
ResearchOnline@JCU 

This file is part of the following work:

Fingerhut, Legana C. H. W. (2022) Identifying antimicrobial peptides in genomes

using machine learning. PhD Thesis, James Cook University. 

Access to this file is available from:

https://doi.org/10.25903/j6bd%2Dy847

Copyright © 2022 Legana C. H. W. Fingerhut.

The author has certified to JCU that they have made a reasonable effort to gain

permission and acknowledge the owners of any third party copyright material

included in this document. If you believe that this is not the case, please email

researchonline@jcu.edu.au

mailto:researchonline@jcu.edu.au?subject=ResearchOnline%20Thesis%20Incident%20


Identifying antimicrobial peptides in 
genomes using machine learning  

 
This thesis is submitted for the Degree of Doctor of Philosophy by: 

Legana C. H. W. Fingerhut 

 

 

Current degrees held: 

Bachelor of Biomedical Sciences (Honours) Class I 

Bachelor of Science in Ecology and Conservation and Zoology 

Date: 13/05/2022 

 

 

College of Public Health, Medical and Veterinary Sciences 

Centre for Tropical Bioinformatics and Molecular Biology 

James Cook University 

 



 

 i 

ACKNOWLEDGEMENTS 

 

First and foremost, I would like to express my deepest gratitude to my primary 

supervisor, Dr Ira Cooke. Thank you for your support, kindness, patience, 

encouragement and enthusiasm. Thank you for being the best bioinformatics 

instructor one could ask for. I feel fortunate to have learnt so much from you, and I 

have no doubt the skills you taught me will benefit me in the rest of my career.  

 

I would also like to thank the rest of my advisory team, Prof Jan Strugnell, Prof 

Norelle Daly and Prof David Miller. 

 

Special thanks to Brooke, Jl and my peers in the codeR-TSV and marine omics 

groups for sharing your PhD journeys with mine and for your encouragement, 

support and fun you all provided.  

 

Toda raba to Rabbi Ari Rubin, for helping me maintain my spiritual health and for 

reminding me for the big picture. 

 

Thank you to my furbaby Safia, for never leaving my side, and for distracting me 

when I needed it (and sometimes when I did not) and for ensuring I interrupted long 

hours at my work desk every day to go for walkies. 

 

A most heartfelt thank you to my husband Jared, for your continuous support, 

patience and understanding. Your love means more to me than words could ever 

express. 

 

Finally, to everyone else that has been a part of this incredible journey: 

 

Thank you. 

 



 

 ii 

 

STATEMENT OF CONTRIBUTIONS OF OTHERS 
Assistance Contribution Name Affiliation  
Intellectual 
support 

Project plan 
and 
development 

Dr Ira Cooke 
 
 

James Cook 
University 
 

 Editorial 
support 

Dr Ira Cooke 
 
 
Prof Jan Strugnell 
 
 
Prof Norelle Daly  
 
 
Prof David Miller 

James Cook 
University 
 
James Cook 
University 
 
James Cook 
University 
 
James Cook 
University 

 Statistical and 
computer 
programming 
support 

Dr Ira Cooke James Cook 
University 

Financial 
support 

Stipend Postgraduate 
Research Scholarship 
 
Higher Degree by 
Research Covid-19 
Student Support 
Scholarship 

James Cook 
University 
 
James Cook 
University 
  

 Write-up Grant Doctoral Completion 
Grant 
 

College of Public 
Health, Medical 
and Veterinary 
Sciences, James 
Cook University  

  Tuition fee 
sponsorship 

James Cook 
University 

 

 

 

 

 



 

 iii 

PUBLICATION STATUS FOR THESIS CHAPTERS 
Thesis 
Chapter 

Published Planned to publish Target journal  Author list plan 

1  No No 
 

n/a  

2 Yes: Fingerhut, LCHW, Miller, DJ, Strugnell, JM, Daly, NL & Cooke, IR 2020, 
‘ampir: an R package for fast genome-wide prediction of antimicrobial 
peptides’, Bioinformatics, vol. 36, no. 21, pp. 5262–5263, DOI: 
10.1093/bioinformatics/btaa653 
 

3 No Yes Briefings in 
Bioinformatics 

Fingerhut, LCHW, 
Miller, DJ, Strugnell, 
JM, Daly, NL & 
Cooke, IR 
 

4 No Yes 

5 No No   

 
 
A publication has arisen that was based on chapter 2 of this thesis. I was the first 

author of this publication and contributed the majority of work involved in manuscript 

writing, software development and data analysis. Co-authors helped edit the 

manuscript text. My primary supervisor (Dr Ira Cooke) edited the manuscript text and 

contributed a small amount of code to the ampir package. I plan to adapt chapters 3 

and 4 to submit for publication in the Briefings in Bioinformatics journal. 

 

 

 

 

 

 

 



 

 iv 

ABSTRACT 
Introduction 

Antimicrobial peptides (AMPs) are part of the innate immune system in animals and 

plants, and are produced by almost all life forms. They defend against pathogens 

such as bacteria, viruses and fungi, and are also thought to play a role in regulating 

the microbiome. Due to the broad-spectrum activity AMPs possess, and their low 

potential to induce antimicrobial resistance, AMPs are of great interest as new drug 

candidates. As the genomes of more and more organisms have been sequenced the 

potential to discover novel AMPs from predicted protein sequences in public 

databases has grown. To facilitate this discovery-process many machine learning 

based AMP prediction tools have been developed, however, many are not fit for the 

purpose of scanning realistic whole-genome datasets. This thesis investigated the 

problems and potential solutions associated with identifying AMPs on a genome-

wide scale. It begins by developing a new machine learning based AMP predictor 

with the computational speed and programmable interface required for genome-wide 

scanning (chapter 2). In chapter 3 it investigates the datasets and summary statistics 

most appropriate for benchmarking machine learning based AMP predictors in a 

genome-wide scanning context. Finally it investigates the premise that machine-

learning predictors are superior to another widespread approach (homology) and 

how the answer to this assumption depends on the taxon of interest (chapter 4).  

Methods 

This thesis used curated AMP databases and UniProt to generate the training and 

testing datasets. The machine learning based AMP predictor, ampir, developed in 

chapter 2 is based on the support vector machine (SVM) approach, and has been 

wrapped up in an R package. Chapter 3 evaluated the training and test sets of nine 

machine learning based AMP predictors and compared them to representative 

whole-genome datasets (proteomes) from a highly studied plant (Arabidopsis 

thaliana) and an animal (Homo sapiens). Chapter 3 also assessed the performance 

of AMP predictors using these two proteomes as benchmark data. In chapter 4, 

BLAST was compared to a machine learning based AMP approach to predict AMPs 

in the proteomes of nine organisms spanning a wide taxonomic range. To assess the 

effect of taxonomic distance on the performance in both methods, a novel metric was 

formulated to measure the degree to which an organism is represented by AMPs 

from closely related organisms in an AMP database.  
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Results 

In chapter 2, the machine learning based AMP predictor ampir was shown to 

outperform other AMP predictors, especially when evaluated using metrics most 

relevant for AMP discovery from a proteome and when using the proteomes of real 

organisms (Arabidopsis thaliana and Homo sapiens) as benchmarks. Chapter 3 

highlighted that the training and test sets in the majority of current AMP predictors 

contain biases that limit their ability to predict AMPs based on realistic proteome 

input data. Chapter 4 revealed that out of the two AMP finding methods, machine 

learning AMP predictors and BLAST, only BLAST was significantly positively 

correlated with taxonomic distance. This suggests that (as expected) machine 

learning based AMP predictors are indeed better than homology-based searches to 

discover AMPs in taxonomically distant organisms. 

Conclusions 

The outcomes of this thesis improve the overall understanding of AMP finding 

methods using homology-based methods and machine learning via scrutinisation of 

the underlying data ans assumptions these methods employ. It demonstrates that 

this is a very challenging, and arguably unsolved problem, but that there is 

considerable scope for progress if methods for training and evaluating predictors pay 

close attention to proteome-wide scanning as an intended use case. In addition, it 

identifies gaps in current AMP datasets that should be filled to realise this goal.  
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Chapter 1: General Introduction 

 

1.1 Antimicrobial peptides 

Antimicrobial peptides (AMPs), also known as “host defence peptides” are small 

proteins that inhibit or kill microbes. Their best known function is as part of the innate 

immune system where they provide protection against pathogens (Yeaman and Yount, 

2003). The earliest studies on AMPs focussed on those with antibacterial activity 

(Boman, 1995), however, in addition to bacteria, AMPs have also been found that 

protect against viruses (Real et al., 2004), fungi (Hancock, 1997) and even protists 

(Xiao et al., 2013). This broad activity is likely due to the diversity of AMPs and their 

respective structures (Schmitt, Rosa and Destoumieux-Garzón, 2016). AMPs are often 

able to interact with multiple targets rather than a specific receptor due to their 

amphipathic structure and charge which interacts with the microbial membrane 

(Pasupuleti, Schmidtchen and Malmsten, 2012). The main interactions include the 

disruption of the microbial cell membrane or intracellular processes resulting in cell 

death (Moravej et al., 2018). Due to the broad scale effectiveness of AMPs as 

antimicrobial agents and their low antimicrobial resistance potential these peptides are 

of great interest for antibiotic-like therapeutic drug development (Baltzer and Brown, 

2011; Moretta et al., 2021), and multiple AMPs have already been commercialised for 

this purpose (Chen and Lu, 2020). 

 

AMPs are found throughout the tree of life. They are produced by animals (Zasloff, 

2002), plants (Tam et al., 2015), fungi (Essig et al., 2014), protists, e.g. amoeboids 

(Andrä, Herbst and Leippe, 2003), archaea (Charlesworth and Burns, 2015) and 

bacteria (Riley and Wertz, 2002). Across this taxonomic spectrum AMPs are likely to 

have diverse roles. In higher organisms such as animals and plants they are likely to 

have dual roles defending against pathogens and (as explained below) in modulating 

the microbiome (Mergaert, 2018). AMPs produced by bacteria, fungi and archaea are 
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likely to mediate competitive interactions between microbes (Hibbing et al., 2010; Essig 

et al., 2014; Besse et al., 2015). 

 

Over the last decade, interest in the immune system has shifted from the view of a 

single host organism defending against invading pathogens to a multi-organismal 

assemblage that is maintained through complex interactions between its members 

(Eberl, 2010; Hooper, Littman and Macpherson, 2012; McFall-Ngai et al., 2013). This 

shift reflects the view that the immune system is adapted to mould the host and 

microbes to co-exist to form a superorganism (Gill et al., 2006; Eberl, 2010), or 

holobiont (Margulis, 1993), which is a collective of microbes and the host. Under this 

new viewpoint, the immune system is a dynamic system which acts to maintain an 

equilibrium or homeostatic environment within the holobiont. Evidence is now emerging 

that AMPs are key components of the immune system that maintain this equilibrium by 

regulating the abundance and composition of microbes (Mergaert, 2018). A diverse 

repertoire of AMPs is needed to shape the microbiome (Salzman et al., 2010; Bosch, 

2013) and it is therefore likely that there are many AMPs left undiscovered. 

 

Microbes are important in maintaining the health of most animals and plants. For 

example, in mice, which are used as models to study human health, microbial 

communities are linked to gut health where it has been shown that microbes potentially 

lower chronic gut inflammation linked to irritable bowel syndrome or Crohn’s disease 

(Salzman et al., 2010). Moreover, in a comparison of gut microbial community structure 

between lean and obese mice, a greater abundance of beneficial microbes was found in 

lean mice that may affect body size by increasing metabolic efficiency (Ley et al., 2005). 

In addition to gut health, microbes contribute to the health of the skin through production 

of AMPs which synergise with human AMPs to kill pathogens such as Staphylococcus 

aureus (Nakatsuji et al., 2017), Streptococcus (Cogen et al., 2010) and Escherichia coli 

(Lüders et al., 2003), reducing the risk of skin conditions such as atopic dermatitis 

(Nakatsuji et al., 2017). Host protection by microbes is optimised when the microbial 

community is diverse (Fraune et al., 2015) and it is therefore important to understand 

how the AMP repertoire affects the microbial communities. 
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Several studies, using a range of taxa, have shown the regulatory effect of AMPs on the 

microbiome. Fraune et al. (2010) demonstrated that a single AMP (periculin1a) 

drastically changed the microbial abundance and community structure by altering its 

expression in Hydra. Furthermore, Franzenburg et al. (2013) discovered that the 

composition of arminins (a family of AMPs) is species specific in Hydra and that four 

Hydra species all acquired distinct microbial communities under identical culture 

conditions. This discovery, that AMP expression may be linked to control of the 

microbiome, has also been observed in other taxa. Expression of the ɑ-defensin DEFA5 

gene has been linked to the control of microbial gut communities in mice (Salzman et 

al., 2010). Weevils, like many insects, contain vertically transmitted symbiotic bacteria, 

which reside in specialised host tissue, and that provide the host with nutrients 

(Anselme et al., 2008). Through in vitro experiments Login et al. (2011) found that the 

weevil coleoptericin-A AMP keeps the bacteria within the specialised tissue by 

maintaining their growth. Similarly, legume plants contain specialised nodules that 

house symbiotic bacteria and nodule-specific cysteine rich (NCR) AMPs terminally 

differentiate the bacteria to maximise their nitrogen fixation ability (Van de Velde et al., 

2010). It is likely that the same AMPs can perform dual actions in relation to microbial 

control. As shown in weevils, low concentrations or expression of coleoptericin AMPs 

inhibited growth of symbiotic bacteria around the bacteria-containing host tissue 

whereas highly expressed AMPs in surface tissues kill invading pathogens (Login et al., 

2011). This suggests that the function of AMPs depends on their relative expression 

and location. 

 

Identifying AMPs, and studying their biological roles is challenging because their short 

sequence length and rapid evolution obscures evolutionary relationships (Pearson, 

2013). This means that homology between AMPs in different organisms, especially 

distantly related organisms, is often difficult to detect. This in turn means that 

classification of AMPs into families can be challenging. Nevertheless, analysis of large 

AMP repertoires has led to the identification of some broad classes of AMPs (e.g. based 

on cysteine arrangement) where evolutionary relationships can be inferred through 

short taxonomic distance and/or genomic arrangement. For example, small cysteine 
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rich AMPs are divided into multiple classes based on their cysteine arrangement and 

are widespread in plants (Manners, 2007). Several plant genomes have been examined 

for small cysteine rich AMPs and a diverse range of candidates were found (Silverstein 

et al., 2007). Furthermore, the genome of the human bacterial symbiont Staphylococcus 

capitis was assembled and analysed for antimicrobial activity and a series of proteins 

were discovered in four gene clusters and experimentally verified as AMPs (Kumar et 

al., 2017a). Gene clusters that encode AMPs were similarly uncovered in genomes of 

Streptococcus pneumoniae which led to the subsequent discovery of novel AMPs 

(Javan et al., 2018). Interestingly, these clusters were located in specific regions of the 

genome and Javan et al. (2018) indicated that the AMPs within the clusters are 

arranged by recombination events. This finding could have important implications for the 

evolution and regulation of AMPs and comparative genomics analysis of closely related 

species could show synteny between AMP genome regions. Indeed, a comparative 

genomics investigation of a specific AMP class (ꞵ-defensin) between cattle and sheep 

showed conserved gene arrangement on multiple chromosomes (Hall et al., 2017). 

Furthermore, the sheep AMP cathelicidin gene family was mapped to chromosomes 

from cattle, humans and mice which were similarly conserved. In comparison to humans 

and mice, sheep and cattle contained more cathelicidin genes which indicates 

diversification in these taxa (Huttner et al., 1998). Diversification of cathelicidin genes 

have similarly been found in marsupials and monotremes (Warren et al., 2008). This 

suggests that despite conserved gene clusters, specific AMPs uniquely evolve in 

different taxa. These studies indicate that AMP evolution is related to the arrangement 

in the genome. However, in order to study AMP evolution on a broad scale, 

representations of all classes of AMPs should be included and the method should be 

generalisable (i.e. not restricted to specific taxa). By using a comparative genomics 

approach of all AMPs on closely related species, broad scale patterns of AMP evolution 

can be observed. This includes aspects such as: how AMPs evolve, e.g. tandem 

duplication or positive/negative selection; which type of AMPs have expanded at what 

evolutionary timescale; how closely related AMPs are to one another and at what rate 

they evolve; do different taxa have different types of AMPs; if AMPs are clustered in the 

genome, are they clustered so as to co-regulate. Answering these questions is 
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ultimately dependent on the ability to identify complete AMP repertoires in the genomes 

of a range of taxa. 

 

AMPs can be found in all living organisms. To discover which peptides are AMPs, in 

vitro or in vivo experiments can be designed. However, it would be unfeasible to sample 

all living organisms and perform bioassay guided fractionation to discover which 

peptides have antimicrobial activity. Therefore, in silico methods are preferred to 

perform initial scans for AMPs on a large-scale basis prior to experimental verification. 

Previous attempts have been made to identify AMPs purely on their sequence, however 

none are designed to scan whole genomes, and their performance in this context 

remains a bottleneck for novel AMP identification as well as studying the evolution of 

AMPs. 

1.2 Finding AMPs  

Around three thousand AMPs have so far been discovered among many more that are 

likely to exist across the tree of life. Since this thesis is concerned with the topic of 

discovering new AMPs a good starting point is to ask how the AMP discovery process 

currently works. To address this, I searched the literature for recent research papers 

(between 2018-2021) which reported novel experimentally verified AMP discoveries 

(see Table S1.1), focussing on the role that computational tools played in identifying 

candidates for experimental verification. This search revealed 29 papers and a survey 

of these papers revealed a wide range of workflows for AMP discovery (summarised in 

Figure 1.1), but found that a high proportion (18/29) of papers used some variant of 

what I will describe in this thesis as a “genome-scanning” or ‘omics-based approach. In 

its general form this approach uses the target genome and associated protein 

predictions (called a proteome) as the search space for novel AMPs. Candidate AMPs 

are then identified by a homology-based search, using the basic local alignment tool 

(BLAST) (Altschul et al., 1990), machine learning prediction or some combination of the 

two.  
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Figure 1.1: Summary of workflows for AMP identification used by 29 recent publications 
reporting novel, experimentally verified AMPs. 

 

Of the 29 papers surveyed, 18 identified AMPs based on very close homology to AMPs 

in a closely related organism (see Figure 1.1). This overall approach is not the focus of 

this thesis, however, as it is still widely used, I will summarise it briefly here. Two such 

workflows were identified. The first was a PCR amplification method based on a primer 

that generally targets a highly conserved region of known AMP sequences, e.g. a 

sequence within the signal peptide or 5’ untranslated regions. This method most 

commonly uses primers based on AMPs from extremely closely related species and 

appears to be most popular in frogs (Wu et al., 2018; Li et al., 2019; Gong et al., 2020; 

Jiang et al., 2020; Wang et al., 2020a; Chai et al., 2021) but has also been used in 

fishes Salmo trutta (Huang et al., 2019) and Bostrychus sinensis (Shen et al., 2021), the 

fox Vulpes lagopus (Li et al., 2021b), the tick Dermacentor silvarum (Li et al., 2021a) 

and scorpion Chaerilus tricostatus (He et al., 2021). Since PCR amplification can 

tolerate a small number of sequence mutations in the primer region this method is 

essentially a homology-based approach and is therefore analogous to BLAST 

(described below) but is restricted to only the very closest of homologs. Among the 

papers surveyed it typically resulted in amplification of a single novel AMP which is 
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likely to be a direct ortholog of the AMP used for primer design. The advantage of the 

PCR-based approach is that it does not require the genome of the target organism to be 

known.  

 

The second close-homology-based workflow, shown in Figure 1.1, involved the use of 

BLAST to scan the proteome of the target organism for AMPs in closely related species, 

at times even within the same AMP family. For example, a small number of novel 

cathelicidin AMPs were identified in the frog Hoplobatrachus rugulosus transcriptome 

(Chen et al., 2021) and in the goose Anser cygnoides genome (Xiao et al., 2020) and 

koala Phascolarctos cinereus (Peel et al., 2021) using cathelicidin sequences of closely 

related organisms. A similar approach and result was obtained with β-defensin AMPs in 

the transcriptome of a fish, Scophthalmus maximus (Zhuang et al., 2021) and by using 

a single AMP sequence from a closely related species to find homologues in the 

genome of the polychaete Capitella teleta (Panteleev et al., 2020). Like the PCR-based 

approach, these methods were able to provide novel AMP candidates with strong 

potential, however they have limited capability to identify truly novel AMPs, or AMPs 

from unrelated organisms. 

 

Of greater relevance to this thesis are workflows in which the proteome of a target 

organism is scanned for AMPs without reference to a close taxonomic relative. Two 

basic strategies were employed to perform such scans: (1) homology via BLAST search 

against a large and diverse database of AMPs and (2) machine learning-based 

prediction. I found that one paper among the 29 surveyed adopted the first of these 

approaches (BLAST) (Hayashida and da Silva Junior, 2021), four used machine-

learning alone (Yang et al., 2018; González-García et al., 2020; Hassan, Qutb and 

Dong, 2021; Onime et al., 2021) and six combined both methods (Lee et al., 2020a; Lee 

et al., 2020b; Dong et al., 2021; Lee et al., 2021a; Lee et al., 2021b; Liscano et al., 

2021). Papers that used a combination of homology and machine learning targeted a 

wide variety of organisms, including the frog Boana pugnax (Liscano et al., 2021), fish 

(Dong et al., 2021), beetle Psacothea hilaris (Lee et al., 2020a), mealworm Zophobas 

atratus (Lee et al., 2021a), and butterflies Papilio xuthus (Lee et al., 2020b) and 
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Porphyromonas gingivalis (Lee et al., 2021b). In these papers the outcomes from 

homology (BLAST) and machine learning predictions were used to filter candidates (e.g. 

by requiring high scores in both methods). Studies which exclusively used machine 

learning tended to be applied to non-model organisms for which few homologous AMPs 

exist in known databases, e.g. in the mollusk Pomacea poeyana (González-García et 

al., 2020), and the shrimp Litopenaeus vannamei (Yang et al., 2018). In order to obtain 

a small list of candidates for experimental verification, candidate sequences were 

filtered either by using a very high decision threshold (González-García et al., 2020), or 

by using additional properties of the sequences such as the presence of α-helical 

structures (Yang et al., 2018).  

 

For the purposes of this thesis, the most important finding from this survey of AMP 

discovery workflows is that the majority of AMP finding studies start with a transcriptome 

or genome, and use computational tools (either BLAST or machine learning methods) to 

obtain a short list of candidates for experimental testing. A key characteristic of this 

approach is that it involves searching for a relatively small number of AMPs within a 

very large search space. This has important implications for the design and validation of 

AMP prediction methods which I discuss at length in chapter 3 of this thesis. Another 

important discovery from this survey was that simple homology-based methods such as 

BLAST remain in common use as the primary method for computational AMP 

prediction, or as an auxiliary method to machine learning-based methods. The relative 

efficacy of these methods in relation to taxonomic representation in AMP databases 

forms the basis for chapter 4.  

 

1.2.1 Machine learning models to predict AMPs 
 
The number of published machine learning models designed to predict AMPs has 

rapidly expanded during the past decade, with much of that growth occurring during the 

time that research was undertaken for this thesis (2018-2022). This includes many 

models with accompanying software that are currently available for use (see Table 1.1), 

as well as many others that have been designed, but which did not include standalone 

software (Torrent et al., 2011; Fernandes, Rigden and Franco, 2012; Khosravian et al., 
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2013; Ng, Rosdi and Shahrudin, 2015; Pane et al., 2017; Veltri, Kamath and Shehu, 

2017; Wang et al., 2017; Liu et al., 2018; Yoshida et al., 2018; Zhang et al., 2021b). 

