMAP)

    Get PDF
    Work completed on three Shuttle/Spacelab experiments is examined: the Adaptive Multibeam Phased Array Antenna (AMPA) Experiment, Electromagnetic Environment Experiment (EEE) and Millimeter Wave Communications Experiment (MWCE). Results included the definition of operating modes, sequence of operation, radii of operation about several ground stations, signal format, foot prints of typical orbits and preliminary definition of ground and user terminals. Conceptual hardware designs, Spacelab interfaces, data handling methods, experiment testing and verification studies were included. The MWCE-MOD I was defined conceptually for a steerable high gain antenna

    The Design of Low Power Ultra-Wideband Transceiver

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Wideband two-dimensional and multiple beam phased arrays and microwave applications using piezoelectric transducers

    Get PDF
    Modern satellite, wireless communication, and radar systems often demand wideband performance for multi-channel operation and the ability to steer multiple beams for multiple moving targets. This dissertation covers a variety of topics to design low-cost and wideband antenna systems. The main areas of study are microwave devices controlled piezoelectric transducers (PETs) and wideband baluns and balanced microwave circuits using parallel-strip lines. Some focus has also been given to the design of Rotman lens for multiple beam generation and Vivaldi antenna arrays for wideband two-dimensional scanning. The dielectric perturbation technique controlled by PET is introduced to design a wideband phase shifter and a QPSK modulator, and to tune the resonant frequency of a slot dipole. The designed PET-controlled phase shifters are used for beam steering in a dual beam phased array using a bidirectional feeding scheme and a five-beam phased array using a microstrip Rotman lens. Vivaldi-type antennas are commonly used to achieve wideband performance. Very wideband performance can be achieved using an antipodal tapered slot antenna because of its inherent simple wideband transition from microstrip line to parallel-strip line. An antipodal tapered slot antenna and a phased array are designed to span 10 to 35 GHz. In addition, a 4??4 two-dimensional antenna array is designed using wideband antipodal tapered slot antennas, and two sets of PET-controlled phase shifters for E- and H-plane scanning are fabricated to steer the beam. As a microwave system using wideband antenna array, a new low-cost and wideband phased array radar is developed using a modulated pulse over 8 to 20 GHz band. The double-sided parallel-strip line as a balanced line is presented. The parallelstrip line offers much flexibility for microwave circuit designs. This transmission line makes it possible to realize a low impedance line and allows the design of a compact wideband balun and junction. Wideband transitions (or baluns) from parallel-strip line to microstrip line, a typical unbalanced transmission line, are realized to cover several octave bandwidth. Balanced microwave filters and a hybrid coupler are developed using the parallel-strip line
    corecore