673 research outputs found

    Technology, Science, and Culture: A Global Vision

    Get PDF
    The aim of the Workshop: Technology, Science, and Culture - A Global Vision is to create a discussion forum on research related to the fields of Water Science, Food Science, Intelligent Systems, Molecular Biomedicine, and Creation and Theories of Culture. The workshop is intended to discuss research on current problems, relevant methodologies, and future research streams and to create an environment for the exchange of ideas and collaboration among participants

    New trends in peptide-based anti-biofilm strategies : a review of recent achievements and bioinformatics approaches

    Get PDF
    Antimicrobial peptides (AMPs) have a broad spectrum of activity and unspecific mechanisms of action. Therefore, they are seen as valid alternatives to overcome clinically relevant biofilms and reduce the chance of acquired resistance. This paper reviews AMPs and anti-biofilm AMP-based strategies and discusses ongoing and future work. Recent studies report successful AMP-based prophylactic and therapeutic strategies, several databases catalogue AMP information and analysis tools, and novel bioinformatics tools are supporting AMP discovery and design. However, most AMP studies are performed with planktonic cultures, and most studies on sessile cells test AMPs on growing rather than mature biofilms. Promising preliminary synergistic studies have to be consubstantiated and the study of functionalized coatings with AMPs must be further explored. Standardized operating protocols, to enforce the repeatability and reproducibility of AMP anti-biofilm tests, and automated means of screening and processing the ever-expanding literature are still missing.Financial support from IBB-CEB and Fundacao para a Ciencia e Tecnologia (FCT) and European Community fund FEDER, through Program COMPETE, in the ambit of the FCT project 'PTDC/SAU-SAP/113196/2009/ FCOMP-01-0124-FEDER-016012' is gratefully acknowledged

    Identifying antimicrobial peptides in genomes using machine learning

    Get PDF
    Legana Fingerhut used machine learning to improve predictions of antimicrobial peptides (AMPs) from protein sequences. Her associated framework was the first to specifically address the problem of identifying AMPs from whole-genome data. Her work leads to improved workflows for identifying novel AMPs which advances our understanding of the innate immune system

    Protein Structure

    Get PDF
    Since the dawn of recorded history, and probably even before, men and women have been grasping at the mechanisms by which they themselves exist. Only relatively recently, did this grasp yield anything of substance, and only within the last several decades did the proteins play a pivotal role in this existence. In this expose on the topic of protein structure some of the current issues in this scientific field are discussed. The aim is that a non-expert can gain some appreciation for the intricacies involved, and in the current state of affairs. The expert meanwhile, we hope, can gain a deeper understanding of the topic

    Bionano-Interfaces through Peptide Design

    Get PDF
    The clinical success of restoring bone and tooth function through implants critically depends on the maintenance of an infection-free, integrated interface between the host tissue and the biomaterial surface. The surgical site infections, which are the infections within one year of surgery, occur in approximately 160,000-300,000 cases in the US annually. Antibiotics are the conventional treatment for the prevention of infections. They are becoming ineffective due to bacterial antibiotic-resistance from their wide-spread use. There is an urgent need both to combat bacterial drug resistance through new antimicrobial agents and to limit the spread of drug resistance by limiting their delivery to the implant site. This work aims to reduce surgical site infections from implants by designing of chimeric antimicrobial peptides to integrate a novel and effective delivery method. In recent years, antimicrobial peptides (AMPs) have attracted interest as natural sources for new antimicrobial agents. By being part of the immune system in all life forms, they are examples of antibacterial agents with successfully maintained efficacy across evolutionary time. Both natural and synthetic AMPs show significant promise for solving the antibiotic resistance problems. In this work, AMP1 and AMP2 was shown to be active against three different strains of pathogens in Chapter 4. In the literature, these peptides have been shown to be effective against multi-drug resistant bacteria. However, their effective delivery to the implantation site limits their clinical use. In recent years, different groups adapted covalent chemistry-based or non-specific physical adsorption methods for antimicrobial peptide coatings on implant surfaces. Many of these procedures use harsh chemical conditions requiring multiple reaction steps. Furthermore, none of these methods allow the orientation control of these molecules on the surfaces, which is an essential consideration for biomolecules. In the last few decades, solid binding peptides attracted high interest due to their material specificity and self-assembly properties. These peptides offer robust surface adsorption and assembly in diverse applications. In this work, a design method for chimeric antimicrobial peptides that can self-assemble and self-orient onto biomaterial surfaces was demonstrated. Three specific aims used to address this two-fold strategy of self-assembly and self-orientation are: 1) Develop classification and design methods using rough set theory and genetic algorithm search to customize antibacterial peptides; 2) Develop chimeric peptides by designing spacer sequences to improve the activity of antimicrobial peptides on titanium surfaces; 3) Verify the approach as an enabling technology by expanding the chimeric design approach to other biomaterials. In Aim 1, a peptide classification tool was developed because the selection of an antimicrobial peptide for an application was difficult among the thousands of peptide sequences available. A rule-based rough-set theory classification algorithm was developed to group antimicrobial peptides by chemical properties. This work is the first time that rough set theory has been applied to peptide activity analysis. The classification method on benchmark data sets resulted in low false discovery rates. The novel rough set theory method was combined with a novel genetic algorithm search, resulting in a method for customizing active antibacterial peptides using sequence-based relationships. Inspired by the fact that spacer sequences play critical roles between functional protein domains, in Aim 2, chimeric peptides were designed to combine solid binding functionality with antimicrobial functionality. To improve how these functions worked together in the same peptide sequence, new spacer sequences were engineered. The rough set theory method from Aim 1 was used to find structure-based relationships to discover new spacer sequences which improved the antimicrobial activity of the chimeric peptides. In Aim 3, the proposed approach is demonstrated as an enabling technology. In this work, calcium phosphate was tested and verified the modularity of the chimeric antimicrobial self-assembling peptide approach. Other chimeric peptides were designed for common biomaterials zirconia and urethane polymer. Finally, an antimicrobial peptide was engineered for a dental adhesive system toward applying spacer design concepts to optimize the antimicrobial activity