Some of these AMP predictors contain specialisations for antiviral (Thakur, Qureshi and 

Kumar, 2012; Qureshi, Tandon and Kumar, 2015) or antibacterial peptide (Lata, 

Sharma and Raghava, 2007; Lata, Mishra and Raghava, 2010) detection, or specific 

AMP class types, e.g. cysteine rich AMPs (Porto, Pires and Franco, 2012), or linear 

cationic AMPs (Vishnepolsky and Pirtskhalava, 2014; Vishnepolsky et al., 2018).  

 

Most AMP predictors are primarily accessible via a web interface, where the user can 

paste in a select number of protein sequences in FASTA format and obtain a result 

which indicates the probability of the sequence being likely to be an AMP. While this 

practice has been encouraged on the basis that it results in ease of use (Chou, 2011), it 

generates a long-term server maintenance burden and often leads developers to 

impose hard limits on the number of sequences that can be analysed. At the time of 

writing this thesis, three AMP predictor web servers (Fjell, Hancock and Cherkasov, 

2007; Wang et al., 2011; Vishnepolsky and Pirtskhalava, 2014) were unavailable due to 

server problems, and others imposed sequence limits (<1000 sequences). In the past, 

when genome-scanning approaches to AMP discovery were uncommon, this limit would 

not be an issue. However, due to advances in technology, sequencing is becoming 

cheaper and faster and whole genome assemblies are released monthly (Yin et al., 

2017). This increase of biological data is expected to continue, leading to a requirement 

for large scale analysis on high-performance computing platforms (HPC) which are 

typically accessible via a command-line interface (Yin et al., 2017). The need for such a 

high throughput tool was the primary motivation behind development of the AMP 

machine learning predictor ampir, which forms the basis for chapter 2 of this thesis. 

Although several such tools are now available, at the time that work for this thesis 

commenced (2018), very few command-line tools were available for general AMP 

prediction. Those tools that were available were limited in other ways such as their 

choice of training data, or a required access to proprietary libraries, e.g. AmPEP 

(Bhadra et al., 2018). The AMP predictor, ampir, was developed as a free, open source, 

and customisable AMP predictor to address these issues.  
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Table 1.1: Predictors currently available for use and their respective statistical learning 
algorithms. 

Predictor 
name 

Statistical 
learning 
algorithm 

Availability Reference 

AntiBP ANN, QM, 

SVM 

Web server Lata, Sharma and Raghava (2007)  

AMPer HMM 

models 

Web server Fjell, Hancock and Cherkasov (2007) 

CAMP DA, RF, 

SVM 

Web server Thomas et al. (2010)  

AntiBP2 SVM Web server Lata, Mishra and Raghava (2010) 

AVPpred SVM Web server  Thakur, Qureshi and Kumar (2012) 

CS-AMPPred SVM PERL / Linux 

machines 

Porto, Pires and Franco (2012) 

ClassAMP RF, SVM Web server Joseph et al. (2012) 

iAMP-2L FKNN Web server Xiao et al. (2013) 

AVP-
IC50Pred 

SVM, RF, 

IBk, KStar 

Web server Qureshi, Tandon and Kumar (2015) 

iAMPpred SVM Web server Meher et al. (2017) 

DBAASP DBSCAN Web server Vishnepolsky et al. (2018) 

AMP 
Scanner 

DNN Web server Veltri, Kamath and Shehu (2018) 
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AmPEP RF MATLAB Bhadra et al. (2018) 

dbAMP RF Web server  Jhong et al. (2019) 

ACEP DNN Python  Fu et al. (2020) 

amPEPpy RF Python / Web 

server 

Lawrence et al. (2020) 

deep-
amPEP30 

CNN Web server  Yan et al. (2020) 

AmpGram RF R / Web server Burdukiewicz et al. (2020) 

MACREL RF Python / Web 

server 

Santos-Júnior et al. (2020) 

AMPlify ADL Python Li et al. (2020) 

IAMPE XGBoost, 

SVM 

RF, KNN 

Web server Kavousi et al. (2020) 

AniAMPpred SVM Web server  Sharma et al. (2021) 

ANN: artificial neural network, ADL: attentive deep learning, CNN: convolutional neural 

network, DA: discriminant analysis, DNN: deep neural network, DBSCAN: Density-

Based Spatial Clustering, FKNN: fuzzy K-nearest neighbour, HMM models: hidden 

Markov models, IBk and KStar: instance based learner, KNN: K-nearest neighbour, QM: 

quantitative matrices, RF: random forest, SVM: support vector machine, XGBoost: 

eXtreme Gradient Boosting.  

 

1.3 Theoretical concepts used in this thesis 
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Throughout this thesis I use the term ‘AMP prediction’ to refer to the task of classifying a 

list of amino acid sequences into AMPs and non-AMPs. More specifically, my focus is 

on the use of supervised statistical learning or deep learning (collectively known as 

machine learning) approaches to accomplish this. This approach requires a reference 

database that includes both positive cases (AMP sequences) and negative cases (non-

AMP sequences). To convert these data into a form suitable for input to widely used 

algorithms (see below) each of the amino acid sequences is described via a collection 

of ‘features’. These features are summary statistics that describe the sequence, and in 

the case of AMPs they typically include physicochemical properties such as charge and 

amphiphilicity. The model is then trained on a large subset (typically two thirds) of these 

data, allowing it to learn (i.e. fit parameters) to distinguish between the two classes 

(positive and negative). Finally, the leftover smaller subset of data, typically around one 

third of the total (Kohavi, 1995), is used to test the model to determine the training 

performance of the model (see Figure 1.2). 

 
Figure 1.2: Simplified flowchart describing the process of building and testing a 
statistical classifier for antimicrobial peptide (AMP) prediction using a supervised 
learning approach. The reference database consists of verified AMPs and general 
proteins which are used to calculate features from (e.g. physicochemical properties). 
The calculated features from all proteins are split into a training database to train the 
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model (using a classification algorithm), and a testing database to evaluate the trained 
model’s performance. 

 
In the sections below I examine the background theory related to each of the steps in 

the workflow shown in Figure 1.2, emphasising issues of relevance to AMP 

prediction. Issues relating to the construction of the reference database are very 

important and are covered in detail in chapters 2 and 3.  

 

1.3.1 Reference database generation for AMP prediction 
 
Positive (verified AMPs) and negative (non-AMPs) datasets are required to generate the 

reference database, which is used to train and test the AMP predictor. Since AMPs 

have been studied for many decades, there are a large number (~3k) of sequences with 

experimentally verified activity available for use as positive training data. The majority of 

these are available on the public online annotated protein sequence database Swiss-

Prot (Bairoch and Apweiler, 2000). However, there are several protein databases which 

focus purely on AMP sequences, both natural and synthetic peptides. These AMP 

databases are often used for positive training sets in AMP predictors (Liu et al., 2017). 

The five largest AMP databases are: APD (the Antimicrobial Peptide Database (Wang 

and Wang, 2004), CAMP (Collection of Antimicrobial Peptides) (Waghu et al., 2016), 

DRAMP (Data Repository of Antimicrobial Peptides) (Fan et al., 2016), LAMP (A 

database Linking Antimicrobial Peptides) (Zhao et al., 2013) and dbAMP (Jhong et al., 

2019). Despite the usefulness of concentrated AMP databases, it is not clear if all 

databases are regularly updated with AMP sequences. In addition, the AMP databases 

overlap with one another and collectively contain high overlap with Swiss-Prot (85% - 

accessed June 2018).  

 

The negative background dataset of AMP predictors is commonly obtained from Swiss-

Prot, as there is no database which strictly contains non-AMPs (Liu et al., 2017). Using 

a diverse range of proteins as a negative dataset will better train the model for realistic 

situations. This is especially important when scanning genomes, as there are a wide 

range of proteins present which the predictor would have to assess. However, most 



 

 14 

previous methods refined the negative dataset by employing “key words” to select 

contrasting proteins to AMPs. For example, not “antimicrobial”, “secretory”, or 

“membranous” (Meher et al., 2017; Bhadra et al., 2018; Veltri, Kamath and Shehu, 

2018; Jhong et al., 2019). Since this filtering affects both the training and testing dataset 

it is likely to result in inflated measures of performance because proteins that are 

difficult to classify (e.g. non-AMP secreted proteins) have been removed. While the 

negative impacts of filtering secreted proteins are now well known there are many other 

more subtle ways in which test and training data can accumulate biases compared with 

realistic input data. These are explored in more detail in chapter 3 of this thesis. 

 

1.3.2 Features used to describe amino acid sequences 
 
The feature calculation and selection steps are crucial elements of any machine 

learning process involving amino acid sequences. Although the sequences themselves 

capture all of the information that is available to train the model, they are not in a form 

that is suitable for use with most statistical approaches. To address this, each sequence 

is reduced to a numerical vector called a feature vector, ideally consisting of properties 

of the sequence that distinguish between the AMP and non-AMP classes (Bhadra et al., 

2018). This feature vector may be large during the initial model development stage but 

is often reduced to eliminate features with little predictive value via a feature selection 

step. Feature selection is an integral part of machine learning as the feature set 

substantially influences the performance of the model (Chen et al., 2020). The type of 

features used could both increase and decrease the accuracy of the model as features 

need to be relevant so as not to add arbitrary information to the model (Hawkins, 2004). 

In addition, a greater number of features can decrease the computational speed of the 

model. Therefore, both the type of features and the number of features should be 

assessed to determine the best fit for the data.  

 

In the context of AMP prediction, features are chosen to reflect compositional and 

structural properties that reflect AMP activity and can subsequently be used to identify 

them (Meher et al., 2017). Physicochemical properties influence the structure, function 

and posttranslational modification process of proteins and are commonly used as 
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feature types in computational protein prediction (Cai and Jiang, 2016). For example, 

physicochemical properties of the sequence such as hydrophobicity (approximately 

50%) and net charge (positive around physiological pH) are often conserved (Yeaman 

and Yount, 2003) and can indicate the biological action of AMPs (Rončević, Puizina and 

Tossi, 2019). The combination of these physicochemical characteristics allow AMPs to 

focus on a wide variety of targets (Leptihn et al., 2010). To facilitate membrane 

interaction, AMPs form amphipathic α-helix structures which include both a hydrophobic 

and hydrophilic section (Gallo and Huttner, 1998). This regional structure allows the 

peptide to bind or penetrate the membrane and can be quantified by the hydrophobic 

moment (Eisenberg, Weiss and Terwilliger, 1982). The hydrophobic moment has been 

shown to be useful to distinguish AMPs from non-AMPs (Vishnepolsky and 

Pirtskhalava, 2014). These physicochemical properties, in addition to isoelectric point, 

protein aggregation and propensity, have been modelled by Torrent et al. (2011) and 

were found to effectively predict antimicrobial action.  

 

In addition to physicochemical properties, compositional properties such as the amino 

acid composition and pseudo amino acid composition have been previously included for 

AMP prediction (Lata, Sharma and Raghava, 2007; Lata, Mishra and Raghava, 2010; 

Joseph et al., 2012; Thakur, Qureshi and Kumar, 2012; Qureshi, Tandon and Kumar, 

2015; Meher et al., 2017; Pane et al., 2017). The amino acid composition of 

antibacterial peptides and non-antibacterial peptides were shown to be different in 

antibacterial peptides from non-antibacterial peptides which included differential residue 

preference (Lata, Sharma and Raghava, 2007; Lata, Mishra and Raghava, 2010). 

Residue preference and differential prediction of residues was also found in AMPs 

(Meher et al., 2017). Generally, the amino acid composition calculates the frequency of 

occurrence of each of the 20 standard amino acids relative to a given protein sequence. 

However, the sequence order information is not included in the amino acid composition 

which can restrict models when predicting protein attributes (Chou, 2009). Therefore the 

pseudo amino acid composition was created by Chou (2001) which improves upon the 

standard amino acid composition by including a number of correlated factors that 

estimate the sequence order effect (Chou, 2001). The pseudo amino acid composition 
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has been suggested to be used instead of the amino acid composition in AMP 

prediction because it loses less sequence information and therefore increases AMP 

prediction performance (Khosravian et al., 2013; Xiao et al., 2013; Zare et al., 2015) and 

has been used multiple times to predict AMPs (Wang et al., 2011; Khosravian et al., 

2013; Xiao et al., 2013; Zare et al., 2015; Lin and Xu, 2016; Meher et al., 2017).  

 

1.3.3 Model algorithms 
 
The most common classifiers used in AMP prediction are the support vector machine 

(SVM) and random forest (RF) (see Table 1.1). SVM is a binary classifier that can learn 

to distinguish between two classes. It does this by mapping feature data points to a 

multidimensional space and inserting a hyperplane in between the feature datapoints to 

separate the two classes. The separating hyperplane is placed in a way to maximise the 

space between the two classes, which results in an optimal classification performance 

when the model is used on a test set (see Figure 1.3). Further performance 

improvements can often be achieved through the use of a kernel function, e.g. a radial 

kernel (Noble, 2006). 

 

 
Figure 1.3: A simplified diagram showing the two different classes (indicated by the light 
and dark coloured points) separated by a hyperplane (dark coloured line), which in two 
dimensions is represented by a line. The light coloured lines adjacent to the hyperplane 
represent the width of the space in between the two classes. 

 

RF is a decision tree ensemble classification method that averages multiple random 

feature subsets to create a classification model (Breiman, 2001). Decision trees use 



 

 17 

features to separate classes (see Figure 1.4) and RF uses a large number of 

uncorrelated decision trees to maximise the class prediction result. RFs appeared to be 

increasing in popularity in AMP prediction as at least four AMP predictors have 

implemented this classifier within the last two years (Bhadra et al., 2018; Jhong et al., 

2019; Santos-Júnior et al., 2020; Burdukiewicz et al., 2020). 

  

 
Figure 1.4: Simplified diagram of decision tree logic to separate data based on features. 

 
1.3.4 Model training and optimisation 
 
A crucial step to improve accuracy in AMP predictor models is model optimisation. 

Model optimisation occurs in the model training stage. During the model training it is 

customary to try different models with varying model parameters to find the model that 

best fits the data. This is generally performed using resampling methods which evaluate 

different model tuning parameters on the performance of the model on different subsets 

of the training set. One common resampling method is k-fold cross validation where the 

training data is reshuffled into k-folds of equal size. The typical number of folds (k) 

recommended is 10, as smaller folds can exhibit bias and larger folds increase the 

variance in the performance estimation (Kohavi, 1995). In this fold set, one fold is 

allocated for testing and the remaining nine for training. A model is then constructed on 

the nine training folds and evaluated on the testing fold. This process is repeated k 

times, until all folds have been allocated as testing fold once. Finally, the evaluations for 

each model performance on the test folds are averaged which will provide an overall 

estimate of model performance (see Figure 1.5). This estimate is considered to be a 
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more accurate measure of the performance of the model compared to an evaluation 

metric from a model that was only fit once, as it maximises the information present in 

the data. 

 
Figure 1.5: k-fold cross validation as a resampling method to increase the accuracy of a 
model. 

 
The goal of resampling methods is to ultimately improve predictive performance of the 

model by avoiding overfitting while making maximum use of the available training data. 

If a model is only able to have exceptionally high performance on the sample data it is 

trained on, but not when faced with new data, the model is likely to be over-fit, and will 

consequently have poor performance when used on a different sample dataset. 

Resampling methods are commonly used in conjunction with the tuning of model 

parameters. These tuning parameters, which are also referred to as hyperparameters, 

affect the learning ability of the model and are set prior to the training process of the 

model. Therefore, the values of these hyperparameters do not change during the model 

training. Choosing the optimal values for the hyperparameters of the model for the 

training data used is referred to as tuning the model. Resampling methods are useful as 

they can iterate through a selection of hyperparameter values and reveal how these 

values affect the performance of the model. Once the iteration process is complete, the 

optimal hyperparameter set can be determined by selecting the hyperparameter values 

that are associated with the best performing model. Finally, the full training data can 

then be used with the obtained optimal hyperparameter set to train a final model with 

maximal considered performance (see Figure 1.6).  
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Figure 1.6: Tuning the hyperparameters of a model with a resampling method. 

 
1.3.5 Model testing and evaluation metrics 
 
The trained classification model is generally tested on a hold-out test set to determine 

its performance on an independent dataset. The fundamental basis of model 

performance evaluation for binary classification models such as AMP predictors is the 

confusion matrix which captures the four possible outcomes when comparing the 

prediction results to the actual class values. These four result categories are 

summarised in Figure 1.7.  
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Figure 1.7: Confusion matrix showing the predicted class values made by the machine 
learning model compared to the true class values resulting in true positives, false 
positives, false negatives or true negatives. 

 

In the context of AMP prediction, the positives refer to the AMPs and the negatives refer 

to the non-AMPs. Common performance metrics calculated from the confusion matrix 

are: accuracy, specificity (the true negative rate), recall or sensitivity (the true positive 

rate), the false positive rate, precision (the positive predictive value), and the F1 score 

(the balanced measure between precision and recall) (see equation 1.1). 
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Equation 1.1: Common performance metrics calculated from the confusion matrix. 
 

The true positive rate and the false positive rate can be used to generate a receiver 

operating characteristics (ROC) curve. ROC curves are able to visualise the 

performance of machine learning models and subsequently are frequently used by AMP 

predictors to demonstrate the performance of their models compared to other AMP 

predictors (Meher et al., 2017; Veltri, Kamath and Shehu, 2018; Fu et al., 2020; Li et al., 

2020; Sharma et al., 2021; Xu et al., 2021). A ROC curve depicts a trade-off between 

the true and false positive rate over a predicted probability range between 0 and 1. This 

curve can only be generated if machine learning models predict class values across a 

continuous range of decision thresholds (i.e. between 0 and 1). If a model only predicts 

in a discrete capacity (generally at a probability threshold of 0.5), only a single point 

would be visible on the ROC curve (Fawcett, 2006). A discrete model with perfect 

prediction performance would consist of a point at the position (0,1) (see Figure 1.8). 

High performing models that predict in a continuous threshold range generally have a 
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curve that angles towards the top left of the ROC plot. In contrast, models with random 

performance, i.e. those that have learnt no information from the training data, have a 

diagonal line that spans the middle of the plot (see Figure 1.8).  

 
Figure 1.8: Example receiver operator characteristic (ROC) curve for three machine 
learning models. 

1.4 Purpose of the thesis 

The general assumption in the development of machine learning AMP predictors is that 

the sample datasets used for training and testing are unbiased and that standard 

machine learning model development is sufficient to accurately predict AMPs. This 

means that it is assumed that the data present in the training and testing sets accurately 

reflect the data present in input datasets that would be encountered in real usage. A 

major challenge, especially in the context of genomics is addressing the bias that arises 

due to mismatch between such realistic input data and available training data (Whalen 

et al., 2022). Choices made by AMP predictor developers to include or exclude specific 

data can affect this bias. This might mean that AMP prediction needs to be approached 

with these biases in mind in order to achieve genuine improvements in the utility of AMP 

predictors as tools for biologists. The purpose of this thesis is to evaluate the sources of 
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these biases and their potential impact on the performance of AMP predictors. 

Furthermore, this thesis strives to address these biases in the development and 

evaluation of an AMP predictor. Whilst acknowledging this is difficult to achieve, this 

thesis shows that these biases are too important to be ignored.  

1.5 Aims 

The overall aim of this thesis was to identify AMPs in genomes using machine learning 

methods and to address potential biases in this process. Figure 1.9 depicts an overview 

of the thesis. Specific aims were: 

Aim 1: Develop a machine learning AMP predictor framework and software, ampir, 

suitable for genome-wide scanning. This aim is addressed in chapter 2. 

Aim 2: Using the AMP prediction software developed in chapter 2, as well other 

available AMP predictors, to benchmark their performance on real proteomes. This aim 

is addressed in chapter 3 

Aim 3: Benchmark machine learning methods (using the AMP prediction framework 

developed in chapter 2) and homology-based searches (using BLAST) on proteomes of 

a wide range of organisms, to determine the effect of taxonomic distance on AMP 

finding methods. This aim is addressed in chapter 4. 
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Figure 1.9: Conceptual thesis figure showing the general thesis structure, chapter 
objectives and relationships between chapters. 
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Chapter 2: ampir: an R package for fast genome-wide 
prediction of antimicrobial peptides 
 

2.1 Abstract 

Summary: Antimicrobial peptides (AMPs) are key components of the innate immune 

system that protect against pathogens, regulate the microbiome, and are promising 

targets for pharmaceutical research. Computational tools based on machine learning 

have the potential to aid discovery of genes encoding novel AMPs but existing 

approaches are not designed for genome-wide scans. To facilitate such genome-wide 

discovery of AMPs I developed a fast and accurate AMP classification framework, 

ampir. ampir is designed for high-throughput, integrates well with existing bioinformatics 

pipelines, and has much higher classification accuracy than existing methods when 

applied to whole genome data. 

 

Availability and Implementation: ampir is implemented primarily in R with core feature 

calculation methods written in C++. Release versions are available via CRAN and work 

on all major operating systems. The development version is maintained at 

https://github.com/legana/ampir. ampir is also available via a Shiny based web server 

https://ampir.marine-omics.net/ where users can submit protein sequences in FASTA 

file format to be classified by either the “precursor” or “mature” model. The prediction 

results can then be downloaded as a csv file. The full details of the model development 

process can be accessed on https://github.com/legana/AMP_pub. 

2.2 Introduction 

Antimicrobial peptides (AMPs) are effector molecules of the innate immune system. 

They are produced by most forms of life to combat microbial pathogens including 

bacteria, viruses, fungi, and protists. Their potent activity has led to strong interest in 

these molecules as targets for pharmaceutical research. Although originally known for 

their role in defending the host against pathogens (Zasloff, 2002), there is now 
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increasing interest in the regulatory abilities of AMPs on the microbiome (Franzenburg 

et al., 2013; Bosch, 2014; Mergaert, 2018). Changes in expression of specific AMPs 

have been linked to changes in microbial composition and abundance during 

development in basal metazoans (Fraune et al., 2010), nutrient uptake in plants (Van de 

Velde et al., 2010) and gut health in mammals (Wehkamp et al., 2005). Taken together 

these studies show that AMPs are sometimes key regulators of the microbiome and as 

such they may have co-evolved with host microbial partners (Thaiss et al., 2016). 

However, understanding these co-evolutionary relationships is challenging because the 

interactions between AMPs and the microbiome are likely to be complex and may 

involve a range of AMPs across many species. 

 

Studies in which AMP prediction software is applied to the entire complement of protein 

coding sequences in a genome have the potential to uncover the entire repertoire of 

AMPs in an organism. Such genome-wide studies might help reveal co-evolutionary 

patterns between host and microbiome and potentially correlate the diversity of AMPs to 

the diversity of the microbiome. Previous genome-wide analysis of specific AMPs and 

AMP families have already revealed multiple selection patterns (Zhang et al., 2019) and 

gene order conservation (Hall et al., 2017). In addition, genome-wide AMP prediction 

could aid medical research by revealing novel AMPs useful for potential therapeutics 

(Kim et al., 2017). In fact, the advantages of using genomes for AMP discovery is 

already recognised and the genomes of a range of taxa including butterflies (Wang et 

al., 2021), corals (Shinzato et al., 2021), fish (Zhang et al., 2022; Zhang et al., 2021a), 

snakes (Kim et al., 2017) and bats (Pérez de la Lastra et al., 2021) have been used to 

identify AMPs.  

 

Despite intense interest in AMPs, the genes that encode them remain difficult to detect. 

