463 research outputs found

    Hurricane Imaging Radiometer Wind Speed and Rain Rate Retrievals during the 2010 GRIP Flight Experiment

    Get PDF
    Microwave remote sensing observations of hurricanes, from NOAA and USAF hurricane surveillance aircraft, provide vital data for hurricane research and operations, for forecasting the intensity and track of tropical storms. The current operational standard for hurricane wind speed and rain rate measurements is the Stepped Frequency Microwave Radiometer (SFMR), which is a nadir viewing passive microwave airborne remote sensor. The Hurricane Imaging Radiometer, HIRAD, will extend the nadir viewing SFMR capability to provide wide swath images of wind speed and rain rate, while flying on a high altitude aircraft. HIRAD was first flown in the Genesis and Rapid Intensification Processes, GRIP, NASA hurricane field experiment in 2010. This paper reports on geophysical retrieval results and provides hurricane images from GRIP flights. An overview of the HIRAD instrument and the radiative transfer theory based, wind speed/rain rate retrieval algorithm is included. Results are presented for hurricane wind speed and rain rate for Earl and Karl, with comparison to collocated SFMR retrievals and WP3D Fuselage Radar images for validation purposes

    Retrieval of Ocean Surface Windspeed and Rainrate from the Hurricane Imaging Radiometer (HIRAD) Brightness Temperature Observations

    Get PDF
    The Hurricane Imaging Radiometer (HIRAD) is a new airborne synthetic aperture passive microwave radiometer capable of wide swath imaging of the ocean surface wind speed under heavy precipitation e.g. in tropical cyclones. It uses interferometric signal processing to produce upwelling brightness temperature (Tb) images at its four operating frequencies 4, 5, 6 and 6.6 GHz [1,2]. HIRAD participated in NASA s Genesis and Rapid Intensification Processes (GRIP) mission during 2010 as its first science field campaign. It produced Tb images with ~70 km swath width and 3 km resolution from a ~ 20 km altitude. From this, ocean surface wind speed and column averaged atmospheric liquid water content can be retrieved across the swath. The column averaged liquid water then could be related to an average rain rate. The retrieval algorithm (and the HIRAD instrument itself) is a direct descendant of the nadir-only Stepped Frequency Microwave Radiometer that is used operationally by the NOAA Hurricane Research Division to monitor tropical cyclones [3,4]. However, due to HIRAD s slant viewing geometry (compared to nadir viewing SFMR) a major modification is required in the algorithm. Results based on the modified algorithm from the GRIP campaign will be presented in the paper

    Hurricane Imaging Radiometer (HIRAD) Wind Speed Retrievals and Validation Using Dropsondes

    Get PDF
    Surface wind speed retrievals have been generated and evaluated using Hurricane Imaging Radiometer (HIRAD) measurements from flights over Hurricane Joaquin, Hurricane Patricia, Hurricane Marty, and the remnants of Tropical Storm Erika, all in 2015. Procedures are described here for producing maps of brightness temperature, which are subsequently used for retrievals of surface wind speed and rain rate across a approx.50 km wide swath for each flight leg. An iterative retrieval approach has been developed to take advantage of HIRAD's measurement characteristics. Validation of the wind speed retrievals has been conducted, using 636 dropsondes released from the same WB-57 high altitude aircraft carrying HIRAD during the Tropical Cyclone Intensity (TCI) experiment. The HIRAD wind speed retrievals exhibit very small bias relative to the dropsondes, for winds tropical storm strength (17.5 m/s) or greater. HIRAD has reduced sensitivity to winds weaker than tropical storm strength, and a small positive bias (approx.2 m/s) there. Two flights with predominantly weak winds according to the dropsondes have abnormally large errors from HIRAD, and large positive biases. From the other flights, root mean square errors are 4.1 m/s (33%) for winds below tropical storm strength, 5.6 m/s (25%) for tropical storm strength winds, and 6.3 m/s (16%) for hurricane strength winds. Mean absolute errors for those categories are 3.2 m/s (25%), 4.3 m/s (19%), and 4.8 m/s (12%), with bias near zero for tropical storm and hurricane strength winds