    Building an automated platform for the classification of peptides/proteins using machine learning

    Get PDF
    Dissertação de mestrado em BioinformaticsOne of the challenging problems in bioinformatics is to computationally characterize sequences, structures and functions of proteins. Sequence-derived structural and physico-chemical properties of proteins have been used in the development of machine learning models in protein related problems. However, tools and platforms to calculate features and perform Machine learning (ML) with proteins are scarce and have their limitations in terms of effectiveness, user-friendliness and capacity. Here, a generic modular automated platform for the classification of proteins based on their physicochemical properties using different ML algorithms is proposed. The tool developed, as a Python package, facilitates the major tasks of ML and includes modules to read and alter sequences, calculate protein features, preprocess datasets, execute feature reduction and selection, perform clustering, train and optimize ML models and make predictions. As it is modular, the user retains the power to alter the code to fit specific needs. This platform was tested to predict membrane active anticancer and antimicrobial peptides and further used to explore viral fusion peptides. Membrane-interacting peptides play a crucial role in several biological processes. Fusion peptides are a subclass found in enveloped viruses, that are particularly relevant for membrane fusion. Determining what are the properties that characterize fusion peptides and distinguishing them from other proteins is a very relevant scientific question with important technological implications. Using three different datasets composed by well annotated sequences, different feature extraction techniques and feature selection methods (resulting in a total of over 20 datasets), seven ML models were trained and tested, using cross validation for error estimation and grid search for model selection. The different models, feature sets and feature selection techniques were compared. The best models obtained for distinct metric were then used to predict the location of a known fusion peptide in a protein sequence from the Dengue virus. Feature importances were also analysed. The models obtained will be useful in future research, also providing a biological insight of the distinctive physicochemical characteristics of fusion peptides. This work presents a freely available tool to perform ML-based protein classification and the first global analysis and prediction of viral fusion peptides using ML, reinforcing the usability and importance of ML in protein classification problems.Um dos problemas mais desafiantes em bioinformática é a caracterização de sequências, estruturas e funções de proteínas. Propriedades físico-químicas e estruturais derivadas da sequêcia proteica têm sido utilizadas no desenvolvimento de modelos de aprendizagem máquina (AM). No entanto, ferramentas para calcular estes atributos são escassas e têm limitações em termos de eficiência, facilidade de uso e capacidade de adaptação a diferentes problemas. Aqui, é descrita uma plataforma modular genérica e automatizada para a classificação de proteínas com base nas suas propriedades físico-químicas, que faz uso de diferentes algoritmos de AM. A ferramenta desenvolvida facilita as principais tarefas de AM e inclui módulos para ler e alterar sequências, calcular atributos de proteínas, realizar pré-processamento de dados, fazer redução e seleção de features, executar clustering, criar modelos de AM e fazer previsões. Como é construído de forma modular, o utilizador mantém o poder de alterar o código para atender às suas necessidades específicas. Esta plataforma foi testada com péptidos anticancerígenos e antimicrobianos e foi ainda utilizada para explorar péptidos de fusão virais. Os péptidos de fusão são uma classe de péptidos que interagem com a membrana, encontrados em vírus encapsulados e que são particularmente relevantes para a fusão da membrana do vírus com a membrana do hospedeiro. Determinar quais são as propriedades que os caracterizam é uma questão científica muito relevante, com importantes implicações tecnológicas. Usando três conjuntos de dados diferentes compostos por sequências bem anotadas, quatro técnicas diferentes de extração de features e cinco métodos diferentes de seleção de features (num total de 24 conjuntos de dados testados), sete modelos de AM, com validação cruzada de io vezes e uma abordagem de pesquisa em grelha, foram treinados e testados. Os melhores modelos obtidos, com avaliações MCC entre 0,7 e o,8 e precisão entre 0,85 e 0,9, foram utilizados para prever a localização de um péptido de fusão conhecido numa sequência da proteína de fusão do vírus do Dengue. Os modelos obtidos para prever a localização do péptido de fusão são úteis em pesquisas futuras, fornecendo também uma visão biológica das características físico-químicas distintivas dos mesmos. Este trabalho apresenta uma ferramenta disponível gratuitamente para realizar a classificação de proteínas com AM e a primeira análise global de péptidos de fusão virais usando métodos baseados em AM, reforçando a usabilidade e a importância da AM em problemas de classificação de proteínas

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues
    corecore