They evolve rapidly, driven by positive selection coupled with high rates of gene gain 

and loss (Hanson, Lemaitre and Unckless, 2019) and this, combined with the small size 

of mature AMP peptides (10-50 amino acids), makes them difficult to detect through 

homology-based approaches alone. A promising alternative approach to AMP detection 
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is the use of supervised machine learning based on physicochemical properties. Many 

AMP predictors have been developed using this approach (see chapter 1, Table 1.1) 

 

When searching for an AMP classifier that works well with genome-wide data, important 

problems with current approaches were noticed. For example in (Meher et al., 2017; 

Bhadra et al., 2018; Veltri, Kamath and Shehu, 2018; Jhong et al., 2019), the 

classification models are trained and tested with a negative dataset (i.e. non-AMPs) that 

is prepared by filtering out sequences that resemble sequences in the positive dataset 

(i.e. AMPs). The use of contrasting positive and negative datasets makes the prediction 

model easier and may lead to higher reported performance metrics, however, a model 

trained with filtered data is unlikely to perform well on a contrasting dataset that is not 

filtered, i.e. a realistic dataset that contains proteins that are similar to AMPs, such as 

secreted proteins (see Figure 2.1). This subsequently presents users with an 

undesirable trade-off. Users either need to pre-filter their data to match the model’s 

training set, in which case they will be removing many valid AMPs, since many are 

secreted. Alternatively, users need to analyse their data unfiltered, in which case model 

prediction performance will be poor.  

 

 
Figure 2.1: A diagram indicating that models trained with filtered data (where the 
proteins that are similar to antimicrobial peptides (AMPs) are removed) perform well 
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when tested on other filtered data, but are likely to perform worse when used on non-
filtered genome-wide data. 

 
A second issue is that most predictors are trained and tested on a large proportion of 

mature peptides (see section 2.3.1.1) whereas in a genome-scanning context it is much 

more likely that researchers will be working with full-length precursor protein sequences. 

Furthermore, the proportion of AMPs in a genome is small (usually less than 1%) (see 

chapter 3) but test datasets used by existing predictors are either balanced (50% AMPs) 

or nearly balanced leading to unrealistically low estimates of the false positive rate. 

 

Finally, most current AMP predictors have been designed with an emphasis on ease of 

use for novice users rather than high-throughput or efficient use by experts. Many have 

therefore been made available exclusively as web services (Xiao et al., 2013; Meher et 

al., 2017; Veltri, Kamath and Shehu, 2018), which means that computational speed 

depends on the external server configuration and load, and limits must be placed on the 

number of sequences that can be processed in one batch (though in some cases quite 

high limits are set e.g. (Veltri, Kamath and Shehu, 2018). More importantly, most AMP 

predictors lack an application programming interface (API) and are therefore difficult to 

integrate into bioinformatic pipelines which is an essential requirement for comparative 

genomics.  

 

The focus of this research was not to create a fundamentally new approach for AMP 

prediction, but to optimise existing methods for whole genome input and implement 

these in a software package designed to satisfy the needs of a genome scan. The R 

package ampir (antimicrobial peptide prediction in R) was created, written primarily in 

the R (R Core Team, 2021) programming language with C++ integration for speed. 

ampir is available on all major operating systems and can be installed via the 

Comprehensive R Archive Network (CRAN). 
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2.3 ampir’s design 

Most AMP predictors implement a supervised machine learning approach to evaluate 

the antimicrobial probability of a given protein, and ampir is no exception. This approach 

involves various choices such as the selection of training data, features and model 

algorithm. In addition, the final model should ideally be easily and efficiently utilised by 

anyone searching for AMPs in their datasets. Therefore, the computational 

implementation, distribution and user interface needs to be considered. The following 

sections cover these choices made, which led to the development of ampir. 

 

2.3.1 Training data 
 
2.3.1.1 Training data sources 
 
A key goal of ampir was to optimise model predictions for a situation where the input 

would consist of full-length predicted proteins for an organism. For most non-model 

organisms these gene models (obtained by gene modelling on software such as 

Augustus) are all that is available. A survey of training data used in existing predictors 

(outlined below) revealed that many included a large proportion of mature peptides. 

Mature peptides represent protein products after enzymatic cleavage of the full-length 

precursor protein (see Figure 2.2). As such their sequences are difficult to infer from 

genomic data alone and in most genome scanning contexts it can be assumed that they 

would be unknown. In the section below the prevalence of likely precursor versus 

mature proteins in protein databases frequently used as a training data source is 

investigated. This information is later used to inform the choice of training data for 

ampir.  
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Figure 2.2: Simplified diagram of the constituents of a precursor protein. The 
constituents are not drawn to scale. 

 

Positive and negative datasets to train the models are commonly obtained from online 

protein databases. UniProt is a large general protein database, which includes AMPs, is 

very well annotated and contains a lot of metadata about the sequences it contains. 

UniProt is divided into two separate database sections, Swiss-Prot and TrEMBL, based 

on their annotation level. Swiss-Prot contains high grade, non-redundant, manually 

curated reviewed proteins. TrEMBL is based on computationally analysed information 

reinforced with automatic annotation using tools such as Interpro (Mitchell et al., 2019) 

which classify protein sequences into their respective families and predict functional 

domains (UniProt Consortium, 2019). Validated AMPs can be found within the Swiss-

Prot database using the search term “keyword:Antimicrobial [KW-0929]”. In addition to 

the general Swiss-Prot database, there are also specialised AMP databases. AMP 

databases are manually curated online databases that specifically contain protein 

sequences with antimicrobial activity, largely sourced from the literature as well as from 

UniProt and the National Center for Biotechnology (NCBI) (NCBI Resource 

Coordinators, 2018). These AMP databases are often used for positive training sets in 

AMP predictors. The five largest AMP databases are: APD (the Antimicrobial Peptide 

Database (Wang and Wang, 2004), CAMP (Collection of Antimicrobial Peptides) 

(Waghu et al., 2016), dbAMP (Jhong et al., 2019), DRAMP (Data Repository of 

Antimicrobial Peptides) (Kang et al., 2019) and LAMP (A database Linking Antimicrobial 

Peptides) (Zhao et al., 2013). These AMP databases generally contain a high degree of 

manual curation for the sequences they contain. Therefore the sequences in these AMP 
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databases are likely to be true AMPs. However, there is a lot of overlap in sequences 

between the AMP databases (Liu et al., 2017) and Swiss-Prot. The three most recently 

updated AMP databases, APD, DRAMP and dbAMP, and only the naturally occurring 

AMPs in those databases, i.e. non-synthetic, as well as the UniProt database were used 

in this study (accessed April 2020, see Table 2.1).  

 

Table 2.1: The number of antimicrobial peptides present in four protein databases. 

Protein database No. of AMPs 

APD 3,177 

DRAMP 4,394 

dbAMP 4,213 

UniProt* 3,221 (Reviewed) 

 

19,288 (Unreviewed) 

* AMPs in UniProt were found using the search term “keyword:Antimicrobial [KW-

0929]”. 

 

The APD was first published in 2004 (Wang and Wang, 2004) and has been regularly 

maintained. It is a well-known AMP database and has been used for reviews of the 

AMP prediction landscape (Wang, Li and Wang, 2016). The APD originally contained 

sequences that were smaller than 100 amino acids but this was changed to 200 amino 

acids in the 2016 update to encompass more AMPs (Wang, Li and Wang, 2016).  
 
DRAMP was first published in 2016 (Fan et al., 2016) and updated to DRAMP 2.0 in 

2019 (Kang et al., 2019). DRAMP focuses on mature peptides and the subsequent 

criteria for data collection include the removal of sequences if they contain precursor or 

signal regions or are larger than 100 amino acids (Fan et al., 2016). 
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dbAMP was published in 2018 and contains a collection of AMPs obtained from a large 

number of AMP databases (including CAMP and LAMP) and protein databases like 

UniProt and NCBI (Jhong et al., 2019). No sequence length restriction was evident in 

the criteria of their AMPs. However, as dbAMP is built on other databases that do 

impose sequence length restrictions, it is likely biased toward short proteins. 

 

The sequence length restriction becomes apparent in Figure 2.3. It is clear that APD 

and DRAMP focus on mature peptides as they primarily contain sequences that are 

short (mostly < 50 amino acids). dbAMP and Swiss-Prot similarly contain these mature 

peptides but they also contain a range of precursor proteins. Swiss-Prot also includes a 

small number of larger proteins (> 500 amino acids that are listed under the keyword 

‘Antimicrobial’ but are very different from classical AMPs. These include some large 

viral proteins (e.g. EXLYS_BPDPK, a 2,237 amino acid long peptidoglycan hydrolase 

that degrades cell components during virus entry) which show evidence of antibacterial 

activity but their mode of action and vast difference in size make them outliers from the 

point of view of building a machine learning model. Interestingly, two distinct peaks were 

noticeable in the sequence lengths of AMPs in the Swiss-Prot database. These peaks 

likely comprise mature peptides (peak to the left of the dashed vertical line, between the 

sequence length 0 and 50) and precursor proteins (peak to the right of the dashed 

vertical line, between 50 and 100).  
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Figure 2.3: Sequence length distributions of AMPs in four protein databases. The 
vertical dashed line indicates the potential threshold of mature versus precursor 
proteins. 

 

The Swiss-Prot database provides a peptide field that allows distinguishing between 

entries for mature peptides and precursors. This in turn can be used to check my 

hypothesis that dual peaks in the length distribution arise due to mature and precursor 

proteins respectively. If the peptide length is the same as the total length, it is a mature 

peptide. Proteins were considered to be precursor proteins if they were not mature 
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peptides, for entries where the peptide information was available. If no peptide 

information was available, proteins were classified as Unknown. For the reviewed AMPs 

in Swiss-Prot, there are a total of 768 mature peptides, 806 precursors with peptide 

annotation information, and 1647 reviewed AMPs without peptide information. The 

Unknown category has a notably broader distribution of lengths reflecting the possibility 

that it includes a mix of both types (see Figure 2.4). The mature and precursor curve 

shapes of Figures 2.4 and 2.5 appear highly similar, indicating that these peaks are 

likely to comprise mature and precursor proteins, respectively.  

 

 
Figure 2.4: The sequence length distribution of mature AMPs and precursor AMPs in 
Swiss-Prot. Unknown refers to the AMPs that lacked peptide information. 

 

Another likely indicator that a protein is an AMP precursor is the presence of a signal 

peptide. From the 806 precursors identified, 706 show well defined signal peptide 

sequences. Figure 2.5 shows that only precursors longer than about 60 amino acids are 

likely to have a signal peptide. Manual inspection of precursors without signal peptides 

revealed that many are annotated with a pro-peptide indicating that even in this group 

there is some post-translational processing to produce a mature product. 
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Figure 2.5: Sequence length distribution of mature AMPs and secreted/non secreted 
precursor AMPs in Swiss-Prot. Unknown refers to the AMPs that were not annotated as 
mature or precursor. 

 

From the survey of AMP databases, it can be concluded that sequence length (mature 

peptides tend to be much shorter compared to precursor proteins) and the presence of 

a signal peptide (present at the beginning of a protein and indicative that the protein is 

secreted) are likely to be good proxies for whether an amino acid sequence is a mature 

peptide or precursor protein. Based on the length distributions, it appears that from all of 

the AMP databases, Swiss-Prot includes the largest number of precursor proteins. 

However, some are most likely present in other databases, especially in DRAMP. 

Furthermore, a sequence length of around 50 amino acids is likely effective for 
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distinguishing most precursor proteins from mature peptides. This length cut-off can 

subsequently be used to guide the selection criteria for inclusion of sequences in 

ampir’s training data.  

 

2.3.1.2 Training datasets for ampir’s models 
 
As shown in the section 2.3.1.1, protein databases used for AMP prediction can be 

divided into precursor proteins and mature peptides. Therefore it was decided to create 

two models for ampir, one for precursor proteins and one for mature peptides. These 

models are anticipated to serve different needs in the community of potential users. The 

mature model can be used by peptide chemists wanting to check mature sequences. 

Whereas the precursor model would be more useful in genome-wide scanning contexts, 

such as when using transcriptomes or proteomes as input data.  

 

As the two different models serve different purposes, the positive (AMPs) and negative 

(non-AMPs) datasets that constitute the training datasets varied in composition. This 

section will describe the positive and negative dataset selection for both the ampir 

precursor and mature peptide models.  

 

Since the goal for ampir’s precursor model was to obtain the maximum possible utility or 

genome-wide scans, the training dataset consisted entirely of precursor proteins 

(sequences longer than 50 amino acids). In typical genome-scanning operations this is 

the only information available. To achieve the positive dataset, AMPs from UniProt 

(listed under the “Antimicrobial” keyword), both reviewed (Swiss-Prot) and unreviewed 

(TrEMBL) sequences were downloaded. In addition, naturally occurring AMPs from the 

AMP databases APD, DRAMP and dbAMP were obtained. However, only the 

sequences which were also present in UniProt were retained. Although this removes a 

small number of proteins from custom AMP databases, remaining protein sequences 

then include extensive metadata that is provided for proteins in UniProt. The remaining 

unreviewed sequences (which were not present in the AMP databases) were removed. 

Furthermore, sequences were removed if they were: longer than 500 amino acids, 

contained nonstandard amino acids, or duplicated. This resulted in a database 
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containing 2,061 sequences of which 61 were unreviewed. Finally, the program CD-HIT 

(Li, Jaroszewski and Godzik, 2001) was used to cluster sequences to 90% sequence 

identity, keeping only a single representative sequence for each cluster. This groups 

sequences that are more than 90% similar together, while keeping only a single 

representative sequence (the longest one) for each cluster or group. This subsequently 

removes highly similar sequences and reduces redundancy. This resulted in 1,483 

AMPs used as the final positive dataset for the ampir precursor model. The final positive 

dataset contained 535 organisms. Out of those organisms, Arabidopsis thaliana, 

mouse, human and rat contained the majority of annotated AMPs (more than 50, see 

Table 2.2).  

 

Table 2.2: Summary table of the ampir precursor model positive dataset showing 
organisms that had more than 10 antimicrobial peptide clusters (n90) out of their 
respective total number of antimicrobial peptides (n). 

Organism n90 n   

Arabidopsis thaliana (Mouse-ear cress) 282 289   

Mus musculus (Mouse) 77 96   

Homo sapiens (Human) 61 84   

Rattus norvegicus (Rat) 52 59   

Bos taurus (Bovine) 34 43   

Gallus gallus (Chicken) 19 23   

Sus scrofa (Pig) 18 27   

Drosophila melanogaster (Fruit fly) 17 22   

Escherichia coli (Bacteria) 12 13   

Pan troglodytes (Chimpanzee) 12 32   

Dictyostelium discoideum (Slime mould) 11 12   

Ornithorhynchus anatinus (Duckbill platypus) 11 11   

Caenorhabditis elegans (Nematode) 10 11   
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Macaca mulatta (Rhesus macaque) 10 23   

Oryctolagus cuniculus (Rabbit) 10 13   

 

The ampir precursor negative dataset started out using all proteins in the Swiss-Prot 

database, clustered to 90% identity with CD-HIT as the foundation for a background 

dataset. The goal was to use fairly minimal filtering on these so that the sequences 

have roughly the same composition as a typical set of non-AMP proteins in a genome. 

Sequences were removed if they were: present in the positive dataset, contained non-

standard amino acids or were shorter than 50 amino acids or longer than 500 amino 

acids in length. The remaining background dataset was still very large (>300,000 

sequences). A large negative dataset likely provides a better representation of genome 

diversity and a more accurate coverage of the feature space, which subsequently could 

improve the learning of the model. However, using all available non-AMP sequences 

would be computationally expensive and increase the size of the model. Therefore, the 

background dataset was randomly sampled to obtain a subset of sequences so that the 

AMP:non-AMP ratio was 1:10. This resulted in 14,830 sequences used as the negative 

dataset for the ampir precursor model. This use of an imbalanced dataset allows more 

data to be used to train the model. However, unless the imbalance is accounted for it 

will lead to an inaccurately trained model as the model will favour the data more 

abundantly represented and therefore will perform poorly on the minority class (AMPs). 

One way to circumvent this is by balancing the dataset via synthesis of additional data 

using an approach such as Synthetic Minority Over-sampling Technique (SMOTE) 

(Chawla et al., 2002) or by randomly removing cases from the overrepresented set (He 

and Garcia, 2009). However, as mentioned earlier, the increase of data in a model 

increases the computational expense. An alternative approach to imbalanced data is to 

make it more expensive to misclassify a positive case during training (Weiss, 2004). 

This approach was implemented in ampir’s precursor model via the weights parameter 

in the caret R package (Kuhn, 2008). During the training of the ampir precursor model 

weights were set to be inversely proportional to the number of sequences in each class. 

This weighted approach allows much more data to be used for training without causing 

the model to be biased towards the majority class. 
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A mature AMP prediction model was added to provide users the opportunity to analyse 

their mature peptide sequences. In general these analyses are low throughput use-

cases as they rely on users knowing the mature sequence through mass spectrometry 

or related techniques. The positive dataset for the mature model contained AMP 

sequences from the APD, DRAMP, dbAMP and Swiss-Prot protein databases that were 

between 10 and 60 amino acids long. Identical to the precursor dataset, sequences that 

contained non-standard amino acids or were duplicated were removed. This resulted in 

4,983 sequences. Like with the precursor dataset, the resulting sequences were 

clustered to 90% with CD-HIT. The final positive dataset for the ampir mature peptide 

model contained 3,232 AMP sequences.  

 

The ideal negative dataset for a mature AMP model would be non-AMP peptides taken 

from the Swiss-Prot Peptide field. However, unfortunately there are very few such 

peptides verified and the available peptides tend to be neuropeptides and toxins. It is 

better for negative datasets to contain a wide range of proteins, to simulate a more 

realistic dataset. Therefore, a length filter was applied to extract non-AMPs sequences 

from the Swiss-Prot dataset that were 10 to 40 amino acids long. This 10-40 length filter 

is more stringent than the 10-60 length filter used in the positive dataset because the 

positive dataset consisted exclusively of mature peptides. However, the negative 

dataset contains both mature and precursor proteins and it was important to exclude 

any potential short precursor proteins that may be present in the dataset. Identical to the 

positive dataset, sequences that contained nonstandard amino acids were removed and 

the remaining dataset was clustered to 90% identity with CD-HIT. The final negative 

dataset for the ampir mature model contained 3,321 sequences. 

 

2.3.2 Feature selection 
 

ampir uses a suite of features commonly used in AMP prediction such as 

physicochemical properties (Meher et al., 2017; Bhadra et al., 2018) and Chou’s pseudo 

amino acid composition (Meher et al., 2017). Initial tests revealed that calculating 

features from amino acid sequences was by far the most computationally intensive step 
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when running predictions from a trained model. Therefore, to eliminate this bottleneck 

the pseudo amino acid composition calculation from the protr R package (Xiao et al., 

2015) was rewritten in C++. Physicochemical properties were calculated with the 

Peptides R package (Osorio, Rondon-Villarreal and Torres, 2015). Recursive feature 

elimination in the caret R package was performed to select a minimal feature set for 

ampir that would still accurately predict AMPs and avoid overfitting. This feature set 

included the pseudo amino acid composition, isoelectric point, net charge, 

hydrophobicity, molecular weight and hydrophobic moment. 

 

2.3.2.1 Visualising individual features 
 
As an indication of features that are likely to be useful for classification, the distribution 

of features was plotted for both the background and target dataset. In these plots, 

features that show a clear separation in distribution between positive and negative 

cases are likely to be most useful for classification. In addition, it should be noted that 

these feature distributions are sometimes heavily influenced by background filtering. 

This is at least partly because my large protein cut-off (500 amino acids) removes a 

small number of very large proteins that cause skewness in the Mw and Charge 

distributions. Higher order lambda values from the pseudo amino acid composition 

seem to show little difference between the positive and negative datasets (Figure 2.6) 

(this is not true of low order values though). Xc1 and Xc2 are output values from the 

pseudo amino acid composition where Xc1 values refer to specific amino acids and Xc2 

values refer to lambda values. The lambda value is a parameter in the pseudo amino 

acid composition function which is specified by the user. For both precursor and mature 

peptide models I used all physicochemical predictors, all Xc1 predictors and the first two 

Xc2 predictors. 
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Figure 2.6: The feature distribution for the precursor training data of the hydrophobic 
moment (amphiphilicity, net charge, hydrophobicity, molecular weight (Mw), isoelectric 
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point (pI) and pseudo amino acid composition in the negative (background) and positive 
(target) dataset. 
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Figure 2.7: The feature distribution for the precursor training data for the lambda values 
of the pseudo amino acid composition in the negative (background) and positive (target) 
dataset. 

2.3.2.2 Feature differences between mature and precursor proteins 
 
As shown in Figure 2.4 and 2.5, AMP precursors have a different sequence length 

distribution from mature peptides and are therefore likely to be more distinct from each 

other. The propeptide regions of AMPs have previously been shown to be more 

conserved in comparison to the mature peptides (Nicolas, Vanhoye and Amiche, 2003; 

Fjell, Hancock and Cherkasov, 2007; Rončević et al., 2018). Furthermore, the 

physicochemical properties, hydrophobicity and net charge, were found to be lower in 

propeptides (n = 223) in contrast to mature peptides (n = 970) (Fjell, Hancock and 

Cherkasov, 2007) based on AMPs from the UniProt database. To determine whether 

physicochemical properties of full-length precursor proteins and mature peptides differ, 

five physicochemical properties, amphiphilicity, net charge, hydrophobicity, molecular 

weight and isoelectric point, were calculated on the 806 precursor AMPs and 768 

mature AMPs obtained from Swiss-Prot (see training data section) (see Figure 2.8). 
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Figure 2.8: Density plots showing the distribution of five physicochemical properties in 
mature and precursor protein sequences. 

 

With the exception of molecular weight, no clear distinction between the 

physicochemical properties of mature and precursor proteins were observed. The 

change in molecular weight between precursor and mature peptides was expected, 

however, it is interesting that hydrophobicity and net charge do not appear to be higher 

in mature peptides as was observed between propeptides and mature peptides (Fjell, 
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Hancock and Cherkasov, 2007). This could be affected by the relatively low number of 

propeptides used in Fjell, Hancock and Cherkasov (2007) but it is more likely that in this 

study, the full protein precursor was used of which the propeptides and mature peptides 

are a part of and therefore it is more difficult to differentiate between the two as the 

physicochemical properties are combined. Despite the lack of a clear distinction 

between precursor proteins and mature peptides, there appears to be a detectable 

difference in some cases. Perhaps with additional AMP sequences and by including 

enough relevant features together, this could inform statistical classifiers of the 

difference between precursor proteins and mature peptides. Nevertheless, there is a 

clear length and molecular weight distinction between the mature peptides and the 

precursors which could bias a model if both mature peptides and precursors are used to 

train the model. This supports the choice to implement two separate models (one 

trained on precursor proteins and one on mature peptides) into ampir.  

 

2.3.3 Model details  
 
During development of ampir I explored two machine learning approaches widely used 

in AMP prediction (Liu et al., 2017), 1) the support vector machine with radial kernel 

(SVMr) and 2) a random forest (RF) algorithm. Both algorithms were used to train 

classification models with the caret R package. Data preprocessing and model training 

details were as follows: data were centred and scaled for normalisation and three 

repeats of 10 fold repeated cross validation were used to train each model. Prediction 

probabilities were calculated in each model and the models were tuned via a grid 

search of hyperparameter values as selected by caret. SVMr performed marginally 

better than RF, therefore SVMr was chosen as the final classification method to be 

implemented into ampir. 