    The Hurricane Imaging Radiometer: Present and Future

    Get PDF
    The Hurricane Imaging Radiometer (HIRAD) is an airborne passive microwave radiometer designed to provide high resolution, wide swath imagery of surface wind speed in tropical cyclones from a low profile planar antenna with no mechanical scanning. Wind speed and rain rate images from HIRAD's first field campaign (GRIP, 2010) are presented here followed, by a discussion on the performance of the newly installed thermal control system during the 2012 HS3 campaign. The paper ends with a discussion on the next generation dual polarization HIRAD antenna (already designed) for a future system capable of measuring wind direction as well as wind speed

    Technical approaches, chapter 3, part E

    Get PDF
    Radar altimeters, scatterometers, and imaging radar are described in terms of their functions, future developments, constraints, and applications

    The GPM GV Program

    Get PDF
    We present a detailed overview of the structure and activities associated with the NASA-led ground validation component of the NASA-JAXA Global Precipitation Measurement (GPM) mission. The overarching philosophy and approaches for NASAs GV program are presented with primary focus placed on aspects of direct validation and a summary of physical validation campaigns and results. We describe a spectrum of key instruments, methods, field campaigns and data products developed and used by NASAs GV team to verify GPM level-2 precipitation products in rain and snow. We describe the tools and analysis framework used to confirm that NASAs Level-1 science requirements for GPM are met by the GPM Core Observatory. Examples of routine validation activities related to verification of Integrated Multi-satellitE Retrievals for GPM (IMERG) products for two different regions of the globe (Korea and the U.S.) are provided, and a brief analysis related to IMERG performance in the extreme rainfall event associated with Hurricane Florence is discussed

    The Proof of Concept of The Hurricane Imaging Radiometer: Hurricane Wind Speed and Rain Rate Retrievals

    Get PDF
    This dissertation presents the proof of concept for the Hurricane Imaging Radiometer (HIRAD), where remote sensing retrievals of the 2-dimensional wind and rain fields for several hurricanes are validated with independent measurements. A significant contribution of this dissertation is the development of a novel statistical calibration technique, whereby the HIRAD instrument is radiometrically calibrated, using modeled brightness temperatures (Tb) generated using a priori hurricane wind and rain fields that are statistically representative of the actual hurricane conditions at the time of the HIRAD brightness temperature measurements. For this calibration technique, the probability distribution function of the measured HIRAD Tb\u27s is matched to the modeled Tb distribution. After applying this Tb calibration, hurricane wind speeds and rain rates are retrieved for six hurricane surveillance flights between 2013-2015. These HIRAD results are compared with available, statistically independent, surface measurements from in-situ GPS dropwindsondes and remote sensing: Stepped Frequency Microwave Radiometer (SFMR), and the High-Altitude Imaging Wind and Rain Aerial Profiler (HIWRAP). Since there is good agreement in the intercomparisons, it is concluded that the HIRAD hurricane measurement technique performs as intended, after the corresponding Tb images are properly calibrated. Furthermore, based upon the above comparisons, it is concluded that the retrieved HIRAD 2-dimensional wind field improves upon the a priori calibration source, regardless of quality of this model used in the calibration. This shows that HIRAD is not simply replicating results of the calibration source, but rather, it adds useful information

    Hurricane Imaging Radiometer (HIRAD) Tropical Rainfall Retrievals

    Get PDF
    The Hurricane Imaging Radiometer (HIRAD) is an airborne passive microwave remote sensor, developed to measure wind speed and rain rate in hurricanes. This dissertation concerns the development of a signal processing algorithm to infer tropical rainfall from HIRAD radiance (brightness temperature, Tb) measurements. The basis of the rain rate retrieval algorithm is an improved forward microwave radiative transfer model (RTM) that incorporates the HIRAD multi-antenna-beam geometry, and uses semi-empirical coefficients derived from an airborne experiment that occurred in the Gulf of Mexico off Tampa Bay in 2013. During this flight, HIRAD observed a squall line of thunderstorms simultaneously with an airborne meteorological radar (High Altitude Wind and Rain Profiler, HIWRAP), located on the same airplane. Also, ground based NEXRAD radars from the National Weather Service (located at Tampa and Tallahassee) provided high resolution simultaneous rain rate measurements. Using NEXRAD rainfall as the surface truth input to the HIRAD RTM, empirical rain microwave absorption coefficients were tuned to match the measured brightness temperatures. Also, the collocated HIWRAP radar reflectivity (dBZ) measurements were cross correlated with NEXRAD to derive the empirical HIWRAP radar reflectivity to rain rate relationship. Finally, the HIRAD measured Tbs were input to the HIRAD rain retrieval algorithm to derive estimates of rain rate, which were validated using the independent HIWRAP measurements of rain rate

