164 research outputs found

    Third International Symposium on Magnetic Suspension Technology

    Get PDF
    In order to examine the state of technology of all areas of magnetic suspension and to review recent developments in sensors, controls, superconducting magnet technology, and design/implementation practices, the Third International Symposium on Magnetic Suspension Technology was held at the Holiday Inn Capital Plaza in Tallahassee, Florida on 13-15 Dec. 1995. The symposium included 19 sessions in which a total of 55 papers were presented. The technical sessions covered the areas of bearings, superconductivity, vibration isolation, maglev, controls, space applications, general applications, bearing/actuator design, modeling, precision applications, electromagnetic launch and hypersonic maglev, applications of superconductivity, and sensors

    Third International Symposium on Magnetic Suspension Technology

    Get PDF
    In order to examine the state of technology of all areas of magnetic suspension and to review recent developments in sensors, controls, superconducting magnet technology, and design/implementation practices, the Third International Symposium on Magnetic Suspension Technology was held at the Holiday Inn Capital Plaza in Tallahassee, Florida on 13-15 Dec. 1995. The symposium included 19 sessions in which a total of 55 papers were presented. The technical sessions covered the areas of bearings, superconductivity, vibration isolation, maglev, controls, space applications, general applications, bearing/actuator design, modeling, precision applications, electromagnetic launch and hypersonic maglev, applications of superconductivity, and sensors

    Fourth International Symposium on Magnetic Suspension Technology

    Get PDF
    In order to examine the state of technology of all areas of magnetic suspension and to review recent developments in sensors, controls, superconducting magnet technology, and design/implementation practices, the Fourth International Symposium on Magnetic Suspension Technology was held at The Nagaragawa Convention Center in Gifu, Japan, on October 30 - November 1, 1997. The symposium included 13 sessions in which a total of 35 papers were presented. The technical sessions covered the areas of maglev, controls, high critical temperature (T(sub c)) superconductivity, bearings, magnetic suspension and balance systems (MSBS), levitation, modeling, and applications. A list of attendees is included in the document

    International Symposium on Magnetic Suspension Technology, Part 1

    Get PDF
    The goal of the symposium was to examine the state of technology of all areas of magnetic suspension and to review related recent developments in sensors and controls approaches, superconducting magnet technology, and design/implementation practices. The symposium included 17 technical sessions in which 55 papers were presented. The technical session covered the areas of bearings, sensors and controls, microgravity and vibration isolation, superconductivity, manufacturing applications, wind tunnel magnetic suspension systems, magnetically levitated trains (MAGLEV), space applications, and large gap magnetic suspension systems

    Design of a Bearingless Permanent Magnet Synchronous Machine with a Star Point-Connected Axial Active Magnetic Bearing

    Get PDF
    The bearingless synchronous machine is considered with slotted stator, cylindrical rotor with sleeve-protected surface-mounted permanent magnets and six actively controlled degrees of freedom as high-speed drive. The focus is set on two key aspects: The machine design under consideration of size-dependent scaling effects and a novel kind of feeding the excitation winding of the axial active magnetic bearing. Since the considered bearingless PM machines typically exhibit a low degree of magnetic saturation and are equipped with distributed windings, the two-dimensional analytical calculation is used to calculate the rotor suspension force and disturbing rotor forces. These calculations are used in the subsequent electromagnetic design process. At the beginning of the design process, boundary conditions are discussed, that are derived geometrically for the combined drive and suspension winding, structural mechanically for the sleeve height and thermally for the loss and output power density. On the basis of two different machine sizes, on the one hand approximately 1.5 kW and on the other hand approximately 60 kW at 75 mm and 130 mm outer diameter, respectively, at corresponding active axial length of 40 mm and 125 mm, this work shows, how the choice of pole count, bore diameter and magnet height influences the properties relevant for the rotor position control. It is concluded that an increase in pole count, a reduction in bore diameter and an increase in magnet height reduce the undesired parasitic lateral rotor forces, caused by rotor eddy currents and armature reaction. In order to investigate scaling effects, an analytical calculation is used, where the focus is set on the two-dimensional electrodynamic field calculation. By means of a 1 kW / 60000 rpm-prototype drive, consisting of a bearingless machine and a combined active radial-axial magnetic bearing, the accuracy of the results from calculation and simulation is verified. In order to reduce the number of required power electronic half-bridges, a concept is investigated, in which the axial magnetic bearing is supplied by a current between the star points of the combined winding sections in the bearingless machine. To do so the concept of the widely used space vector pulse-width modulation for 3-phase systems is extended to a double 3-phase system in a way that the axial magnetic bearing current corresponds to the sum current in the star point of one 3-phase system. This current can be controlled by the variation of the two star point electric potentials. However, additional current oscillations in the axial bearing current and in the 3-phase current can occur if the inverter is operated close to its voltage limit or if relatively high axial bearing currents must be provided at high dynamics. Anyway, the concept is considered a promising approach, since in this application as turbo-charger drive the disturbing effects do not occur