 

2.3.4 ampir as a framework 
 
In addition to providing built-in classifiers for mature peptide sequences or full-length 

precursor proteins, ampir provides a framework to allow researchers to easily build 

custom models and use them for fast genome-wide prediction. Specifically, ampir 
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provides computationally efficient methods (implemented in C++ with multicore support) 

for calculating features commonly used in AMP prediction including physicochemical 

properties (Meher et al., 2017; Bhadra et al., 2018) and Chou’s pseudo amino acid 

composition (Xiao et al., 2013). In genome-scanning contexts such custom models will 

be especially important since they allow for optimisation (a) within a restricted 

taxonomic range, or (b) with restricted or biased input data (e.g. only secreted proteins). 

Researchers can take full advantage of the caret framework to optimise for these 

contexts on the basis of training data, feature selection and underlying machine learning 

approach. The resulting models can then be provided directly to ampir for prediction. 

2.4 Models’ performance 

The performance of ampir’s models were tested against three recently published AMP 

predictors: iAMPpred by Meher et al. (2017), AmPEP by Bhadra et al. (2018) and AMP 

Scanner by Veltri, Kamath and Shehu (2018). These AMP predictors were selected 

because at the time, they were the most recently published methods that were able to 

analyse several thousand sequences at a time. A more recent AMP predictor, dbAMP 

by Jhong et al. (2019) was released, however this predictor focuses on classifying 

AMPs to different taxa which is outside of the design scope for ampir and therefore was 

not included in benchmarking analysis.  

 

The trained ampir models were evaluated on their respective hold-back test sets, not 

included in the training data. The ampir_mature test set contained 1,310 sequences and 

the ampir_precursor test set contained 3,262 sequences. Three other AMP predictors 

(AMP Scanner, amPEP and iAMPpred) were also evaluated against the ampir test sets 

as a benchmark using a range of performance metrics (Table 2.3 and 2.4). Although 

this evaluation method is likely biased towards the ampir test sets, this practice of 

comparing performance of multiple predictors using a hold-back set from a specific 

predictor is common in the AMP prediction literature, e.g. see Veltri, Kamath and Shehu 

(2018). 
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Table 2.3: Evaluations of model performance tested on the ampir_mature test set. 

AMP models Acc Rec Sp Prec F1 AUROC 

ampir_mature 86 84 88 87 86 92 

ampir_prec 60 26 94 81 39 68 

AMP Scanner 75 92 58 68 78 81 

AmPEP 76 95 58 69 80 90 

iAMPpred 70 88 53 64 75 77 

Acc: accuracy, Rec: recall, Sp: specificity, Prec: precision, F1: F1 score, AUROC: area 

under the receiver operating characteristics curve. Units are in percentage. 

 

Table 2.4: Evaluations of model performance tested on the ampir_precursor test set. 

AMP models Acc Rec Sp Prec F1 AUROC 

ampir_prec 88 77 99 87 82 97 

ampir_mature 50 100 0 09 17 85 

AMP Scanner 70 89 51 15 26 82 

AmPEP 46 07 85 05 06 52 

iAMPpred 47 90 03 09 16 50 

Acc: accuracy, Rec: recall, Sp: specificity, Prec: precision, F1: F1 score, AUROC: area 

under the receiver operating characteristics curve. Units are in percentage. 

 
The area under the receiver operating characteristics curve (AUROC) value is shown in 

a visual representation in a ROC curve plot (see Figure 2.9) for both the precursor and 

mature peptide test set. Model performance improves the closer the curve is towards 
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the top left corner. For both test sets and respective ampir models, ampir’s curves are 

the closest to the top left and subsequently also have the best area under the curve 

(AUC) value (92% for the ampir_mature model and 97% for ampir_precursor). The main 

thing that can be observed is that all models, with the exception of ampir_precursor, 

perform very well on the ampir_mature test set. However, the performance of these 

models drastically decreases in the ampir_precursor test set, which consists of full-

length proteins. This clearly shows that models trained with a large proportion of mature 

sequences are not suitable on datasets that contain full-length proteins.  

 

Figure 2.9: Performance of a range of AMP predictors against the ampir_mature and 
ampir_precursor test set. 

 

Another important thing to note is that AmPEP, AMP scanner and iAMPpred perform 

well on the ampir_mature test set, likely because their training data consisted of many 

mature sequences. However, the reported results for each AMP predictor were 

different, and much better, in their respective papers because they used their own test 

set (see Table 2.5, note that the four performance metrics common in all papers were 
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used for comparison). The AMPs used in ampir’s test set likely overlap with their 

positive dataset, as the AMP dataset used in AMP predictors does not vary a great deal 

as there are only a limited number of AMPs. However, there are many different types of 

proteins that can be used for the negative dataset, and as previously mentioned, these 

AMP predictors filter the negative dataset to remove AMPs and sequences that are 

similar to AMPs. Filtering out these sequences therefore has substantial consequences 

on the performance of models when analysing diverse biological data expected to be 

present in genomes. These consequences are exacerbated when models are trained 

with a large proportion of mature peptides, which could compositionally differ from 

precursor proteins, and are not present in their mature form in most datasets derived 

from genomes. 

 

Table 2.5: Performance evaluation results from existing AMP predictors as obtained 
from their references. 

AMP 
models 

Acc Rec Sp AUROC Reference 

AMP 
Scanner 

91 90 92 97 Veltri, 

Kamath and 

Shehu 

(2018) 

AmPEP 96 95 97 99 Bhadra et 

al. (2018) 

iAMPpred 94 93 95 98 Meher et al. 

(2017) 

Acc: accuracy, Rec: recall, Sp: specificity, AUROC: area under the receiver operating 

characteristics curve. Units are in percentage. 
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2.5 ampir’s software engineering practices 

Modern software engineering practices such as version control, continuous integration, 

adherence to community accepted naming conventions, and an open development 

process were adopted in the creation of ampir to ensure that it was high-quality 

software, and so that improvements could be made while minimising the possibility of 

introducing bugs. 

 

ampir was designed for a bioinformatic purpose, that is, it was developed to aid 

understanding of biological data using a multi-disciplinary approach that includes 

biology, mathematics, statistics and software engineering. With increased biological 

data availability, more and more bioinformatic software is becoming available however, 

not enough emphasis is placed on software quality. In the context of AMP prediction 

there appears to have historically be an over-emphasis on designing software to suit 

novice users leading much investment in graphical interfaces (Kumar and Dudley, 

2007). Although this is most certainly useful, it sometimes hinders the ability of the 

software to be able to be used in an automated bioinformatics pipeline used for large 

data analysis. Command line software is generally better suited for this task and is also 

generally easier to use by technically proficient users. Nevertheless, such software must 

be well documented. In addition to providing guidance on usage, good documentation 

provides confidence to the user that the software works as intended and is therefore an 

important aspect to software engineering.  

 

2.5.1 Open development process  
 
The ampir package is not only open source, but is developed in a completely open 

manner, whereby the complete version history and the ability to issue pull requests is 

made available on a web server. Open source software means that the code that 

generated the software is available for anyone to view, edit and redistribute. Open 

development goes one step further in providing access, and the ability to contribute to, 

all of the code, including that in current development as well as all previous versions. 

This allows total transparency how the program output is generated which subsequently 
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contributes to two important aspects: reproducibility and full method disclosure. These 

allow anyone to reproduce your results and also detect potential code errors. For 

example, code that is translated from mathematical equations can contain 

computational errors and result in decreased accuracy. Such an error was discovered in 

an algorithm that created a large and widely used temperature dataset (Ince, Hatton 

and Graham-Cumming, 2012). Therefore, it is important that both the software source 

code and the methodology code is available. A widely used tool in software 

development that allows easy sharing of code is a distributed version control system 

(DVCS). In a DVCS the code is potentially present in multiple repositories each of which 

keeps track of its own changes, or “commits”. The repositories can be accessed and 

effectively “cloned” by anyone into their “local” repositories based on their computers via 

a server that stores a “remote” repository. Separate commits in different repositories 

may be merged in order to synchronise changes made by multiple developers and the 

commit history shows all the changes made and who made them (Zolkifli, Ngah and 

Deraman, 2018). Commits on the local repositories can be uploaded, or “pushed” to the 

remote repository and then downloaded, or “pulled” by local repositories belonging to 

other software developers or collaborators (see Figure 2.10). 
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Figure 2.10: Typical software development workflow using a distributed version control 
system (DVCS). A single remote is shown, however, in theory a DVCS can support 
multiple remotes as well. 

 

DVCSs are implemented in software like Git (https://git-scm.com/) and Mercurial 

(https://www.mercurial-scm.org/) which both launched in 2005. These can be hosted on 

a cloud-based server which allows users to store, manage and share repositories. Until 

July 2020, Git and Mercurial were both hosted on Bitbucket, however, Bitbucket 

announced it would drop support for Mercurial and focus on Git alone as Git is most 

commonly used in software development (Chan, 2020). Git is also hosted by GitHub, a 

specialised Git cloud-based server. GitHub provides a web graphical user interface for 

Git repositories which can include source code for software. Ampir has been developed 

using both Git and GitHub because of their popular and useful features. GitHub allows 

users of ampir, hosted on GitHub, to easily raise issues such as potential bugs or 

software improvements. In addition, GitHub also includes useful software engineering 

features such as code review and continuous integration. 

 

2.5.2 Continuous integration 
 
Continuous integration (CI) refers to a software development process where during the 

building and maintaining of software, the code is automatically built and tested when 



 

 53 

new changes are merged by a developer or collaborator (Meyer, 2014). In practice this 

usually relies on the use of a central cloud-based remote repository that interacts with a 

separate CI server that tests and builds the software. After the CI server runs tests that 

the software builds successfully, it notifies the developer team that the build “has 

passed”. If the CI server encounters build errors, it will also notify the developer team 

and advise them where the error was encountered so it can be more easily fixed. This 

testing by the CI server provides confidence to the developers that they can modify the 

software without breaking it. This subsequently enables collaboration and improvement 

over time because of the security that the tests provide. Collaboration could come from 

anyone that wishes to improve the software. The general process for this is that the 

collaborator clones the software repository to a separate branch, commits the changes 

they want to make and then creates a pull request. A pull request lets the developers 

know what changes were committed by the collaborator, which they can then review. 

The pull request is also automatically tested with the CI server to ensure the changes 

do not break the build (see Figure 2.11). If the build passes and the developers agree 

with the code changes made by the collaborator, the developers can then merge the 

code into the main software repository. 
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Figure 2.11: A diagram of the general pull request process. A collaborator clones the 
software repository and commits changes. The collaborator then requests a pull request 
from the original software repository which is automatically tested by the CI server to 
see if the changes made do not break the software. The CI server alerts the developers 
after it finishes the tests who then review the pull request and then, if the developers 
agree with the software changes, merge the pull request into the original software 
repository. 

 

There are a variety of CI servers available such as Buildbot (https://buildbot.net/), 

CircleCI (https://circleci.com/), Jenkins (https://www.jenkins.io/) and TravisCI 

(https://travis-ci.org/). Software developers may choose a CI server that more closely 

suits their needs. For example, developers may want a CI server that is easy to use, or 

has fast builds, or is customisable, or has high security (Hilton et al., 2017). TravisCI 

was chosen as ampir’s CI server because it integrates well with Git and GitHub, is easy 

to use, supports R and C++, and provides good documentation.  

 

2.5.3 Code tests 
 
The tests that the CI server runs to test the build are integrated within the server. 

However, the developers themselves can also write tests to test the functionality of their 
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code. These tests make the code more robust and help ensure that the software 

functions as intended. One way to write a test is to match the expected type of an input 

or output to a known value. This may seem simple but it is especially important when 

software is written in dynamic languages such as R that do not automatically check 

expectations around data types. Errors that arise when software expects a certain data 

type to be used as input but is in fact provided with different data type can be difficult to 

debug because they are disconnected from the real source of the issue. For example, 

ampir’s main function `predict_amps` expects an object of type `data.frame` as input 

with sequence names in the first column, and amino acid sequences in the second 

column. In R, a `matrix`, `data.frame` and `tibble` all look like a table with columns and 

rows and can store the same data. However, for an old version of `predict_amps`, if a 

`matrix` was used, `predict_amps` errored with the following message:  

 
Error: $ operator is invalid for atomic vectors. 

 

This error refers to code written within the `predict_amps` function and is therefore not 

at all informative to the user. An alternative, and perhaps more detrimental error mode 

is the silent error. Silent errors occur when something goes wrong in the software but 

nothing gets reported. For example, in an old version of `predict_amps`, if a `tibble` was 

used as input, `predict_amps` ran without an error but provided the wrong output. The 

expected output should have contained a third column with probability values but 

instead, it contained a third column filled with `NA`. By writing tests that examine the 

input and output, these errors were found during the development of ampir. These 

additional tests are also integrated with the CI and software management system and 

therefore get tested with every change made to the software.  

 

It may not always be obvious for what code tests should be written and it is easy to 

forget to write additional tests for additional code lines. There are tools such as 

Codecov (https://codecov.io/) that can be integrated with the CI provider that calculate 

the code coverage in relation to the tests and provide a visual representation of the 

code coverage. This is a useful indication to the developers which lines of code have or 
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have not been tested. Furthermore, when new code is committed to the repository, 

Codecov automatically checks the code for its code coverage and alerts the developer 

to the increase or decrease of the overall code coverage for the project. This is 

particularly useful when new features are being implemented by either the developers 

themselves or collaborators via pull requests, as it encourages test writing for new code 

(Hilton et al., 2017). New features can include new functions or extensions of current 

functions. Therefore, larger functions that contain more code require a larger number of 

tests that evaluate this code. It is important to remember that no test is perfect but they 

do provide some assurance for code quality and are able to reveal further potential 

problems. ampir 1.0.1 contains tests for each function and its overall code coverage is 

98.69%. A list of tests implemented for the various ampir functions can be found in 

Table S2.1  

 

2.5.4 Optimisation for high-throughput  
 
A key requirement of any genome scanning software is the ability to efficiently process 

a large number of input sequences. This capability is referred to as high-throughput. 

There are two main aspects of software that contribute to this: speed and parallel 

computing. In software development, speed is influenced by the way code is written and 

by the programming language used. It is easy to write very slow and inefficient code in 

R unless care and attention is paid to these aspects (Wickham, 2019). R is highly 

flexible, and there can be several ways of writing code to perform a certain action, 

however some methods are faster and more efficient than others. Identifying slow code 

can be difficult, especially for those users of R that are not formally trained in 

programming (Wickham, 2019). Code profiling can be used to analyse the execution 

time of code and find potential runtime bottlenecks (Bergel et al., 2012). R provides a 

code profiling tool called profvis which records the functions being run at frequent 

intervals and reports on the execution time and memory usage (Wickham, 2019). This 

tool was used to analyse ampir and helped locate various slow code sections which 

consequently were rewritten and improved. For example, provfis was run on a function 

in ampir that calculates Chou’s pseudo amino acid composition (Chou, 2001), on all 

given protein sequences, `calc_pseudo_comp`. It incorporates a loop that collects all 
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the calculations for each sequence and then combines them all into a single data frame. 

When this was first written, the combining action of the dataframes occurred iteratively, 

i.e., the dataframe “grew” with each loop which is slow because it forces R to store data 

in its memory until the loop has finished. To speed it up, the code was altered to add 

each calculation into its own separate table in a list inside the loop and once that 

finishes, all tables in the list are combined into a single dataframe outside of the loop. 

This is faster because the function used to combine the tables is effectively only called 

once. For smaller datasets, the speed gained may not be significant. However, for large 

datasets, such as expected for ampir, these speed ups from using more effective code 

can greatly decrease the overall runtime. Therefore, analysing software code after it has 

been written can be a powerful method to improve the performance of the software. 

 

Parallel computing can increase the speed of software by breaking up the software 

tasks to smaller pieces and using multiple cores to execute these smaller pieces 

simultaneously. ampir integrates the (R Core Team, 2021) parallel package which can 

be used on High Performance Computing (HPC) systems to select additional cores to 
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speed up ampir’s main function (see Figure 2.12). 

 
Figure 2.12: Performance of ampir as a function of core count when running 
`predict_amps` on a dataset of 77,000 proteins. 

 

This means that users of ampir can easily speed up their analysis which is especially 

useful when implementing ampir on multiple proteomes. 

 

2.5.5 ampir distribution and user interface 
 
ampir is distributed as an R package that includes code, documentation, data and tests 

(Wickham, 2015) via the Comprehensive R Archive Network (CRAN). CRAN is the 

primary repository for R and R packages (https://cran.r-project.org/) and provides an 

easy and standard installation process familiar to R users. During the package 

submission process, CRAN incorporates strict tests to ensure that the installation 

process is reliable for all platforms and previous R versions. In addition, CRAN requires 
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packages to conform to extensive instructions related to the structure, documentation, 

code and functionality of the package (https://cran.r-project.org/doc/manuals/r-

release/R-exts.html). CRAN also supports and encourages the writing of additional 

documentation called ‘vignettes’. The vignette for ampir includes executable examples 

demonstrating use of the functions in the package and provides explanatory text with 

context about when to use them. 

 

In addition to the default command line interface R offers for its users, ampir was also 

developed as a Shiny app. Shiny is an R package that can be used to build graphical 

user interfaces on web servers (Chang et al., 2021). The ampir Shiny app, available via 

https://ampir.marine-omics.net/, was designed so users can upload their FASTA file 

containing amino acid sequences which can then be classified by either the precursor 

model for full-length proteins, or by the mature model for mature peptide sequences. 

The prediction results plus original sequence can then be downloaded by the user as a 

comma separated file for further analysis. 

 
2.6 Conclusion 

Antimicrobial peptides are an important part of the innate immune system and help 

maintain the health of their host organism. Many machine learning methods have been 

developed to try to identify these peptides in silico. However, at the time this chapter 

was written, all of these methods had shortcomings preventing their use for AMP 

detection on a genome-wide scale. To facilitate a genome scanning approach to AMP 

discovery, a new machine learning model to classify AMPs was constructed and 

embedded in an R package, ampir. ampir was designed with good software engineering 

practices to be easy and effective to use, and specifically optimised for high-throughput 

analysis.  
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Chapter 3: Benchmarking antimicrobial peptide (AMP) 
machine learning models in a genome-scanning context 
 

3.1 Abstract 

Modern pipelines for AMP discovery often begin by using computational tools to identify 

peptides with putative antimicrobial activity from a large set of candidate proteins. These 

candidate sets are often derived from the complete set of translations from a 

transcriptome or annotated genome of an organism. Although many AMP classification 

tools now exist, their effectiveness on realistic input datasets in the context of ‘omics-

based AMP discovery has not been well explored. This chapter explores the training 

and test data used to build and evaluate a range of recently published AMP predictors. 

It introduces the idea that complete proteomes from well-studied taxa may be valuable 

datasets to assess the performance of AMP prediction software in a whole-proteome 

scanning context. It was found that the test and training data used by most AMP 

predictors has substantial biases in composition compared with complete proteomes, 

and that the predictive errors that arise from this are not captured by most performance 

metrics. Two major sources of compositional bias with impacts on model performance 

were identified: (1) imbalance between positive and negative classes and (2) selection 

of training sequences that are unlike those of typical input data. Based on extensive 

benchmark tests and theoretical analysis, performance metrics best suited to capturing 

the issue of imbalance were identified. Finally, it was demonstrated that the inclusion of 

precursor proteins in training datasets results in substantial performance improvements 

in a genome-scanning context.  

3.2 Introduction 

Antimicrobial peptides are a ubiquitous feature of most species across all major 

kingdoms of life. In organisms with well characterised AMP proteomes, such as 

Arabidopsis thaliana, several hundred distinct AMPs are present which suggests that 

the total diversity of AMPs across all life is likely many million molecules. Despite this, 
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only around three thousand AMPs have been described in Swiss-Prot (UniProt 

Consortium, 2021). Filling this gap requires efficient methods to discover new AMPs. 

‘Omics scanning workflows in which large databases of proteins are scanned for 

potential candidates prior to experimental screening are a promising method to increase 

the rate at which new AMPs can be discovered. A key element of the ‘omics scanning 

workflow is the screening step, and requires “AMP predictors”, computer programs that 

can predict AMP activity from a peptide sequence. In fact, many such AMP predictors 

now exist, and there has been an explosion in the number and variety of these 

programs in recent years. Several reviews (Gabere and Noble, 2017; Liu et al., 2017; 

Xu et al., 2021), have recently attempted to assess AMP predictors using benchmark 

metrics and test datasets. However, results presented in this chapter will show that 

these benchmarking approaches fail to capture the key aspects of model performance 

that matter in an ‘omics scanning context. 

 

Generally, AMP predictors are benchmarked against a hold-back test set from their own 

training data and sometimes also against published benchmark sets (Bhadra et al., 

2018; Veltri, Kamath and Shehu, 2018; Kavousi et al., 2020; Yan et al., 2020). While 

these approaches can provide a statistically sound measure of performance within a 

specific context, the degree to which this reflects real-world usage scenarios is almost 

never tested. One key issue is that when a hold-back test set is used its statistical 

composition will be nearly identical to the training data but (as shown in this study) this 

can be very different to the composition of input datasets used in realistic AMP 

discovery pipelines. In such situations performance metrics are almost always inflated 

since the model is likely to perform best on test data that is similar in composition to that 

used for training.  

 

While testing a predictor on every possible use case is generally not practical, there are 

several general features of ‘omics datasets used in AMP discovery that should be 

captured in a test dataset or benchmarking procedure. These include two main aspects: 

the first is very high data imbalance and a desire for few false positives. Predictors must 

perform well on input data that is highly imbalanced because AMPs only comprise a 
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small proportion of proteins in the genome (typically < 1%). A well understood 

consequence of this is that it makes it challenging to construct an unbiased training 

dataset (Weiss, 2004; He and Garcia, 2009). However, less well appreciated is the 

influence this has on likely real-world use cases and the choice of benchmarking 

metrics that best reflect these. In an ‘omics-based AMP discovery pipeline for example, 

the goal is to obtain a small, high-confidence set of candidate AMPs for synthesis and 

testing, a scenario that places far greater emphasis on the low false positive regime of 

performance than typical benchmark metrics such as the Area Under the Receiver 

Operating Characteristics curve (AUROC), sensitivity and specificity. 

  

A second key issue is that, in genome-scanning applications, sequences are usually 

only available for precursor proteins rather than mature peptides. These full-length 

precursor protein sequences usually arise by translating coding sequences from gene 

models. Since it is not generally possible to accurately deduce the mature sequence 

from its precursor, this information is typically not available to the user of AMP 

prediction software. It is also likely that precursor sequences and mature sequences 

differ substantially in terms of their amino acid composition and physicochemical 

properties. The performance of a predictor that is predominantly trained on mature 

peptides is therefore likely to be poor when presented with precursor sequences as 

input data. 

 

In summary, it is expected that AMP predictor performance is both dependent on 1) the 

composition (i.e. the types of molecules present) and 2) the balance (i.e., the 

prevalence of AMPs) of the test dataset. This study explores how these issues affect 

the appropriateness of training and test data, as well as benchmark metrics used for 

AMP prediction in an ‘omics AMP discovery context. 
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3.3 Major sources of compositional bias in training and test 
data 
 
3.3.1 Methods 
 
All analyses were completed in R version 4.1.2 (R Core Team, 2021) unless stated 

otherwise, using the RStudio integrated development environment, version 

2022.02.0+443 (RStudio Team, 2021) and the tidyverse R package, version 1.3.1 

(Wickham et al., 2019). 

 

As representative examples of the type of data that would be used as input in ’omics 

scanning applications, the complete proteome sets of Arabidopsis thaliana (a plant) and 

Homo sapiens (human) were obtained from UniProt proteomes, 

https://www.uniprot.org/proteomes/ (accessed 23 January 2021). Both organisms have 

been intensively studied and as a consequence, their reference proteomes are likely to 

include sequences for the vast majority of protein-coding genes. Functional information 

for the proteins, including AMPs in these species is among the most complete available, 

but even for these organisms it is highly likely that some known AMPs have not been 

identified. For this chapter, it is assumed that these proteomes are completely classified 

for AMP activity (i.e. every AMP correctly identified). 