    An Improved Ocean Vector Winds Retrieval Approach Using C- And Ku-band Scatterometer And Multi-frequency Microwave Radiometer Measurements

    Get PDF
    This dissertation will specifically address the issue of improving the quality of satellite scatterometer retrieved ocean surface vector winds (OVW), especially in the presence of strong rain associated with tropical cyclones. A novel active/passive OVW retrieval algorithm is developed that corrects Ku-band scatterometer measurements for rain effects and then uses them to retrieve accurate OVW. The rain correction procedure makes use of independent information available from collocated multi-frequency passive microwave observations provided by a companion sensor and also from simultaneous C-band scatterometer measurements. The synergy of these active and passive measurements enables improved correction for rain effects, which enhances the utility of Ku-band scatterometer measurements in extreme wind events. The OVW retrieval algorithm is based on the next generation instrument conceptual design for future US scatterometers, i.e. the Dual Frequency Scatterometer (DFS) developed by NASA’s Jet Propulsion Laboratory. Under this dissertation research, an end-to-end computer simulation was developed to evaluate the performance of this active/passive technique for retrieving hurricane force winds in the presence of intense rain. High-resolution hurricane wind and precipitation fields were simulated for several scenes of Hurricane Isabel in 2003 using the Weather Research and Forecasting (WRF) Model. Using these numerical weather model environmental fields, active/passive measurements were simulated for instruments proposed for the Global Change Observation Mission- Water Cycle (GCOM-W2) satellite series planned by the Japanese Aerospace Exploration Agency. Further, the quality of the simulation was evaluated using actual hurricane measurements from the Advanced Microwave Scanning Radiometer and iv SeaWinds scatterometer onboard the Advanced Earth Observing Satellite-II (ADEOS-II). The analysis of these satellite data provided confidence in the capability of the simulation to generate realistic active/passive measurements at the top of the atmosphere. Results are very encouraging, and they show that the new algorithm can retrieve accurate ocean surface wind speeds in realistic hurricane conditions using the rain corrected Ku-band scatterometer measurements. They demonstrate the potential to improve wind measurements in extreme wind events for future wind scatterometry missions such as the proposed GCOM-W2

    J Atmos Ocean Technol

    Get PDF
    Surface wind speed retrievals have been generated and evaluated using Hurricane Imaging Radiometer (HIRAD) measurements from flights over Hurricane Joaquin, Hurricane Patricia, Hurricane Marty, and the remnants of Tropical Storm Erika, all in 2015. Procedures are described here for producing maps of brightness temperature, which are subsequently used for retrievals of surface wind speed and rain rate across a ~50 km wide swath for each flight leg. An iterative retrieval approach has been developed to take advantage of HIRAD's measurement characteristics. Validation of the wind speed retrievals has been conducted, using 636 dropsondes released from the same WB-57 high altitude aircraft carrying HIRAD during the Tropical Cyclone Intensity (TCI) experiment. The HIRAD wind speed retrievals exhibit very small bias relative to the dropsondes, for winds tropical storm strength (17.5 m s|) or greater. HIRAD has reduced sensitivity to winds weaker than tropical storm strength, and a small positive bias (~2 m s|) there. Two flights with predominantly weak winds according to the dropsondes have abnormally large errors from HIRAD, and large positive biases. From the other flights, root mean square differences between HIRAD and the dropsonde winds are 4.1 m s| (33%) for winds below tropical storm strength, 5.6 m s| (25%) for tropical storm strength winds, and 6.3 m s| (16%) for hurricane strength winds. Mean absolute differences for those categories are 3.2 m s| (25%), 4.3 m s| (19%), and 4.8 m s| (12%), with bias near zero for tropical storm and hurricane strength winds.20172018-08-01T00:00:00ZU01 IP000056/IP/NCIRD CDC HHS/United States28919665PMC5597242663
    • …
    corecore