    Magnetic Bearings

    Get PDF
    The term magnetic bearings refers to devices that provide stable suspension of a rotor. Because of the contact-less motion of the rotor, magnetic bearings offer many advantages for various applications. Commercial applications include compressors, centrifuges, high-speed turbines, energy-storage flywheels, high-precision machine tools, etc. Magnetic bearings are a typical mechatronic product. Thus, a great deal of knowledge is necessary for its design, construction and operation. This book is a collection of writings on magnetic bearings, presented in fragments and divided into six chapters. Hopefully, this book will provide not only an introduction but also a number of key aspects of magnetic bearings theory and applications. Last but not least, the presented content is free, which is of great importance, especially for young researcher and engineers in the field

    The 24th Aerospace Mechanisms Symposium

    Get PDF
    The proceedings of the symposium are reported. Technological areas covered include actuators, aerospace mechanism applications for ground support equipment, lubricants, latches, connectors, and other mechanisms for large space structures

    Investigation of Tx-Rx mutual inductance eddy current system for high lift-off inspection

    Get PDF
    PhD ThesisEddy current (EC) testing is a popular inspection technique due to its harsh environment tolerance and cost-effectiveness. Despite the immense research in EC inspection, defect detection at high lift-off still poses a challenge. The weakening mutual coupling of EC probe and sample due to the increase in lift-off degrades signal strength and thus reduces the detection sensitivity. Although signal processing can be used to mitigate lift-off influence, it is laborious and time consuming. Therefore, in this study, a Tx-Rx probe system is proposed to deal with high lift-off inspection. The parts of the study of the Tx-Rx EC system includes optimisation of probe configuration, improvement of signal conditioning circuit and comparative study of excitation modes. In optimisation of probe configuration, lift-off and coil gap are optimized to mitigate the offset caused by the direct coupling of Tx-Rx coils. The optimum coil gaps of Tx-Rx probe for different lift-offs are found by observing the highest signal strength. The optimisation of coil gap against lift-off extends the detection sensitivity of the EC system to a lift-off of about 30 mm which is by far higher than 5 mm lift-off limit of a single-coil EC probe. In signal conditioning aspect, a modified Maxwell bridge circuit is designed to remove the offset due to self- impedance of the Rx coil. The proposed circuit mitigates the influence of the self-impedance of Rx coil and improves signal-to- noise ratio SNR. In the excitation mode, pulse and sweep frequency signals are compared to study detection sensitivity, SNR and crack quantification capability. The result of the comparative study reveals that pulse excitation is good for crack sizing while sweep frequency excitation is better for crack detection. Simulations and experimental studies are carried out to show the efficacy of the Tx-Rx EC system in high lift-off crack detection

    The 20th Aerospace Mechanisms Symposium

    Get PDF
    Numerous topics related to aerospace mechanisms were discussed. Deployable structures, electromagnetic devices, tribology, hydraulic actuators, positioning mechanisms, electric motors, communication satellite instruments, redundancy, lubricants, bearings, space stations, rotating joints, and teleoperators are among the topics covered

    Active magnetic bearing for ultra precision flexible electronics production system

    Get PDF
    Roll-to-roll printing on continuous plastic films could enable the production of flexible electronics at high speed and low cost, but the granularity of feature sizes is limited by the system accuracy. Technologies such as gravure printing and nanoimprint lithography demand a level of rotary motion precision that cannot be achieved with rolling element bearings. Manufacturing tolerances of the rotating parts, thermal drift and process forces in combination with structural compliance add up to additional error motions. In this master by research an active magnetic bearing (AMB) solution is designed for a new, super-sized roll-to-roll flexible electronics production machine, which was so far based on hydrostatic bearings. The magnetic bearing could actively compensate the accumulated synchronous error and maintain high accuracy under all conditions. However, the asynchronous error of a conventional AMB with the required size and power is a problem. In order to reduce the relatively high positioning uncertainty of active magnetic bearings an innovative radial position measurement based on linear, incremental encoders with optical conversion principle is proposed. A commercial encoder scanning head faces a round scale with concentric, coplanar lines on its face. By counting these lines the radial position can be measured. Because such a scale is not readily available, it is made by micro-machining. In experiments, different machining methods are compared. Then a magnetic bearing is built to demonstrate the efficacy of the proposed sensor. As a result, the best measurement noise is 3.5nm at 10kHz and a position uncertainty of approximately 0.25µm has been achieved for the magnetic bearing. These promising results are especially interesting for applications with high precision requirements at low speed of rotation
    corecore