 

AMP predictors used in this chapter were predominantly selected based on their ability 

to cope with high throughput analyses. This is an essential practical requirement for 

‘omics scanning workflows where one would scan (at minimum) an entire proteome 

(~30,000 sequences). The AMP predictors used in this chapter are iAMP-2L (Xiao et al., 

2013), amPEP (Bhadra et al., 2018), Deep-amPEP30 (Yan et al., 2020), amPEPpy 

(Lawrence et al., 2020), AMP scanner v2, (Veltri, Kamath and Shehu, 2018), AMPlify (Li 

et al., 2020), AmpGram (Burdukiewicz et al., 2020) and ampir (Fingerhut et al., 2020). 

 

Most published AMP predictors use a subset of the approximately ~4,000 

experimentally verified AMPs as their positive training data. This results in a high 
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degree of overlap between predictors and means that they tend to share compositional 

biases. I attempted to quantify this bias by comparing these AMP test and training 

datasets with the composition of proteomes of A. thaliana and H. sapiens. The idea in 

making such comparisons is that these real proteomes are representative of real input 

data (i.e. unbiased), however, it must be acknowledged that they capture only a very 

small subset of taxonomic diversity and that AMPs may not be fully classified even for 

these heavily studied species. 

 

3.3.2 Sequence structure of AMPs based on annotated features in 
Swiss-Prot  
 
Using one simple metric, protein length, it is possible to capture many aspects of 

compositional bias because there are major differences in length between most non-

AMP proteins, AMP precursors, and AMP mature peptides. To demonstrate this, I 

surveyed precursor sequences for AMPs listed in Swiss-Prot (reviewed proteins in 

UniProt, found via the keyword “Antimicrobial” [KW-0929], accessed April 2021), 

revealing the typical sequence structure of AMP precursor proteins. Since the Swiss-

Prot database includes the positions of the signal peptide, mature peptide, and C-

terminal region for many well characterised AMPs, it was possible to plot the distribution 

of these features as a function of amino acid position (Figure 3.1). This shows that the 

signal sequences typically comprise a very short (less than 10 amino acids) sequence 

at the N-terminus. Sections of the sequence that range between 10 and 60 amino acids 

are largely mature peptides, and the remaining C-terminal sequences are highly 

variable in length, with most around 100-200 amino acids in length. 
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Figure 3.1: Components of a typical AMP precursor sequence as a function of amino 
acid position based on analysis of 831 AMP sequences with length > 50 in Swiss-Prot. 

 

Understanding the biological significance of components of an AMP precursor 

sequence means that sequence length can be used to indicate whether a sequence is a 

mature peptide or a full-length precursor protein. Based on the results shown in Figure 

3.1 it can be inferred that mature peptides should have a narrow range of lengths, 

centred at around 50 amino acids, whereas the lengths of precursor sequences are 

always longer, but also spread across a broader range.  
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3.3.3 Sequence length distributions 
 
 
Examination of the sequence length of AMPs and non-AMPs within the training and test 

sets of the AMP predictors, revealed significant biases compared with the proteomes of 

A. thaliana and H. sapiens (see Figure 3.2). It also revealed differences in the model 

evaluation approach used by predictors. In most cases the test and training data (i.e. 

Figures 3.2A versus 3.2B) have near-identical length distributions reflecting the 

tendency for most predictors to use a randomly held-back portion of the same data used 

to generate the training set. A notable exception was AmPEP which used a test dataset 

published by Xiao et al. (2013) that has been promoted as an independent benchmark 

(Meher et al., 2017; Bhadra et al., 2018; Veltri, Kamath and Shehu, 2018; Santos-Júnior 

et al., 2020). However, as detailed below (see Figure 3.3 and accompanying text) this 

test set overlaps with training data used by many predictors, which compromises its 

independence, and as shown in Figure 3.2, the length distributions of both AMPs and 

non-AMPs in the test data sets of many predictors do not resemble those of the two real 

proteomes.  

 

Comparing the length distributions of AMPs and non-AMPs in the training and test data 

to the A. thaliana and H. sapiens proteomes, it is clear that the majority of predictors 

include a high density of mature AMPs in their positive dataset. The AMPs for these 

predictors have a strong peak in sequence length at around 50 amino acids, whereas 

for the real proteomes (Figure 3.2C) this peak is at a sequence length of 100. 

Interpreting this in the context of results shown in Figure 3.1, it most likely reflects the 

fact that most AMP sequences in the proteomes are full-length precursors while those 

that predominate in training and test data for predictors are mature peptides. The only 

predictor with a length distribution for test and training data that qualitatively matches 

that of the proteomes is ampir_precursor. This most likely reflects its deliberate 
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exclusion of mature AMP sequences in favour of precursor proteins. 

 
Figure 3.2: Comparison of sequence length distributions for positive (AMP; purple) and 
negative (non-AMP; green) fractions in training (A) and test data (B) of nine AMP 
predictors, and for the proteomes of Arabidopsis thaliana and Homo sapiens (C). The 
training data for AmpGram and test data for AmPEPpy are blank as these were not 
available. Sequences longer than 300 are not shown for sequence length distribution 
clarity. 

 

There are several databases that list AMPs with confirmed activity, including APD3 

(Wang, Li and Wang, 2016), DRAMP (Fan et al., 2016), dbAMP (Jhong et al., 2019) and 

UniProt and most predictors use one or more of these as the basis for constructing their 
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positive AMP dataset. In addition, some AMP databases, e.g. APD3, impose sequence 

length restrictions for AMPs included in their database (see chapter 2.3.1.1). Due to 

these shared origins, it is likely that some overlap exists between the positive datasets 

of AMP predictors. Both the degree of overlap, and the interaction of overlap between 

the length distribution of AMPs were explored.  

 

3.3.4 Overlap between data used by different predictors 
 
To examine the sequence overlap between databases, the stringdist, v. 0.9.8, R 

package (Loo, 2014) was used to calculate the Jaro distance between all pairs of 

positive AMP sequences across all predictor training/test datasets as well as reference 

proteomes for A. thaliana and H. sapiens. The Jaro distance was chosen because it is 

normalised for the length of both sequences and produces a value between 0 (exact 

match) and 1 (completely dissimilar). Highly similar sequences (Jaro distance <0.2) 

were considered to be the same as these are likely close homologs at minimum, or 

near-identical sequences with minor variation. Manual inspection revealed that in many 

cases matches, at this Jaro distance, occurred between near identical sequences with 

minor differences, likely due to reporting conventions and/or minor discrepancies 

between databases. An UpSet plot was created with the ComplexUpset, v. 1.3.3, R 

package (Krassowski, 2021) to visualise the patterns of overlap. UpSet is a technique to 

visualise intersections and the frequency of these intersections, commonly by grouping 

the overlapping sections in a frequency bar plot (Lex et al., 2014). It is an alternative to 

the well-known Venn diagram that is especially useful when the number of sets is large.  

 

The UpSet plot (Figure 3.3) highlights some key patterns of overlap between datasets 

and how this relates to their length and precursor protein status (indicated by signal 

peptide). One key trend is the high degree of uniqueness of sequences used by ampir 

(first and second columns). Also note that there are several large groups of AMPs 

shared by many predictors (columns 3 and 4) which appear to be almost exclusively 

composed of mature sequences (short length distributions). These mature peptides 

comprise only a very small fraction of the A. thaliana and H. sapiens proteomes.  
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Figure 3.3: UpSet plot showing overlap between positive training data used for eight 
AMP predictors, and known AMPs within the reference proteomes of Arabidopsis 
thaliana and Homo sapiens. Each column in the plot represents proteins that are found 
in common between multiple datasets (a set intersection) and spans violins (top), 
vertical bars (middle) and dots (bottom). Dots show the membership of intersections. A 
dot indicates that all proteins in the intersection are contained within the training data of 
the corresponding AMP predictor (row: see row labels at left). Only intersections with at 
least 50 proteins are shown. Vertical bars show the total size of each intersection and 
its composition in terms of proteins that have a signal peptide or those that do not. The 
violin plot shows the length distribution for proteins in the intersection. Horizontal bars to 
the left of the dot plot show the number of proteins in each of the datasets.  

 

As shown in Figures 3.2 and 3.3, there is a substantial divide between the composition 

of AMP predictor training sets and the proteomes of A. thaliana and H. sapiens, based 

on the length distribution of included sequences. This is significant because the majority 

of AMP predictors use a hold-back set to evaluate the performance of their models, 

such that compositional bias in the training data will also be reflected in the test data 
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and this in turn will lead to inflated measures of accuracy. This inflated accurary issue 

will occur irrespective of the test metric used. In addition, with the exception of the 

ampir_precursor model, all AMP predictors use a balanced test set, i.e., where the 

number of AMPs equal the number of non-AMPs (see Table 3.1). This balance is 

unlikely to match the real proportions of AMPs present in a proteome, where it is likely 

AMPs only comprise a small proportion.  

 

Table 3.1: The number of positive and negative sequences present in the training and 
test datasets in nine AMP predictors. 

 Training set Testing set Reference 

AMP predictor AMPs non-AMPs AMPs non-AMPs  

iAMP-2L 897 2,405 920 920 Xiao et al. (2013) 

amPEP 3,268 166,791 iAMP-2L test set Bhadra et al. 

(2018) 

Deep-amPEP30 1,529 1,529 94 94 Yan et al. (2020)  

amPEPpy 3,268 3,268 Not specified Lawrence et al. 

(2020) 

AMP scanner v2 1,066 1,066 712 712 Veltri, Kamath 

and Shehu (2018) 

AMPlify 3,338 3,338 835 835 Li et al. (2020) 

AmpGram 2,216 2,216 247 247 Burdukiewicz et 

al. (2020) 

ampir_precursor 1,187 11,864 296 2,966 Fingerhut et al. 

(2020) 
ampir_mature 2,586 2,657 646 664 
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3.3.5 Balance of classes in training datasets 
 
Training, and testing phases of model development are affected by dataset balance in 

different ways. One of the reasons that many models adopt a balanced dataset for 

training is that training on imbalanced data can lead to a model that overemphasises the 

majority class (Meher et al., 2017). This is a serious problem if (as is the case for AMP 

prediction) the minority class is of maximum interest. The flip-side to this is that in order 

to balance data many cases from the majority dataset are discarded, which potentially 

results in loss of valuable information. Fortunately there are now several statistical 

approaches that deal with this issue, accommodating training on unbalanced data 

without over-emphasising the majority class. One category of approaches, e.g. 

Synthetic Minority Over-sampling Technique (SMOTE) achieves balance by 

synthesising additional data for the minority class (Bhadra et al., 2018). An alternative 

approach (adopted by ampir_precursor) is to weight data in inverse proportion to their 

class abundance (i.e. downweight the majority class). This has been suggested to lead 

to increased performance of the model (Bhadra et al., 2018), likely due to the presence 

of additional data which the model can learn from. 

 

Irrespective of whether balanced data are used for training purposes the class 

imbalance issue must also be addressed when evaluating models. This issue is 

addressed in detail below (section 3.4). 

3.4 Implications of imbalanced data on performance 
evaluations 

As can be seen from Table 3.1 it remains common practice to evaluate AMP model 

predictors using a balanced testing set. In this section I describe in-detail why this 

approach is especially problematic when using AMP predictors in an ‘omics scanning 

context.  

 

3.4.1 Survey of AMP proportions in real proteomes 
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As can be seen from Table 3.2, AMPs only comprise a small proportion (0.5-2%) of the 

encoded proteins in the genomes of five well-studied taxa. To obtain these estimates I 

chose the top four organisms (the mammals Mus musculus, Homo sapiens and Bos 

taurus and the flowering plant Arabidopsis thaliana) by numbers of reviewed AMPs in 

Swiss-Prot (accessed February 2021), with the addition of the fruitfly Drosophila 

melanogaster as a well-studied invertebrate. For each organism, the proportion of 

AMPs was calculated by dividing the number of reviewed AMPs by the total number of 

reviewed proteins in the reference proteome for that organism. Overall, it is clear from 

Table 3.2 that AMPs only comprise less than 1% of the genome in animals, and slightly 

more in A. thaliana (~2%). The large number of AMPs in A. thaliana may be explained 

by the prevalence of cysteine-rich AMPs in this species (Tam et al., 2015), and in other 

plants. The AMP proportions for all species shown in Table 3.2 are likely to be 

underestimates as there are many unreviewed proteins which may include AMPs. As 

the nearest rounded number for the AMP proportion in most species in this table is 0.01, 

this number was used as a representative measure for the purposes of exploring issues 

related to data imbalance.  

 

Table 3.2: The number and proportion of reviewed AMPs in well-studied organisms in 
their respective proteomes. 

Species AMPs in 
proteome 

Reviewed 
proteins 

Proporti
on 

Proteome ID Unreviewed 
proteins 

Arabidopsi
s thaliana 

291 15,961 0.0182 UP000006548 23,384 

Mus 
musculus 

100 17,058 0.0059 UP000000589 38,416 

Homo 
sapiens 

99 20,381 0.0049 UP000005640 55,395 

Bos taurus 55 6,014 0.0091 UP000009136 31,499 
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Drosophila 
melanogas
ter 

24 3,596 0.0067 UP000000803 18,521 

 
3.4.2 Effect of dataset imbalance on test metrics 
 
Despite the fact that AMPs comprise a minority of expressed proteins in a typical 

genome the issue of test dataset balance remains largely unexplored by the AMP 

prediction community. For example, the most recent and comprehensive review of AMP 

predictors evaluated the performance of 30 AMP predictors (Xu et al., 2021) but used a 

balanced test set for all benchmarks. While balanced test sets have historically 

dominated the AMP prediction literature the potential for AMP predictors to be used in 

genome-scanning creates an imperative to account for imbalance in model evaluation 

(Whalen et al., 2022). In this section I explore the issue of how class imbalance affects 

standard test metrics and use this to inform recommendations for the evaluating AMP 

predictors for genome-scanning.  

 

Metrics used to test classification performance are generally based on the four 

confusion matrix categories, which comprise the true positives, false positives, true 

negatives and false negatives. Common metrics derived from these fundamental 

measurements include accuracy, specificity (or true negative rate), recall (also known 

as sensitivity or true positive rate), precision, and the Matthews Correlation Coefficient 

(MCC) (see equation 3.1). Of these, the MCC is the only metric that considers all four 

confusion matrix categories and subsequently only scores highly if a good result is 

achieved in all four of them. The MCC is considered a valuable metric in classification, 

as it is more informative in unbalanced datasets, and provides a more realistic sense of 

performance, compared to accuracy or F1 score, which can be misleadingly 

overconfident (Chicco and Jurman, 2020; Chicco, Tötsch and Jurman, 2021). 
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Equation 3.1: Formulae for commonly used performance metrics based on the 
confusion matrix. MCC: Matthews Correlation Coefficient, TP: true positives, TN: true 
negatives, FP: false positives, FN: false negatives. 
 

Although AMP predictors are binary classifiers, they typically produce a score for each 

AMP reflecting an estimated probability that it belongs to the AMP class. This score, 

which I refer to as p (probability), is usually provided as output to the user, and provides 

the opportunity for users to adjust performance by choosing a different threshold value 

to the default (usually p=0.5). By choosing a different decision threshold the user will be 

making a different trade-off between elements of the confusion matrix. These trade-offs 

can be captured using either a ROC (Receiver Operating Characteristics) curve which 

plots the true positive rate (y) versus the false positive rate (x), or a Precision Recall 

curve which plots precision (y: Equation 3.1) versus recall (x: Equation 3.1). Both curve 

types can also be reduced to a single number by taking the area under the curve to 

produce the Area Under the Receiver Operating Characteristics curve (AUROC) and 

Area Under the Precision Recall Curve (AUPRC) metrics. The AUPRC is particularly 

useful as a performance metric for imbalanced datasets (Davis and Goadrich, 2006; He 

and Garcia, 2009; Sofaer, Hoeting and Jarnevich, 2018) as these focus on the 

proportion of actual true positives within the positive predictions (Saito and 

Rehmsmeier, 2015), rather than including the true negatives, as the false positive rates 

in the ROC curves do. While the AUPRC and AUROC do not depend on a chosen 

decision threshold (usually p=0.5), they still attempt to reduce performance of the 
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predictor to a single value across the probability range (from 0 to 1), placing equal 

emphasis on all parts of this range.  

 

To explore the effect of data imbalance on performance metrics I introduce the variable, 

𝛼𝛼, which represents the proportion of AMPs in a test set. A confusion matrix generated 

under a balanced test set (𝛼𝛼 = 0.5) can then be rescaled to expected values under an 

unbalanced dataset (𝛼𝛼 ≠ 0.5) using Equation 3.2. 

 
Equation 3.2: Expected values of confusion matrix entries for a given value of 𝛼𝛼, scaled 
from values measured under a test set where the proportion of AMPs equal 0.5 
(denoted by subscript 0.5). 
 

This rescaling equation reveals some important characteristics of performance metrics. 

Firstly, it can now be shown that the receiver operating characteristic (ROC) curve and 

associated (AUROC) metric are invariant under 𝛼𝛼, and therefore less informative than 

other metrics when dataset imbalance is important (Davis and Goadrich, 2006). This 

can easily be seen by considering the two axes in a ROC curve (y = TPR, x = FPR), 

and the way that these scale with 𝛼𝛼 (see Equation 3.3). These equations clearly show 

that neither the x or y axes of a ROC curve are affected by changes in 𝛼𝛼 which implies 

that both ROC curves themselves and associated metrics (AUROC) are completely 

invariant with the dataset balance. In some situations, this may be desirable. However, 

for ‘omics-scanning where there is a strong requirement for high precision (which does 

vary with 𝛼𝛼) ROC-based metrics can provide a misleading estimate of performance. 
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Equation 3.3: Formulae for the x (FPR, false positive rate) and y (TPR, true positive 
rate) axis of a receiver operator characteristics (ROC) curve. Axes scaled by 𝛼𝛼 are 
marked by a superscript 𝛼𝛼. 
 

Using this same mathematical framework, we can now see that the relationship 

between precision and recall, and therefore PRC curves and the AUPRC are affected 

by 𝛼𝛼 (see equation 3.4). This equation shows that recall is unaffected by 𝛼𝛼, whereas 

precision will decrease as 𝛼𝛼 decreases. 

 

 
 

Equation 3.4: Recall and precision metrics for a given ɑ value. TP: true positives, FP: 
false positives, FN: false negatives 
 

The effect of test set imbalance on precision-recall curves is shown graphically in Figure 

3.4 based on results from ampir. These results were prediction results from the test set 

of ampir v.0.1 which contained 996 AMPs and non-AMPs (𝛼𝛼 = 0.5). To implement 𝛼𝛼, 

these test results were used as a foundation and expected values for different 𝛼𝛼 were 

obtained via equations 3.2 and 3.4. Figure 3.4A indicates shifts of the trade-off between 
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the precision and recall with varying proportions of AMPs in a genome over a range of 

predicted probability values. Note that recall (as expected) does not change, whereas 

as 𝛼𝛼 decreases a much higher decision threshold is required in order to achieve high 

precision. Note that for a realistic 𝛼𝛼 value (𝛼𝛼 = 0.01) the threshold required to achieve a 

precision of 0.5 is very high (>0.95). This highlights the fact that the relative rarity of 

AMPs makes them extremely challenging to identify with precision from whole proteome 

datasets. It also highlights the importance of probability values reported by predictors, 

as users who desire higher precision will use these values to implement an alternative 

decision threshold, reflecting their needs. In Figure 3.4B the impact of 𝛼𝛼 on the trade-off 

between precision and recall can be observed. This highlights the challenge associated 

with small 𝛼𝛼. When the 𝛼𝛼 value is 0.5, there is very little need for compromise, as both 

high precision and high recall can be achieved. In contrast, for 𝛼𝛼=0.01 it is impossible to 

achieve high precision without major sacrifices to recall.  
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Figure 3.4: A) Calculated precision and recall metrics over predicted probability 
thresholds and B) A traditional precision-recall curve for four different 𝛼𝛼 values that 
represent different proportions of AMPs in a genome. 

 



 

 79 

3.5 Benchmarking AMP predictors in a genome-scanning 
context  

To date, performance evaluations for AMP predictors have largely focussed on test 

datasets that do not reflect the types of inputs that would be used when scanning for 

AMPs in the genome of an organism, a use-case that I call genome-scanning. The use 

of balanced test sets is considered standard practice in the field. Even independent 

studies (i.e. those which did not develop their own AMP predictor) that have sought to 

benchmark different AMP predictors to determine the best performing predictor utilised 

a balanced test dataset (Gabere and Noble, 2017; Xu et al., 2021). Similarly, additional 

reviews that focus on the availability and development of AMP predictors appear not to 

consider the implementation of AMP predictors on datasets that reflect a genome-

scanning use case (Liu et al., 2017; Aronica et al., 2021; Ramazi et al., 2022). This lack 

of emphasis on benchmarks appropriate for genome-scanning is surprising as this 

application is common in the AMP discovery field (see chapter 1). Although evaluating 

the real-world accuracy of AMP predictors is challenging, I demonstrate in this chapter 

that it is an issue that has serious consequences for the design and evaluation of AMP 

predictors. 

 

The focus in this chapter is purely on a use case that is defined as “genome-scanning”, 

in which an AMP predictor is used as part of a novel AMP discovery pipeline to scan an 

entire ‘omics dataset (e.g. all predicted proteins) with the goal of producing a short list 

for experimental validation of AMP activity. An ideal realistic test set for ‘omics scanning 

applications would be the complete set of proteins across a broad range of taxa in 

which all of the AMPs and their precursor sequences have been correctly classified. 

Although no such datasets currently exist, a small number of highly studied organisms 

have proteomes that are thought to reflect translations from almost the entire 

complement of expressed genes, and for which a high proportion of AMPs have been 

classified based on close homology and/or experimental assays. In this section, the 

proteomes from A. thaliana and H. sapiens are used as representatives of realistic 

‘omics scanning input data and subsequently used as a test set for multiple AMP 
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predictors. These test sets have the appropriate balance, i.e. where 𝛼𝛼 equals ~1-2%, 

and have little overlap with training data used by most predictors (see Figure 3.3).  

 

3.5.1 Methods 
 
The AMP predictors used in this section are outlined in Table 3.3. They include the AMP 

predictors amPEP (Bhadra et al., 2018), amPEPpy (Lawrence et al., 2020), deep-

AmPEP (Yan et al., 2020), AMP Scanner v2 (Veltri, Kamath and Shehu, 2018), AMPlify 

(Li et al., 2020), AmpGram (Burdukiewicz et al., 2020), ampir mature and precursor 

(Fingerhut et al., 2020) to classify AMPs in the proteomes of A. thaliana and H. sapiens. 

However, the web server provided for deep-AmPEP contained a file size restriction of 1 

megabyte. Considering the file size for a proteome is approximately 20 megabytes, 

deep-AmPEP was excluded from benchmarking analysis. The training data for the 

ampir precursor model includes precursor protein sequences for both A. thaliana and H. 

sapiens. In order to avoid calculating inflated performance metrics for ampir, a specific 

model, ampir_prec_nb, was created which excluded all A. thaliana and H. sapiens 

proteins. The A. thaliana and H. sapiens proteomes were preprocessed to comply with 

input requirements of all predictors. Specifically, all sequences that were shorter than 10 

amino acids, or which contained non-standard amino acids, were removed. The majority 

of performance metrics were calculated using custom written functions in R. However, 

the area under the curve (AUC) for both the receiver operator characteristics (ROC) and 

precision recall (PR) curves, were calculated using the precrec, v. 0.12.7, R package 

(Saito and Rehmsmeier, 2017). 

 

Table 3.3: AMP predictors used for proteome benchmarking (accessed January 2021). 
Further details on each model including the exact number of sequences present in each 
predictor’s training and test set can be found in Table 3.1. 

Predictor Test Dataset Model 
algorithm 

Accessed  Link 

amPEP Balanced  

 

Random forest MATLAB 

source code 

https://sourcefor

ge.net/projects/
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axpep/ 

amPEPpy 

v.1.0 

Balanced Random forest Python 3.8 via 

Conda 

v.4.10.0 

https://github.co

m/tlawrence3/a

mPEPpy 

deep-

AmPEP30 

Balanced 

 

Convolutional 

neural network 

Web server https://cbbio.onli

ne/AxPEP/ 

AMP Scanner 

v. 2 

Balanced Convolutional 

and recurrent 

neural network 

Web server https://www.dve

ltri.com/ascan/v

2/ascan.html 

AMPlify 

v.1.0.0 

Balanced Deep learning 

with attention 

mechanisms 

Python 3.8 via 

Conda 

v.4.10.0 

https://github.co

m/bcgsc/AMPlif

y 

AmpGram 

v.1.0 

Balanced 

 

Random forest R 4.0.3  https://github.co

m/michbur/Amp

Gram 

Ampir 

precursor 

v.1.1.0 

Unbalanced Support vector 

machine with 

radial kernel 

R 4.0.3 https://github.co

m/Legana/ampir 

Ampir mature  

v.1.1.0 

Balanced 

 

3.5.2 Self-reported performance of predictors 
 
The aforementioned predictors all reported excellent performance in their respective 

papers (see Table 3.4). Note that although most predictors evaluated their performance 

using at least some metrics that are sensitive to data imbalance such as the MCC and 



 

 82 

AUPRC, the actual test data used was balanced (ampir_precursor is an exception, see 

Table 3.1). While this practice allows for a standardised comparison between predictors, 

the lack of testing with unbalanced data means that the relative performance of 

predictors listed in Table 3.4 is potentially not representative of how the predictors 

would perform on an unbalanced dataset.  

 

Table 3.4: Performance evaluation results from existing AMP predictors on their 
respective test sets. 

AMP models Acc Sn Sp Prec MCC AUROC AUPRC 

AmPEP 0.96 0.95 0.97  0.90 0.99 0.78 

amPEPpy 0.84 0.85 0.82 0.83 0.68 NA NA 

deep-AmPEP30 0.77 0.77 0.78  0.54 0.85 0.85 

AMP Scanner 
v2 

0.91 0.90 0.92  0.82 0.96 NA 

AMPlify 0.94 0.93 0.93 NA NA 0.98 NA 

AmpGram NA 0.85 0.81 0.81 NA 0.91 NA 

ampir 
mature 

0.86 0.87 0.86 0.86 0.73 0.93 0.93 

ampir 
precursor 

0.97 0.73 0.99 0.90 0.79 0.97 0.86 

Acc: accuracy, Sn: sensitivity, Sp: specificity, MCC: Matthew’s correlation coefficient, 

AUROC: area under the receiver operating characteristics curve, AUPRC: area under 

the precision recall curve. Results were taken from each model’s associated reference: 

amPEP (Bhadra et al., 2018), amPEPpy (Lawrence et al., 2020), deep-AmPEP (Yan et 

al., 2020), AMP Scanner v2 (Veltri, Kamath and Shehu, 2018), AMPlify (Li et al., 2020) 
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AmpGram (Burdukiewicz et al., 2020), ampir mature and precursor (Fingerhut et al., 

2020).  

 

3.5.3 AMP predictor performance on H. sapiens and A. thaliana test 
sets 
 

Figure 3.5 shows both the ROC curves (A) and the PR curves (B) for the prediction 

results from various AMP predictors on the H. sapiens and A. thaliana proteomes. On a 

ROC curve plot, an AUC of 0.5 makes a diagonal line from the bottom left to the top 

right corner. The perfect PR curve is like a mirror image of the perfect ROC curve; it 

bends at the top right corner, which refers to the model performing with 100% recall and 

precision. Therefore, the more the PR curves bend toward the top right corner, the 

better the model is. When comparing multiple curves on the same plot, the curve that is 

above another curve, is generally assumed to reflect better performance. It is clear that 

the ROC curves overall show a better performance compared to the PR curves which 

corroborate the findings of Davis and Goadrich (2006) and Saito and Rehmsmeier 

(2015) that the AUROC can be misleadingly confident on imbalanced datasets. The 

AUC values for the ROC curves range between 0.16 - 0.99 for A. thaliana and 0.43 - 

0.94 for H. sapiens. The AUC values for the PR curves are between 0.004 - 0.83 for A. 

thaliana and 0.001 - 0.30 for H. sapiens, which are overall much lower compared to the 

AUROC values. The overall poor performance of amPEP and amPEPy could be 

attributed to the high proportion of mature peptides in their respective training datasets. 

This is reflected in Figure 2.9, which shows amPEP performs well on ampir’s mature 

test set, but poorly on the ampir’s precursor test set. Interestingly, all models, with 

exception to amPEP, had higher AUC values for both ROC and PR curves for A. 

thaliana (Figure 3.5). This may indicate the models were better at detecting AMPs in A. 

thaliana compared to H. sapiens. The ampir precursor model had the highest AUPRC 

value on the A. thaliana proteome (AUPRC: 0.83). However, the remaining AUPRC 

values (for both proteomes) are below 0.35. Therefore, according to the AUPRC metric, 

none of the models (save perhaps the ampir precursor model on A. thaliana) performed 
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well in detecting AMPs in the H. sapiens and A. thaliana proteomes.

 
Figure 3.5: Performance of various AMP predictors in classifying whole proteome data 
for Homo sapiens and Arabidopsis thaliana. Performance is shown as ROC curves (A) 
and precision-recall (PR) curves (B). H refers to Homo sapiens and A refers to 
Arabidopsis thaliana. The numbers that follow are the respective AUC values for either 
the ROC or PR curves. 

 

The AUPRC, AUROC, MCC, precision and recall metrics were used to assess the 

performance of AMP predictors in both proteomes (Figure 3.6). A wider range of 

performance metrics (including the accuracy, specificity and F1 score) can be found in 

Table S3.1. From these metrics, the AUPRC and MCC are most informative in 

imbalanced datasets. Other metrics, such as the AUROC, may be too misleadingly 

optimistic (Saito and Rehmsmeier, 2015; Davis and Goadrich, 2006) which is apparent 

in Figure 3.6, as the AUROC values overall are much higher compared to the AUPRC 

and MCC. Although the AUROC and AUPRC capture performance across the entire 

range of decision thresholds the values for precision, recall and MCC were calculated 
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using a default decision threshold of p=0.5. With the exception of amPEP, amPEPpy 

and AMPlify, the AMP predictors were able to find a large proportion of the AMPs (recall 

> 0.56) present in both proteomes, which likely reflects the decision threshold chosen 

(p=0.5). However, only ampir_precursor and ampir_precursor_nb were able to classify 

the AMPs with any precision at this decision threshold in A. thaliana (precision = 0.38 

and 0.28, respectively). In contrast, the precision values for other predictors and for H. 

sapiens were all less than 0.05 indicating that a much higher decision threshold is likely 

to be required in practical use-cases. For example, if the goal is to produce a list of 

candidate AMPs for experimental testing it would be a vast waste of resources to obtain 

a candidate list containing less than 5% true positives. 
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Figure 3.6: Performance of AMP predictors on the proteomes of Arabidopsis thaliana 
and Homo sapiens using various performance metrics. 

 

Performance metrics evaluated at a decision threshold of p=0.5, or that capture the 

entire range of thresholds (e.g. AUPRC and AUROC) may not be very informative when 

the goal is genome-scanning. Consider the situation in which the goal is to obtain a list 

of candidates for experimental testing. Recent publications that do this usually 

synthesise and experimentally test between 10 and several hundred candidate 

peptides, with several hundred representing a very large investment in time and money 

(Ma et al., 2022). Precision is therefore by far the most important metric in these cases 

because it is essential that the candidate lists are rich in true positives (AMPs). To 

adequately express the real-world performance of predictors in this situation the trade-
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off between numbers of true and false positives was shown as these are the confusion 

matrix entries that contribute to precision. In addition, the focus is on the low false 

positive regime as this matters most in whole proteome scans (Figure 3.7). In these 

plots the number of false positives represent wasted effort and true positives represent 

the goal. Importantly, the x-axis is restricted to only show values less than 500 since it is 

not feasible to test larger numbers of candidate proteins. This range restriction removes 

some predictors entirely, notably AMP Scanner which was unable to predict less than 

500 false positives at any decision threshold (see Figure S3.2). Figure 3.7 shows that 

the ampir_precursor and ampir_precursor_nb models clearly outperform all other 

predictors in this regime which likely reflects the fact that the ampir precursor models 

are the only predictors to incorporate large numbers of precursor proteins in their 

training data. 

 
Figure 3.7: The ability of eight AMP prediction models to predict AMPs in the low false 
positive regime (<500) in the proteomes of Arabidopsis thaliana and Homo sapiens. It is 
scaled so that the limits of the y-axis show the full complement of known AMPs in each 
genome (291 for A. thaliana, 110 for H. sapiens), and the limits of the x-axis are 
restricted to emphasise behaviour in the low false positive (FP) regime (FP < 500) 
because this is most relevant in whole genome scans. 

3.4 Discussion 

In this chapter I found that the reported performance for published AMP prediction 

models is generally much higher than their performance on realistic input datasets. This 

largely reflects the practice of hold-back testing which uses test data compositionally 
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similar to the training data to assess model performance. While hold-back testing works 

well in situations where the training data is unbiased compared with real-world usage, I 

found that such biases were prevalent in AMP datasets and that they have a dramatic 

effect on real-world performance.  

 

In order to characterise these biases, I adopted the novel approach of using complete 

proteomes from well-studied organisms as representative of real-world datasets. This 

approach has its own problems (see limitations section below) but enabled me to 

identify major sources of bias in most AMP datasets used to train and test predictors. 

Specifically, AMP training and testing data for several widely used models have length 

distributions far from those seen in the proteomes of H. sapiens and A. thaliana, which 

largely reflects differences in filtering strategies on positive and negative datasets. In 

addition, training and testing data for most predictors was balanced (equal numbers of 

positive and negative cases), but a survey of AMPs in proteomes of well-studied 

organisms indicates that the positive fraction is usually less than 1%. 

 

One of the goals in creating AMP prediction models is to reduce the number of false 

positives obtained from prediction results (Meher et al., 2017). One way to decrease the 

number of false positives is to maximise precision, by adjusting the decision threshold to 

a higher value. The results from this chapter illustrate the fact that as the proportion of 

AMPs in the input dataset (𝛼𝛼) approaches a realistic value for ‘omics scanning (~ 1%), it 

often becomes necessary to choose between precision or recall as it is impossible to 

maintain acceptable values for both (equation 3.4).  

 

Furthermore, I found that AMP predictor performance in the low false positive regime is 

essential, as this regime represents the behaviour of the model at decision thresholds 

most likely to be used for AMP scanning applications. Importantly, this is not entirely 

captured by the common evaluation metrics used. I explicitly showed performance in 

the low false positive regime by plotting true versus false positives over a restricted 

range of false positives. It would be a useful future direction to devise a statistical metric 

to capture this. One metric that could be explored for AMP prediction is the partial AUC, 
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which is the AUC for a specific region of the ROC curve (Dodd and Pepe, 2003). Other, 

balanced, metrics such as MCC go some way to achieving this, however, it is necessary 

to choose a decision threshold at which to evaluate these. For genome scanning the 

number that is most relevant is the expected yield of true positives among the top X 

highest ranked candidate AMPs. In this case the difficulty lies in setting X which 

represents the number of AMPs that is feasible to synthesise and screen for activity. 

Here, I surveyed values of X ranging from 0-500, which I call the false positive regime. 

Future work might consider citing numbers such as Y10, Y100, Y1000 representing the 

expected yield of AMPs where X is 10, 100, and 1000 respectively. 

 

Another thing I observed in this chapter was the prediction result differences between A. 

thaliana and H. sapiens. Overall, AMP predictors appeared to exhibit higher 

performance in A. thaliana compared to H. sapiens. Although this could reflect the 

substantially higher number of AMPs present in A. thaliana (see Table 3.2), there may 

be compositional differences in AMPs between the two contrasting taxa, animals and 

plants, that affect the AMP predictor. This could potentially reflect the composition of the 

AMP databases, which are used as a fundamental data source in the training dataset of 

machine learning AMP models. These AMP databases are taxonomically biased, 

reflected by the majority of known AMPs sourced from certain well-studied taxa, such as 

amphibians (Wang, Li and Wang, 2016). This taxonomic bias is another source of 

compositional bias in the training data which may affect the prediction accuracy. 

However, the contribution of taxonomic bias is more difficult to assess compared to the 

contributions of the other two factors that contribute to compositional bias, i.e., the AMP 

to non-AMP balance and precursor versus mature peptide composition. Investigating 

taxonomic bias is challenging and requires the application of dedicated methods, which 

are addressed in chapter 4. 

 

To adequately assess the performance of an AMP predictor, it should be tested on real 

‘omics datasets. Proteomes are a possible option, as these contain a complete 

collection of predicted proteins potentially present in organisms. Ideally, proteomes 

used as test sets should be high quality and annotated with the full complement of 
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AMPs present in that organism. However, even in well-studied organisms in which a 

large number (~100) of AMPs have been identified (e.g. A. thaliana and H. sapiens), 

this criterion is not met. In fact, for the majority of organisms, including well-studied 

model organisms such as Drosophila melanogaster, substantially fewer AMPs are 

known (~25) than are likely to be present. Subsequently, there are many prospective 

AMPs left undiscovered in most species. Therefore, proteomes for many species are 

likely not adequately annotated, which severely restricts the options currently available 

for AMP testing.  

3.5 Conclusions and Recommendations 

This chapter examined the ability of recently published AMP predictors to predict AMPs 

in proteomes. Most AMP predictors performed poorly in this regard, mostly due to 

biases in the training data. AMP predictor performance can be increased by performing 

model training exclusively on precursor proteins. Furthermore, it was discovered that, 

when using proteome data, the performance of AMP predictors generally fell far short of 

reported performance metrics. To accurately test the performance of a predictor on a 

genome-wide scale, the predictor should consider several aspects. First, the actual true 

proportion of AMPs in a genome is low (~1%). Therefore, performance of AMP 

predictors on imbalanced data should be included. Additionally, metrics to measure the 

performance should be robust to imbalanced data, and also reflect the purpose of the 

task (i.e. to identify correctly classified AMPs). Second, a test set should be included 

which most closely resembles a genome, to simulate the most realistic scenario in 

which to test the predictor. This chapter described issues with the composition of 

training and testing data of AMP predictors. Addressing these issues will improve the 

performance of AMP predictors in real world situations.  
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Chapter 4: When are machine learning AMP predictors better 
than homology for AMP detection in genomes? 
 

4.1 Abstract 

The last decade has seen a proliferation in the number and variety of machine or deep 

learning methods developed for classifying peptides or proteins according to their 

antimicrobial activity. The inherent justification of these methods is that they must offer 

some advantage over homology-based searches which are widely used for the same 

purpose. One potential reason for this is that antimicrobial peptides (AMPs) may exhibit 

some convergence towards common physicochemical properties independent of their 

amino acid sequence, and the other is that they are often under strong positive 

selection, leading to a high sequence diversification rate making sequence similarity 

searches less effective at greater taxonomic distances. However, little effort has been 

made to empirically test these assumed advantages. In this chapter the effectiveness of 

machine learning models and homology-based searches to find AMPs in a variety of 

organisms was compared. A new metric was devised to measure the degree to which 

an organism is represented by AMPs from closely related organisms in an AMP 

database. This metric was used to determine the effect of taxonomic distance on 

performance of both machine learning and homology methods. It was found that while 

the performance of homology-based searches declined significantly with taxonomic 

distance, this was not the case for ampir, a machine learning based AMP predictor. This 

suggests that machine learning models are indeed more effective at finding AMPs in 

taxonomically distant organisms than homology-based searches. This study validates 

the effectiveness of machine learning models to find novel AMPs on a wide taxonomic 

scale.  

4.2 Introduction 

Machine learning is frequently employed as a method to discover novel antimicrobial 

peptides (AMPs). More than 30 machine learning AMP predictors have been developed 
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for this very purpose (Xu et al., 2021). In most papers describing new AMP predictors, 

or in benchmarks across existing predictors, there are no justification statements as to 

why a machine learning method is preferred over homology-based searches, or 

sequence similarity. This is despite the fact that sequence similarity implemented in 

tools like the basic local alignment search tool (BLAST) (Altschul et al., 1990) remains a 

common approach to identifying new AMPs as candidates for experimental verification 

of AMP activity. For example, recent experimentally verified AMPs in a range of animal 

groups were found using the sequence similarity approach, including in an annelid 

(Panteleev et al., 2020), crustacean (Du et al., 2019), gastropod (Hayashida and da 

Silva Junior, 2021), bird (Xiao et al., 2020) and in amphibians (Li et al., 2019; Chai et 

al., 2021; Liscano et al., 2021), arachnids (Li et al., 2021a; He et al., 2021), fish (Dong 

et al., 2021; Shen et al., 2021; Zhuang et al., 2021; Zhang et al., 2022), insects (Lee et 

al., 2020a; Lee et al., 2020b; Lee et al., 2021b; Lee et al., 2021a), and mammals (Li et 

al., 2021b; Peel et al., 2021). 

 

One advantage machine learning methods may have over sequence similarity, or 

homology alone, is that they are more flexible. This is because there are many 

statistical approaches and algorithms, each of which can be optimised for specific use 

cases by selecting and modifying the training databases, as well as via selecting the 

most relevant features. AMP predictors are generally trained on physicochemical and 

compositional properties of proteins, most of which can be calculated directly from the 

amino acid sequence. These features attempt to capture the structure and function of 

the protein and in turn, its properties that reflect antimicrobial activity (Lata, Sharma and 

Raghava, 2007; Lata, Mishra and Raghava, 2010; Thomas et al., 2010; Torrent et al., 

2011; Porto, Pires and Franco, 2012; Meher et al., 2017; Bhadra et al., 2018; Veltri, 

Kamath and Shehu, 2018). The process relies on AMPs having a pattern of 

physicochemical properties that is distinct from non-AMPs, which the algorithm is able 

to use to differentiate between the two different classes. Although in theory it is possible 

to train models using any informative feature, most models so far use a very similar set 

of features. This might reflect constraints arising from limited information that can 

currently be gleaned from the amino acid sequence alone. Another major constraint that 
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limits the effectiveness of the machine learning approach is the availability of high-

quality training data. This lack of high-quality training data results in AMP prediction 

models often using subsets of the same or similar training databases because at the 

present time there are few choices available.  

 

Sequence similarity searches, generally performed with BLAST, compare a query 

sequence to a (potentially very large) database and identify likely homologs on the basis 

of sequence similarity. This approach could be viewed as a very simple form of machine 

learning as it uses a nearest neighbour classifier. However, for the purpose of this 

chapter, BLAST is considered to be distinct from machine learning. Since the BLAST 

approach explicitly captures the order and relative conservation weighting of amino 

acids in the sequence, it might perform better than most machine learning approaches 

which focus on summary statistics that can be derived from the sequence rather than 

the sequence itself. When applying homology searches for AMP prediction, the 

underlying assumption is that since homologous sequences are often also similar in 

structure and function, homology can be used to infer antimicrobial activity. The 

weakness in this approach however, is that it becomes more difficult to do this when the 

sequences being compared are far apart on an evolutionary scale (Pearson, 2013). This 

can be summarised as the two key principles of homology-based functional assignment: 

(a) correctly inferring a common function based on homology, and (b) identifying 

genuine homologues. Both principles break down as taxonomic distance increases. 

This is partly because (principle a) when sequences diverge, they can acquire different 

functions (Sangar et al., 2007). Even in well-studied organisms AMP gene families have 

been shown to rapidly expand which results in greater diversification (Innan and 

Kondrashov, 2010; Lazzaro, Zasloff and Rolff, 2020). 

 

In addition, in the context of finding AMPs, their fast evolutionary rate and small size 

make it difficult to identify sequence homologues (principle b) in all but the most closely 

related organisms (Ohtsuka and Inagaki, 2020). This is because short sequences (like 

AMPs) provide limited information with which to infer homology resulting in poor 

performance of most established methods (Santos-Júnior et al., 2020). Aside from their 
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small size and rapid evolutionary rate, AMPs can also arise via convergent evolution 

(Unckless and Lazzaro, 2016; Lazzaro, Zasloff and Rolff, 2020) which further limits the 

effectiveness of homology-based searches. Evidence for this comes from several 

authors who noted that AMPs have little sequence homology, regardless of their shared 

function, making it difficult to find AMPs using sequence similarity methods (Lata, 

Sharma and Raghava, 2007; Lata, Mishra and Raghava, 2010; Khosravian et al., 2013). 

It has been suggested that this lack of sequence similarity among AMPs could indicate 

AMPs frequently arise via convergent evolution, to optimise their effectiveness against 

local microbes in the environment in which they are created (Hancock and Chapple, 

1999). 

 

A striking feature of the literature on AMP discovery is the general reliance on 

homology-based searches to produce candidates for experimental verification (Du et al., 

2019; Panteleev et al., 2020; Xiao et al., 2020; Chai et al., 2021; Zhang et al., 2022) 

while at the same time machine learning approaches have proliferated (Xu et al., 2021), 

presumably under the assumption that these offer advantages as a replacement for, or 

complement to homology. Despite this, there has been little effort to compare 

homology-based searches to machine learning methods to find AMPs. From the 39 

AMP prediction papers surveyed, only Santos-Júnior et al. (2020) and Wang et al. 

(2011) investigated the effectiveness of both methods. Santos-Júnior et al. (2020) 

benchmarked BLAST against their own machine learning based AMP predictor, Macrel, 

as well two other machine learning based AMP predictors, AMP Scanner (Veltri, 

Kamath and Shehu, 2018) and iAMP-2L (Xiao et al., 2013) using a test set containing 

500 AMPs and 500 non-AMPs which had homologous sequences with a sequence 

identity of 80% or higher removed. They found the effectiveness of BLAST to be similar 

to random, and concluded that, aside from immediate homologs, homology is not 

suitable to classify AMPs. In contrast, Wang et al. (2011) found BLAST to be an 

accurate method for AMP prediction, and even outperformed their machine learning 

method. The methods were tested on two datasets: one containing 2,752 AMPs and 

10,014 non-AMPs, and the other dataset was a subset, where sequences with a 

sequence identity higher than 70% were removed. Wang et al. (2011) stated that even 
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though BLAST had a better overall performance, its performance decreased by 

approximately 10% on the 70% dataset, suggesting that the presence of close 

homologs increased the predictive capacity of BLAST. 

 

As machine learning methods do not solely rely on the principles of homology-based 

functional inference, and target function more directly (via features that reflect this), they 

are less restricted and more likely to be successful at finding novel proteins especially in 

cases of convergent evolution or high taxonomic distance. However, the performance of 

machine learning models is reliant on the training data and at the present time the 

majority of peptides with experimentally verified AMP activity (positive training cases) 

are largely restricted to a narrow range of taxonomic groups such as mammals and 

amphibians (Wang, Li and Wang, 2016). Likewise, homology-based methods are 

impacted by the same issue since these experimentally verified AMPs represent the set 

of query sequences that can be used for search. 

 

Therefore, it is expected to be more difficult to find AMPs in taxa that are distant from 

the taxonomic majority (taxa where the majority of AMPs have been identified) 

irrespective of the method used. Our hypothesis however is that machine learning 

models should outperform sequence similarity searches to find these more distant 

AMPs. To test this, the performance of a machine learning model was compared with 

sequence similarity (BLAST) searches to find AMPs in a range of organisms. 

Importantly, these organisms were selected to capture a range of taxonomic distances 

allowing an assessment of relative degradation in performance along a taxonomic 

distance scale. 

4.3 Methods 

All analyses were completed in R version 4.1.2 (R Core Team, 2021), unless stated 

otherwise, using the RStudio integrated development environment, version 

2022.02.0+443 (RStudio Team, 2021) and the tidyverse R package, version 1.3.1 

(Wickham et al., 2019). 
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4.3.1 Construction of AMP databases 
 
The UniProt database (UniProt Consortium, 2021) (accessed 07 July 2021) was used 

as the fundamental source for the creation of the different databases. The UniProt AMP 

database was created by selecting all proteins that contained the UniProt keyword 

“Antimicrobial [KW-0929]” which resulted in 45,497 AMPs. The Swiss-Prot AMP 

database was a subset of the UniProt database, which contained all reviewed proteins 

annotated with the “Antimicrobial” keyword, 3,320 AMPs. The final AMP database was 

more stringent, and it was created using a similar approach to how the positive dataset 

for ampir was created (see chapter 2.3.1): the UniProt database was used as a starting 

point and all reviewed AMPs from UniProt and the unreviewed AMPs (found via the 

“Antimicrobial” keyword), providing the unreviewed AMPs overlapped with the APD3 

(Wang, Li and Wang, 2016), DRAMP (Kang et al., 2019) or dbAMP (Jhong et al., 2019) 

specialised AMP databases (accessed 09 April 2021), which resulted in a total of 3,412 

AMPs. This database is henceforth referred to as the AMP database.  

 

4.3.2 Organism selection 
 
Multiple factors were considered in the selection of the organisms. The first factor was 

that organisms should span a wide taxonomic range. The second factor was that 

organisms should have enough known AMPs to allow calculation of an empirical false 

discovery rate. A threshold of 10 AMPs was set for this criterion. The final factor was 

that organisms should have a designated reference proteome within UniProt 

(https://www.uniprot.org/proteomes). Therefore, the organism which had the most AMPs 

within each taxonomic order was considered, providing the organism had more than 10 

AMPs and a proteome. The predominant phyla used were Chordata, Arthropoda and 

Streptophyta, as these were the only phyla that contained multiple organisms with more 

than 10 AMPs and a proteome. To provide a most distant point in the wide taxonomic 

range, the bacterium with the most known AMPs was also included. The reference 

proteomes for the selected organisms were obtained from UniProt proteomes 

(accessed August 2021). The proteomes were downloaded with one protein sequence 
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per gene to remove potential duplicate protein sequences. See Figure 4.1 for a 

simplified representation of the construction of AMP databases and organism selection. 

 

 
Figure 4.1: Simplified diagram of database construction and organism selection. 

 

4.3.3 Test sets creation 
 
The proteomes for the chosen organisms were used as test sets. However, there are 

likely many uncharacterised AMPs in the proteomes, especially for organisms with less 

complete AMP coverage. A higher false negative rate in these organisms is therefore 

expected. Unfortunately this remains an unsolved problem in this field. However, 

proteomes reflect a real use scenario for AMP discovery finding methods, which is why 

they were used as test sets in this study. The proteins in the proteomes were labelled 

as an AMP if these proteins overlapped with the AMP database. Additionally, the 

mature AMPs that were present in the AMP database for each organism, were matched 

to the organism’s respective proteome (which mostly contains precursor proteins) and 

manually annotated as AMP. This AMP labelling method was developed to reduce the 

chance of possible false positives, where AMPs may have been annotated as an AMP 

by the UniProt keyword “Antimicrobial [KW-0929]”, but where there was no experimental 

evidence for this protein to contain antimicrobial activity.  
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4.3.4 Machine learning model construction and BLAST searches 
 
The aim was to compare the AMP classification performance of machine learning 

models versus homology. These two methods were implemented using custom training 

and test sets for each selected organism, designed to simulate a situation where a new 

organism was sequenced, for which the AMP complement was unknown. To construct 

an AMP machine learning model, a training dataset was constructed for each selected 

organism which contained the AMPs in the AMP database as a positive dataset, and 

the Swiss-Prot protein sequences not annotated as “Antimicrobial” as a negative 

dataset. To avoid bias, the given organism was excluded for both the positive and 

negative datasets, prior to construction. As the objective was to discover AMPs based 

on their full-length sequence (rather than the mature peptide), the same approach as 

the R package ampir (Fingerhut et al., 2020) was used to create its ‘precursor’ model. 

This approach is designed to remove mature peptide entries from the training database 

as was implemented as outlined in chapter 2.3.1.2. This resulted in a training pool of 

1,635 AMPs (positive set) and 250,897 non-AMPs (negative set). The final positive and 

negative dataset was then constructed for each organism by first removing sequences 

of the target organism from both sets. Finally, the negative dataset was randomly 

subsampled so that it contained 10 times the number of sequences present in the 

positive dataset. A support vector machine with radial kernel (rSVM) was used as a 

training algorithm to create each machine learning model with the R package caret, 

version 6.0.88 (Kuhn, 2019) in R version 3.6.1. Data were centred and scaled as a 

preprocessing method prior to training. The training details were as follows: class 

weights were used to prevent the major class being overemphasised, model 

hyperparameters (C, sigma) were tuned using a grid search of values and best values 

were determined by 10-fold cross validation, class probabilities were used to measure 

performance, optimised with the Kappa metric. The resulting final model, for each given 

organism, was used to predict AMPs in the given organism’s respective proteome with 

ampir, version 1.1.0. 

 

To find AMPs based on sequence similarity, blastp, version 2.11.0, from BLAST+ was 

used (Camacho et al., 2009). Similar to the machine learning method, a different query 
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dataset was created for each organism which contained all AMPs of the AMP database, 

excluding the given organism. Thus the query set for this blastp analyses was identical 

to the positive training set used in the machine learning analyses. This AMP query 

dataset was used to search a local BLAST database, constructed from the complete 

proteome of the given organism. Thus the search database for blastp analyses was 

equivalent to the set of proteins used as input to the machine learning analyses. The 

expectation (E) value threshold was left to the default value of 10 so that only very poor 

matches were removed. This resulted in raw outputs that could later be filtered based 

on bit-score to analyse the performance of the model at different thresholds (see 

below). Output was saved in a tabular format, retaining the top five matches per 

sequence.  

 

To make both the machine learning and BLAST methods directly comparable, the 

results for these methods were matched back to the proteomes of each organism to 

create a table with the following information for each entry in the proteome: an AMP 

probability prediction score, a bit-score value, and antimicrobial status (AMP or non-

AMP). The bit-score was used instead of the E-value as a statistical measure of 

sequence similarity because it is not dependent on database size (Xiong, 2006). For the 

antimicrobial status column, an entry was considered to be a true AMP if it was also 

present in the AMP database (see the previous data selection section for details). 

These labels and AMP scores obtained from the machine learning and BLAST methods 

were used to construct precision-recall (PR) curves as a method to compare the two 

AMP finding methods. The area under the PR curves (AUPRC) values were calculated 

as a summary performance metric using the precrec, version 0.12.7, R package (Saito 

and Rehmsmeier, 2017). 

 

To test the effectiveness of both AMP finding methods as a function of taxonomic 

distance, a taxonomic representation score (see section 4.3.5) was calculated for each 

organism and this was plotted against the AUPRC values for each method. A 

Spearman’s rank order correlation test was used to test for a significant relationship 

between taxonomic representation score and AUPRC. 
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4.3.5 Taxonomic representation score 
 
Part of the aim of this study was to observe how the performance of AMP finding 

methods changes with taxonomic distance. To achieve this aim, a score was devised 

that represents the evolutionary distance between AMPs in the AMP database and 

AMPs in a given target organism. The initial step was to calculate the taxonomic 

distance between all pairs of organisms present in the AMP database. This was 

achieved by extracting the names of all 788 organisms that made up the 3,304 AMPs in 

the AMP database which were then uploaded to the TimeTree server (accessed August 

2021), http://www.timetree.org/, (Kumar et al., 2017b), to obtain molecular time 

estimates of divergence. Viruses and species that did not contain a binomial name were 

excluded as these were not recognised by TimeTree. In addition, not all species were 

represented in the TimeTree database and some species were known under a different 

name, resulting in 221 unresolved names. The resulting timetree was exported as a 

Newick file and read back into R using the ape, version 5.6.1, R package (Paradis and 

Schliep, 2019). Out of the 221 unresolved names, 81 were replaced by TimeTree to a 

different name. To match the names back to the AMP database, these organisms were 

identified and renamed back to their original name. The corrected names were exported 

back to tree format using the treeio, version 1.16.2, R package (Wang et al., 2020b). 

The remaining 140 organisms were not found by TimeTree and were likely not present 

in their database. These organisms primarily included anurans, arachnids and 

hymenopterans. The cophenetic pairwise distances, which in this context are equal to 

double the time to the most recent common ancestor, between organisms were then 

calculated with the ape package and matched back to the AMPs in the AMP database 

via the known relationship between each AMP and its organism of origin. 

 

The second step was to use the distances to construct a representation score for each 

target organism, to determine how closely related the AMPs in the AMP database are to 

that organism. To do this, the distances needed to be converted into a score that 

decreases as a function of distance. Initially the inverse distance was used (1/distance), 

however, this has the property that it goes to infinity at a small distance value, which 

resulted in distorted high scores for well represented taxa. It was expected that there 
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should be some taxonomic distance threshold within which two homologous AMP 

sequences will be highly likely to retain the same or similar function (i.e. remain an 

AMP). The goal was to create a score that reflects the number of AMPs in the database 

within this distance for a target organism. A sigmoid curve is a good choice for this 

because it is relatively flat with a value close to 1 out to a point, before smoothly 

transitioning to 0. Under this system the dominant contribution to the score for most 

organisms will be AMPs that are identified from organisms that are taxonomically close 

to it. One difficulty however, is the choice of taxonomic distance at which to set the 

threshold, which appears as the term  in Equation 4.1. 

 

 
Equation 4.1: The taxonomic representation score of AMPs ( ) based on a sigmoid 
function ( ) where  is a parameter controlling the shape of a sigmoid curve that 
determines the relative weighting of AMPs given their taxonomic distance from the 
target organism, ,  is the number of known AMPs of species , which have the same 
taxonomic distance, , to the target organism. 
 
The units of  are therefore the same as taxonomic distance which essentially makes it 

a cut-off divergence time point where AMPs might become more findable by homology 

and potentially more functionally similar. There is no completely objective way to choose 

 as it depends on the target organisms and organisms present within the AMP 

database. Therefore, all the results shown should be interpreted under the clear 

understanding that these are valid for a particular value of .  

 

To choose an appropriate value for , the relationship between taxonomic distance and 

AMP database composition was visualised in several ways. First the distribution of 

taxonomic distances of the selected organisms were examined to determine how they 

might contribute to each other’s scores for various potential values of . Next, the effect 

of different values of  on the taxonomic representation scores of the selected 

organisms was examined to ensure differentiation between organisms could be 
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observed. This detection of differentiation between organisms was important as the goal 

was to highlight the differences between machine learning and homology-based AMP 

finding methods. The chosen value of  was then used to calculate the taxonomic 

representation score of the selected organisms.  

 

To examine how both the chosen value of , and the composition of the AMP database 

affect the taxonomic representation score, the AMP contributions of different species to 

the taxonomic representation score were investigated. First the top two contributing 

species to all selected organisms were examined for a broad view. Second, for a more 

detailed view, the top 10 contributing mammals to the taxonomic representation score of 

the mammals were selected. The phylogenetic relationships among these selected 

organisms were then obtained from TimeTree, exported as a Newick file and visualised 

and annotated with the ggtree, version 3.0.4, (Yu et al., 2016) R package.  

 

4.3.5.1 Explainer: calculation of the taxonomic representation score 
 
The taxonomic score reflects how well a training dataset of AMPs in different organisms 

represent the target organism of interest. Organisms that have a high taxonomic 

representation score, will be closely related (taxonomically) to organisms that contribute 

large numbers of AMPs to the database. In contrast, organisms that have a low 

taxonomic representation score, are distantly related to organisms that contribute the 

bulk of AMPs to the AMP database. 

 

To obtain the taxonomic representation score for a target organism (see Figure 4.2), 

first a phylogenetic tree (Figure 4.2B) is used to calculate pairwise distances between 

all organisms, for every AMP present in an AMP database, excluding AMPs belonging 

to the target organism. These distances are then transformed to scores, using a 

mathematical function of the distance values (Figure 4.2A). These scores are therefore 

a function of the pairwise distance and are subsequently dependent on the pairwise 

distance values. This dependency is illustrated in Figure 4.2C, which shows the 

distance values  plotted against a function of distance, , termed the score, using a 
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sigmoid curve. This function, , (see Equation 4.1), which has a shape determined by 

the parameter , was selected so high scores could be obtained for closely related 

organisms, i.e. when the pairwise distance is low, and low scores could be obtained for 

distantly related organisms, i.e. when the pairwise distance is high. This is important 

because when organisms are closely related, the possibility of having shared AMPs due 

to homology is very high. However, it is likely that this possibility of shared AMPs 

decreases with taxonomic distance, resulting in potentially more divergent AMPs in 

taxonomically distant organisms. The function  therefore, is an attempt to represent 

this. Finally, all the scores are added together into a sum value which is the taxonomic 

representation score for the target organism, .  

 
Figure 4.2: Simplified diagram illustrating how the taxonomic representation score was 
calculated using example data. The target organism is the organism for which the 
taxonomic representation score is being calculated. In this diagram, platypus is used as 
an example target organism. A shows an example dataset containing four columns. The 
Organism and AMPs columns contain all of the organisms and AMPs in the training 
data, except for the target organism and any AMP sequences associated with the target 
organism. The Distance column contains the pairwise, or taxonomic, distance between 
that organism and the target organism. These distance values are calculated from a 
phylogenetic tree, as illustrated in B. The Scores column contains scores which are 
calculated as a function of the  values, illustrated in C. In this mathematical function, 

 (see Equation 4.1),  controls the shape of the sigmoid curve that determines the 
relative weighting of AMPs given their taxonomic distance, , from the target organism. 
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Finally, the calculated scores will be summarised into a single value which will be the 
taxonomic representation score for the target organism, .  

4.4 Results  
4.4.1 Organism selection 
 
Within the AMP database, the eukaryotic phyla that contained the most AMPs were 

Chordata, Arthropoda and Streptophyta with 1,747, 685 and 556 AMPs, respectively 

(see Figure 4.3). The bacterium with the most AMPs was Escherichia coli with 29 

AMPs. Within Chordata, represented with 1,747 AMPs, the class Amphibia appears to 

be the best studied for AMPs as this class contains the most known AMPs (825 AMPs), 

followed by the class Mammalia with 638 AMPs. Of these 825 amphibian AMPs, 824 

correspond to a single taxonomic order, Anura. The anuran with the most AMPs was 

Bombina maxima, which has 50 known AMPs (see Figure 4.3). However, B. maxima did 

not have a reference proteome listed in UniProt and could therefore not be included. As 

anurans are so well represented with AMPs, an alternative organism to B. maxima was 

selected. The organism that was chosen contained the most AMPs in the anuran order 

and also had an available proteome, which was Lithobates catesbeianus (previously 

known as Rana catesbeiana) with 13 AMPs. The remaining organisms which had the 

most AMPs in their respective orders were the stolidobranchian Styela clava (tunicate), 

the squamate Crotalus durissus terrificus (snake) in Chordata and the aranea 

Lachesana tarabaevi (spider), the xiphosura Tachypleus tridentatus (horseshoe crab) 

and the scorpion Chaerilus tricostatus in Arthropoda. However, none of these animals 

had a reference proteome in UniProt. Unfortunately there were no alternatives for these 

organisms, i.e. there were no other organisms in their respective orders that had more 

than 10 AMPs and a proteome, and these taxa could therefore not be included. 
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Figure 4.3: The number of described antimicrobial peptides (AMPs) in organisms that 
had the most number of AMPs in their respective taxonomic orders (marked in bold) 
from the eukaryotic phyla A) Streptophyta, B) Chordata and C) Arthropoda within the 
AMP database. Only organisms that had more than 10 described AMPs are shown. The 
organisms that were selected for further analysis included all the organisms that had a 
proteome (marked in purple). 

 

The final organism selection for further analysis included six mammals: Mus musculus 

(mouse), Homo sapiens (human), Bos taurus (cow), Oryctolagus cuniculus (rabbit), 

Ornithorhynchus anatinus (platypus), the bird Gallus gallus, the frog Lithobates 

catesbeianus, the fish Oncorhynchus mykiss, the insects Drosophila melanogaster (fruit 

fly), Bombyx mori (moth), the shrimp Penaeus vannamei, the plant Arabidopsis thaliana 

and the bacteria Escherichia coli (see Table 4.1). These 13 organisms had the greatest 

number of AMPs within the AMP database per their respective taxonomic order, and 

also had a proteome. Generally there was high overlap of AMPs between the AMP 

database and the AMPs present in the proteomes, found via the UniProt “Antimicrobial” 

keyword. However, most organisms, i.e., M. musculus, H. sapiens, B. taurus, O. 

cuniculus, O. anatinus, G. gallus, O. mykiss, D. melanogaster and B. mori, contained 

more AMPs in their proteomes than in the AMP database. This likely reflects inclusion 
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of some unverified AMPs in the proteomes that are not present in Swiss-Prot and 

therefore not in the AMP database. In contrast, the organisms P. vannamei, L. 

catesbeianus and E. coli all include more AMPs in the AMP database than in their 

respective proteomes. In addition, in some organisms the overlap of AMPs between the 

AMP database and their respective proteomes was extremely low or lacking (e.g. for O. 

mykiss and L. catesbeianus). Initially it was assumed that this could reflect that the 

proteomes lack the proper functional annotation for these AMPs, i.e. AMPs are 

erroneously annotated as non-AMPs. However, this was the case for only a few AMPs 

(see Table S4.1). The remaining AMPs, which were present in the AMP database but 

which were not found within the proteomes of each respective organism, could be 

absent because these AMPs potentially correspond to genes not yet annotated, i.e., 

those for which a sequence is known but the location in the genome is not. 

Furthermore, the E. coli proteome used in this chapter corresponded to the K-12 strain, 

which may lack AMPs that are present in the AMP database which could reflect other E. 

coli strains. 

The proteomes of the organisms O. mykiss, P. vannamei, L. catesbeianus and E. coli K-

12 contained fewer than 10 verified AMPs, the AMPs that overlap with the AMP 

database. To ensure that sufficient verified AMPs were available for calculating 

performance metrics, these organisms were excluded from subsequent analysis. 

 

Table 4.1: Organisms which contain a reference proteome and have the most AMPs 
according to the AMP database. The number of AMPs for each organism are shown for: 
the AMP database, the organisms’ respective proteome, the AMPs in their respective 
proteome which overlaps with the AMP database. 

Organism 
Name 

Reference 
proteome ID 

AMPs in 
AMP  

database 

AMPs in 
proteome 

AMPs 
overlap 

Gene 
count 

Mus musculus UP000000589 104 131 99 22,001 

Homo sapiens  UP000005640 96 115 95 20,600 



 

 107 

Bos taurus  UP000009136 58 116 54 23,847 

Oryctolagus 

cuniculus 

UP000001811 17 83 17 21,193 

Ornithorhynchu

s anatinus 

UP000002279 11 27 11 17,390 

Gallus gallus UP000000539 25 29 25 18,113 

Oncorhynchus 

mykiss 

UP000193380 12 15 0 46,405 

Drosophila 

melanogaster  

UP000000803 23 30 23 13,821 

Penaeus 

vannamei  

UP000283509 18 3 0 25,399 

Bombyx mori  UP000005204 15 25 13 14,773 

Arabidopsis 

thaliana 

UP000006548 294 294 294 27,468 

Lithobates 

catesbeianus 

UP000228934 13 11 0 28,218 

Escherichia 

coli K-12 

UP000000625 29 4 4 4,392 

 

4.4.2 Taxonomic representation score 
 
The distribution of taxonomic distances of the selected organisms and their relative 

contribution to AMP databases is shown in Figure 4.4. The closest distances of around 

100 million years are found between the majority of mammalian species and together 

these also comprise a large fraction of AMPs. Within the mammals, the platypus (O. 
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anatinus) is furthest away at a distance of approximately 300 million years. The next 

furthest are the birds (represented by chicken, G. gallus) at around 600 million years, 

followed by the insects D. melanogaster and B. mori at around 1600 million years, with 

the plant A. thaliana being furthest away at 3000 million years. Note that since these 

times represent the total branch length between a pair of organisms, they are equal to 

double the estimated divergence times.  

 
Figure 4.4: Histogram of pairwise distance between each faceted organism and other 
selected organisms present in the AMP dataset. 

 

To determine an appropriate value of the parameter  in equation 4.1 different values 

were examined to establish the effect on distribution of taxonomic representation 

scores. The shape of the sigmoid curve (which determines the distance scores for 

individual AMPs) across a range of theoretical pairwise distances is shown for varying 

values of  (5, 20, 30, 50, 100 and 1000) in Figure 4.5A. This shows that as  increases 

the transition point between high and low scores occurs for larger divergence times. 
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Figure 4.5B shows the effect the various values of  have on the distribution of 

taxonomic representation scores across the selected organisms in this study. It is 

apparent that both very low (5) and high (100, 1000) values of  are not suitable for this 

selection of organisms. At low  the taxonomic representation score for most of the 

organisms is close to 0. This happens because there are too few AMPs in the database 

from species with taxonomic distances within the range (~30 million years) at which the 

score drops to 0 for this value of . In contrast, the high  values cause the taxonomic 

representation score of the organisms to become too similar, as the taxonomic distance 

range of the organisms is likely narrower than the distance ranges covered by the 

higher  values. The intermediate  value of 30 appears to be an appropriate option as it 

appears to show the most differentiation between organisms without setting their 

taxonomic representation score too low or too high. Therefore, the value 30 for  was 

chosen as the final parameter to calculate the taxonomic representation scores for the 

organism selection used in the remainder of this study.  
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Figure 4.5: A) Theoretical sigmoid curves for various values of  B) The effect of 
different values of  on the distribution of taxonomic representation scores across the 
selected organisms. 

 

The taxonomic representation score reflects how well the AMP database represents this 

organism. To understand how the composition of the AMP database affects the 

taxonomic representation score, the contributions of AMPs and organisms were 

investigated (see Figure 4.6). One of the goals was to determine the effective diversity 

of organisms contributing to the score. For example, how much of the score comes from 

a handful of closely related organisms that might possibly have high weighting and 

many AMPs, versus how much of the score comes from many small contributions (few 

AMPs or distant relationships). The bars in Figure 4.6 corresponding to each selected 

organism are broken down to show the contribution of AMPs of other organisms. A 
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single coloured bar generally reflects the contribution of a single organism, with the 

exception to the black “Other” contributions bar, which consist of AMP contributions 

made by numerous other organisms. The length of the bars indicates how much that 

organism contributes to the taxonomic representation score. H. sapiens and M. 

musculus have the highest score indicating these are best represented in the AMP 

database. In contrast, O. anatinus and B. mori have the lowest scores and 

representation in the AMP database. Overall, the largest contributions to each organism 

appear to come from species that are closely related to that organism. The selected 

organisms (shown on the y axis) do not appear to contribute much to each other, with 

the exception of M. musculus, which can be observed to contribute AMPs to O. 

cuniculus and O. anatinus. 

 

 
Figure 4.6: The AMP contributions of different species to the taxonomic representation 
score of the selected organisms. Only the two species with the largest contributions are 
shown. The contributions of the remaining species were amalgamated into the "Other" 
category. Ornithorhynchus anatinus is displayed as a zoomed in inset plot near the 
bottom right of the main plot.  
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The black, “Other” sections in the bars in Figure 4.6 typically comprise a large 

proportion of the taxonomic representation score. This is likely due to the fact that only 

the top two species with the largest contributions were shown, and the contributions of 

the remaining species were combined into the “Other” category. The mammals in 

particular appear to contain large “Other” sections. To unpack the contributions made by 

organisms within the “Other” contributions, a plot was constructed to show the top 10 

contributions to the taxonomic representation scores of the mammals (see Figure 4.7).  

 

Overall Figure 4.7 indicates that the taxonomic representation score for an organism is 

derived largely from closely related organisms, and to a much lesser extent, to more 

distantly related organisms. The makeup of the score depends on the position of the 

organism in the phylogenetic tree. For example, O. anatinus (a monotreme) has the 

lowest taxonomic representation score likely because it has the fewest number of 

known AMPs but also because it is most taxonomically distant to the other mammals. 

This distance becomes apparent when examining the contributions of other mammals to 

O. anatinus’ taxonomic distance score. Most mammals contribute very little, because 

their AMPs are weighted very low due to the high taxonomic distance. In contrast, the 

largest contribution, over 60%, comes from the short-beaked echidna, Tachyglossus 

aculeatus, as this animal is a monotreme and is therefore most closely related to O. 

anatinus. Even though T. aculeatus has far fewer known AMPs compared to the other 

contributing mammals, its AMPs are heavily weighted due to the close taxonomic 

relationship to O. anatinus and subsequently greatly influences its taxonomic 

representation score. Similarly, R. norvegicus contributes the most, almost 60%, to M. 

musculus’ score due to their close taxonomic relationship. In contrast, R. norvegicus 

contributes much less to organisms that are taxonomically further away, e.g. R. 

norvegicus contributes only about 3% to B. taurus. Organism contributions therefore 

vary depending on the taxonomic relationship and the total number of AMPs 

contributed. 

 

In contrast to O. anatinus and M. musculus, which both have a skewed contribution 

distribution driven by the contribution of a single organism, H. sapiens and B. taurus 
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contain a more even distribution of organisms that contribute to their taxonomic 

representation scores. This is likely because, as can be observed in Figure 4.7A, their 

respective taxonomic orders are better represented, i.e. their orders contain more 

contributing species, compared to the monotreme and rodent orders. This indicates that 

additional species and AMPs could improve the taxonomic representation score, 

especially for organisms that are more taxonomically isolated. 

 

 
Figure 4.7: A) A phylogenetic tree from the five mammals present in the selected 
organisms (Homo sapiens, Mus musculus, Oryctolagus cuniculus, Bos taurus and 
Ornithorhynchus anatinus, marked in bold), and the mammal species that contribute 
most to the taxonomic representation score of these mammals. The respective 
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taxonomic orders of the mammals are marked in dark blue bold. B) The contributions of 
the different mammal species to the taxonomic representation score of the mammals in 
the selected organisms. Only the 10 species with the largest contributions are shown. 

 

4.4.3 Performance of AMP finding methods on selected organisms 
 
BLAST performance was significantly positively correlated with the taxonomic 
representation score (see Figure 4.8) according to a Spearman’s rank correlation test 
(p-value = 0.02, Spearman’s rank correlation coefficient, ρ = 0.78). In contrast, no such 
correlation was found for the machine learning predictor (ampir) (p-value = 0.74, ρ = 
0.13). Machine learning distinctly outperformed BLAST for three organisms with a low 
taxonomic representation score, i.e. O. anatinus, G. gallus and A. thaliana. Although 
BLAST performed better than machine learning for two different organisms with low 
taxonomic representation scores, B. mori and D. melanogaster, the differences between 
methods were relatively small in these cases. The two species with the largest 
taxonomic representation score are M. musculus and H. sapiens. The analyses were 
repeated excluding M. musculus and H. sapiens which resulted in BLAST: p = 0.24, ρ = 
0.54, and machine learning: 0.56 and ρ = -0.29. Similar to the initial results, BLAST still 
contains a higher correlation coefficient with taxonomic distance compared to machine 
learning, however, without statistical significance. 
 

 

 
Figure 4.8: The performance of the BLAST (black solid line) and machine learning (ML) 
(black dashed line) methods to find AMPs in the proteomes of nine organisms. 
Performance is measured in the Area under the Precision-Recall curve (AUPRC). AMPs 
were labelled as AMPs if annotated with the UniProt "Antimicrobial" keyword and if 
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these AMPs overlapped with the AMP database generated from Swiss-Prot and the 
APD, DRAMP or dbAMP databases. The nine organisms from left to right are: 
Ornithorhynchus anatinus, Bombyx mori, Gallus gallus, Drosophila melanogaster, 
Arabidopsis thaliana, Oryctolagus cuniculus, Bos taurus, Mus musculus and Homo 
sapiens. 

 

To test whether this overall result (BLAST performance depends on taxonomic distance 

while machine learning does not) is robust to the choice of , alternative results across a 

range of  are shown in Table 4.2. This showed that machine learning performance was 

not significantly correlated to taxonomic representation for any value of  and always 

had lower correlation coefficients compared to BLAST. This illustrates the robustness of 

the findings to the variations in , to the extent that it was possible to test this within the 

constraints of the dataset (same set of organisms for all tests).  

 

Table 4.2: The effect of different sigmoid-values ( ) on the statistical performance of 
AMP finding methods BLAST and machine learning (ML) using a Spearman’s rank 
order correlation test. ρ: Spearman’s rank correlation coefficient. 

-value Method p-value ρ Test 
statistic 

5 ML 0.55 0.23 92 

BLAST 0.06 0.67 40 

20 ML 0.39 0.33 80 

BLAST 0.02 0.77 28 

30 

 

ML 0.74 0.13 104 

BLAST 0.02 0.78 26 

50 

  

ML 1.00 0.00 120 

BLAST 0.10 0.60 48 
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100 ML 0.84 -0.08 130 

BLAST 0.44 0.30 84 

1000 

  

ML 0.84 -0.08 130 

BLAST 0.44 0.30 84 

 

4.4 Discussion 

There is an implicit assumption that machine learning models offer an advantage in 

AMP prediction over conventional BLAST searches as evidenced by the numerous 

AMP machine learning models being developed. However, in the literature surveyed, 

this presumed advantage has not been empirically tested. Given that BLAST remains 

one of the most frequently used tools to discover novel AMPs it is important to test its 

relative efficacy compared with the alternative machine-learning-based approach.  

 

This study compared the performance of machine learning models and BLAST 

searches to find AMPs in the proteomes of organisms that cover a wide taxonomic 

range (see Figure 4.8). The general findings were that BLAST was significantly better at 

finding AMPs in close taxonomic distances compared to AMPs that were further away. 

However, no such statistical difference was found in the performance of machine 

learning models. This indicates that AMP machine learning models are less dependent 

on taxonomic distance than homology and may therefore be more effective at finding 

novel AMPs in taxonomically distant organisms. Although this was an expected result 

based on the premise that machine learning models are less reliant on homology, it was 

not guaranteed since machine learning models do depend on the composition of their 

training data, and this is heavily taxonomically biased. It is the first empirical 

demonstration of the intuition that machine learning models might degrade less quickly 

at larger taxonomic distances because they are supposed to be looking for 

physicochemical properties that are common across the tree of life. In contrast, since 
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BLAST works by identifying similar sequences it is expected that its performance for 

AMP classification would be heavily dependent on taxonomic distance, and specifically 

the availability of AMPs from closely related species within its database.  

 

This conforms largely to how BLAST is used to discover novel AMPs; primarily by using 

known AMPs to find similar novel AMPs in closely related species (Panteleev et al., 

2020; Xiao et al., 2020; Chen et al., 2021; Peel et al., 2021; Zhuang et al., 2021). These 

studies predominantly use species from taxa for which multiple AMPs are known (e.g. 

amphibians, mammals and fish). In contrast, studies which use species from less 

represented taxa (e.g. insects and mollusks) appear to favour searching AMP 

databases for homologous AMPs (Duwadi et al., 2018; Hayashida and da Silva Junior, 

2021; Wang et al., 2021). Studies which implemented a machine learning approach to 

discover novel AMPs similarly used organisms from less represented taxa e.g. insects 

(Lee et al., 2020a; Lee et al., 2020b; Lee et al., 2021b) and a crustacea (Yang et al., 

2018). These studies overall found more AMPs compared to the studies which used 

BLAST, which subsequently led to a higher number of synthesised and verified AMPs. 

Interestingly, the aforementioned studies which used machine learning AMP predictors, 

all used fairly old predictors, the most common being CAMP (Thomas et al., 2010). It is 

possible that the prediction results obtained in these studies could have been improved 

upon via the use of more modern and better optimised machine learning AMP 

predictors. Especially considering it is becoming more common to predict AMPs from a 

genome or transcriptome, which require genome-wide optimised machine learning 

models (see chapter 2 and 3).  

 

The results confirm the intuition that machine learning should work best at large 

taxonomic distances, presumably due to its focus on physicochemical properties rather 

than homology, whereas BLAST may be most effective for identifying AMPs in very 

closely related species (Lata, Sharma and Raghava, 2007; Lata, Mishra and Raghava, 

2010; Khosravian et al., 2013; Ohtsuka and Inagaki, 2020; Santos-Júnior et al., 2020). 

Nevertheless, the limited testing data and highly variable coverage of known AMPs 

across species mean that these results should be interpreted with caution. Specific 
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issues of concern are (1) the fact that many AMPs remain undiscovered which is likely 

to have inflated false negative results for some species (especially those with less 

complete AMP coverage) in this study, (2) the limited number of species that could be 

included resulting in low statistical power for the analysis presented in Figure 4.8, and 

(3) the possibility that some AMPs in our truth set may themselves have been annotated 

via some form of homology search leading to a degree of circularity in the findings. 

Furthermore, the removal of M. musculus and H. sapiens removed the statistical 

significance result for BLAST. This is likely due to the fact that these two organisms 

contain the highest taxonomic representation scores. However, it must also be noted 

that there is a large gap between the taxonomic representation scores of M. musculus 

and H. sapiens (Θ > 94) and the remaining organisms (Θ < 62). The current analysis 

represents the best effort that can be made given the current state of AMP databases, 

however, it is hoped that as these databases are improved the results can be verified 

and improved upon.  

 

One area where greater precision would be of value is in determining the threshold 

taxonomic distance at which the performance of BLAST degrades below that of 

machine learning models to find AMPs. The results of this study were insufficiently 

precise for this purpose, and therefore only a general statement can be made over the 

extremes of life’s taxonomic distance: in the extreme of short taxonomic distance, 

BLAST will work very well, and potentially better than machine learning, and in the 

extreme of long taxonomic distance, BLAST is unlikely to work well at all.  

 

The measured performance of AMP finding methods was found to be highly variable, 

sometimes between organisms within relatively close taxonomic distances. This could 

be due to peculiarities in the AMP repertoires of specific organisms. For example, 

BLAST performed particularly poorly on the proteome of O. anatinus, compared to its 

performance on the other mammals (Figure 4.8). In this species, one AMP family, the 

cathelicidin family, has diversified compared to eutherian mammals (Warren et al., 

2008), and this may have contributed to the poor performance of BLAST to identify 

AMPs in O. anatinus. This indicates that organisms contain unique AMPs that even in 
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closely related organisms, may be difficult to predict, particularly with homology-based 

methods. 

 

These results suggest that machine learning is a promising method to discover novel 

AMPs, especially in organisms that are taxonomically isolated and are not well 

represented in the AMP databases. Furthermore, machine learning methods could offer 

advantages to discover novel AMP less similar to known AMPs in closely related 

taxonomic groups. Although both homology-based methods and machine learning 

methods are reliant on the known AMPs present in the AMP databases, machine 

learning appears to be more robust as it is not solely dependent on sequence similarity. 

Nevertheless, homology-based methods are adept at finding closely related AMPs. 

Therefore, a combination of homology and machine learning methods would likely result 

in the highest degree of AMP prediction coverage. It must be noted that the machine 

learning results were obtained by using specified methods designed for the machine 

learning predictor ampir, to optimise AMP prediction on a genome-wide scale. This 

method was used to most accurately predict AMPs in proteomes. Different AMP 

predictors, which do not prioritise genome-wide AMP discovery and which may use 

different test sets (i.e. not proteomes), may obtain varying results. 

 

One of the challenges of this study was choosing a suitable value for the parameter, , 

used in the calculation of the taxonomic representation score. In choosing this value it 

was important to keep in mind the taxonomic distance scale, as this is directly related to 

the value of , i.e. larger sigmoid-values cover larger taxonomic distances (see Figure 

4.5A). While it was clear that extreme sigmoid-values, i.e. either very low or high, were 

inappropriate, it was challenging to choose from among the intermediate  values. 

However, the final chosen value of  (30) appeared most appropriate as this value 

caused the taxonomic representation score to show clear differentiation between 

organisms. This value simultaneously minimised extreme values of the taxonomic 

representation score (i.e. where taxonomically distant organisms resulted in a 

taxonomic representation score that was close to 0, or where the scores of closely 

related organisms became too similar). The robustness of this finding in the variations of 
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 was demonstrated in Table 4.2, where the correlation pattern became clearer with 

mid-range  values. Finally, the differentiation between organisms with the chosen value 

of  30 ultimately highlighted the differences between machine learning and homology, 

which was the goal of this study.  

4.5 Conclusion 

This study examined the performance of machine learning models and homology-based 

searches to discover AMPs in the proteomes of organisms across a wide taxonomic 

scale. A novel taxonomic metric, the taxonomic representation score, was employed to 

provide a score on how well the AMPs in an organism are represented in a database 

consisting of currently known AMPs. It was found that only the homology-based 

searches method was correlated with the taxonomic representation score, suggesting 

that homology-based methods to find AMPs are only suitable for organisms for which 

many closely related AMPs are known. No such restriction was found for the machine 

learning method, indicating that machine learning models are a useful tool for novel 

AMP discovery. This study provides important implications for the AMP discovery field 

as it highlights limitations and appropriateness of AMP prediction methods available for 

AMP discovery. 
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Chapter 5: General Discussion 
 

5.1 Major outcomes and significance  

Antimicrobial peptides (AMPs) are natural antibiotics that are produced by the innate 

immune system in all life forms. The major roles of AMPs include defending the host 

against pathogens and regulating the hosts’ microbiome (Zhang and Gallo, 2016). 

AMPs are therefore critical in maintaining the health of the host organism. Due to the 

effectiveness of AMP activity against microbes, and the rise of antimicrobial resistance, 

AMPs are of great interest as candidates for therapeutic drug design (Moretta et al., 

2021). To facilitate AMP discovery, many machine learning AMP predictors have been 

developed (Xu et al., 2021). In addition, advances in genomic sequencing are revealing 

the complete sequences of genomes and gene products for an ever increasing number 

of organisms. Bioinformatic tools, designed to analyse these large datasets, are now 

required across a wide range of applications including AMP prediction (Yin et al., 2017). 

The overall aim of this thesis was to fill this gap, by developing improved machine 

learning methods, specifically designed for identifying antimicrobial peptides in genome-

scale data. The initial aim was simply to adapt current methods, designed for use with 

very small datasets, to genome-wide scanning workflows. At the time I commenced this 

thesis, almost all available AMP predictors, e.g. (Thomas et al., 2010; Xiao et al., 2013; 

Meher et al., 2017; Veltri, Kamath and Shehu, 2018) were only accessible via a web 

interface. These AMP prediction web interfaces often limited the number of sequences 

that could be provided as input (Xiao et al., 2013; Meher et al., 2017; Yan et al., 2020) 

making them impractical to use for entire proteomes. Additionally, web servers are 

difficult to include in bioinformatic pipelines, frequently used for large scale analyses, 

such as comparative genomics. Therefore, a new bioinformatic tool, called ampir, which 

incorporated an AMP prediction model and which was optimised for large data, was 

developed (chapter 2).  
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During the construction of ampir, several inherent problems were identified with the 

approaches used for selection of training data (chapter 2) and testing data (chapter 3) in 

existing AMP prediction models. These problems arise partly as a result of efforts to 

compensate for inherent limitations in available data, but they also reflect issues that 

only become apparent when scanning large datasets (such as genomes) for AMP 

candidates. These issues are summarised in the conceptual figure (Figure 5.1) 

 
Figure 5.1: Summary of the AMP predictor development process (left) and how this 
impacts AMP prediction on real world datasets (right). Green indicates non-AMPs and 
other colours indicate AMPs. Data that are complex in composition are simplified 
through filtration, often removing the most challenging cases (light pink) to produce 
balanced training and test sets with uniformly biased composition. This results in 
inflated measures of AMP predictor performance. Real world datasets such as an 
organism proteome are complex and include challenging cases that reduce real 
performance. In addition, they are highly unbalanced leading to a large number of false 
positives. TP: true positives, FP: false positives.  

 

The first issue concerning the AMP predictor development process is that no database 

currently exists that contains verified non-AMP sequences that can easily be used for 

the negative dataset (Liu et al., 2017). To compensate for this, the UniProt protein 

database (UniProt Consortium, 2021) is almost always used as a foundation for the 

negative dataset, usually by selecting proteins not annotated with keywords such as 
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“antimicrobial”, “antibiotic”, “antibacterial”. However, in addition to these keywords, 

proteins that are secreted are also commonly excluded (Thomas et al., 2010; Bhadra et 

al., 2018; Veltri, Kamath and Shehu, 2018; Jhong et al., 2019; Santos-Júnior et al., 

2020; Xu et al., 2021). This is likely done because AMPs are secreted proteins and 

removal of secreted proteins in the negative dataset would therefore further contrast the 

positive and negative dataset. This contrast enhances the apparent performance of the 

AMP predictor when tested against a similarly biased dataset, but compromises real-

world performance by removing the most challenging cases. This is especially 

problematic for secreted proteins, as these constitute a substantial part of the genome 

(~13% for human) and, in addition to the innate immune system, contribute to a variety 

of biological pathways, including those with functions related to e.g. metabolism and 

insulin regulation (Pinheiro-Machado et al., 2020). Subsequently, by specifically 

removing secreted proteins from the negative dataset, the AMP predictor may 

incorrectly link secretion to be a unique AMP characteristic. Consequently, the AMP 

predictor is likely to have a high misclassification rate when it is used on a dataset which 

contains a large proportion of secreted proteins (e.g. a genome). The second issue this 

thesis discovered with the training data used for AMP prediction was that it often 

contains a mix of precursor proteins and mature peptides (chapter 2 and 3), even 

though mature peptide sequences are very rarely known for novel putative AMPs on a 

genome scale. Chapter 3 revealed that AMP predictor models which include mature 

peptides in their training data, were less effective at classifying AMPs in ‘omics 

datasets, which purely contain precursor proteins.  

 

This thesis was the first to survey the training data of AMP predictors with the goal of 

recognising and quantifying these issues. Whether or not a training dataset is 

appropriate depends entirely on the way that a given AMP predictor is used in practice. 

This thesis identified two real world use cases for AMP predictors. One is where the 

input dataset is low-throughput and consists of a few mature peptides, e.g. those that 

are synthesised, which users may want to test for antimicrobial activity. The other is for 

genome-wide scanning using ‘omics datasets, where thousands of precursor proteins 

are classified to find AMP candidates. Therefore, two models were implemented into 
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ampir, one for use on mature datasets (ampir_mature, trained exclusively with mature 

peptides) and one for use on ‘omics datasets (ampir_precursor, trained exclusively with 

precursor proteins). Ampir was the first AMP predictor to adopt this approach. This 

thesis focused primarily on the development and use of the ampir_precursor model in a 

genome-scanning context. In this context, it was identified that the composition of the 

negative training dataset for AMP models should be as close to a typical set of non-

AMP proteins in a genome as possible. This aids in preparing the model to be used on 

real biological datasets. Therefore, the negative training data for ampir were selected 

using minimal filtering. The main filters imposed were sequence length filters, to 

separate the likely mature peptides from precursor proteins. By using minimal filtering of 

the negative dataset, and by solely including precursor proteins in the training dataset in 

the ampir_precursor model, it was shown that classification performance on ‘omics 

datasets can be greatly improved (chapter 3). This is important because the genome-

scanning use case is now commonly used as part of an overall workflow for identifying 

novel AMPs (Lee et al., 2020a; Lee et al., 2020b; Yakovlev et al., 2020; Hassan, Qutb 

and Dong, 2021; Lee et al., 2021a; Lee et al., 2021b; Liscano et al., 2021; Onime et al., 

2021; Ma et al., 2022)  

 

Removing secreted proteins and including mature peptides in AMP predictor training 

data are just two aspects of a broader issue, that is, a mismatch between the 

composition of training and test data with real data used for prediction. Common 

statistical practice is to evaluate the performance of predictors on hold-back test sets, 

which are compositionally similar to the training datasets (chapter 3). Since it is 

extremely challenging, and indeed impractical, to ensure that training data for AMP 

predictors reflects the composition of real proteomes, I proposed that well characterised 

proteomes such as those of Homo sapiens and Arabidopsis thaliana be used as an 

additional performance test. However, this is highly dependent on the availability of well 

characterised proteomes and may not suit all AMP predictor use cases (e.g. those 

optimised to discover specific AMP families).  
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Another crucially important issue that has so far received little attention in the AMP 

predictor literature (except see Santos-Júnior et al. (2020)) is that of the test dataset 

balance. However, it must be noted that this is a separate issue from using an 

imbalanced training dataset which has been explored in several AMP predictors and 

has been suggested to increase model performance (Xiao et al., 2013; Lin and Xu, 

2016; Bhadra et al., 2018; Santos-Júnior et al., 2020). As recognised in a recent review 

(Whalen et al., 2022), imbalance is the default state for genomic data and this is 

certainly true in the context of ‘omics workflows that attempt to identify AMPs. In this 

thesis I surveyed AMPs in well characterised proteomes and found that they only 

comprise approximately 1% of cases, yet the majority of AMP predictors use test sets 

where AMPs and non-AMPs are balanced. Subsequently, as shown in chapter 3, the 

reported performance of these AMP predictors do not reflect the performance obtained 

from highly imbalanced datasets. These findings have also been highlighted in recently 

published literature as a common problem in the application of machine learning models 

in genomics (Whalen et al., 2022). This highlights the well-timed relevance of this 

thesis, as the practical use of machine learning models in genomic prediction is being 

revised to reflect more realistic use. Some recommendations made in this thesis are 

similar to those made by Whalen et al. (2022), that the imbalance used in the test set 

should be similar to the imbalance found in real genomic data. However, in this thesis I 

also explored the idea that predictors could be benchmarked according to their 

performance in the low false positive regime. This is important in many applications 

where the overall false negative rate is less important than identifying a (potentially 

small) number of true positives with minimal false positives. In ‘omics-scanning the need 

to reduce false positives is very high as this increases costs associated with wet-lab 

validation. Some AMP predictors e.g. Veltri, Kamath and Shehu (2018) performed 

particularly poorly in this regard, possibly because they were not designed to operate at 

any decision threshold other than p=0.5. Some performance metrics commonly used to 

evaluate the performance of AMP predictors on test sets are highly sensitive to the 

balance of classes in datasets and should therefore be reported only for a standardised 

dataset balance (usually chosen as 1:1) (Chicco, 2017; Sofaer, Hoeting and Jarnevich, 
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2018; Chicco and Jurman, 2020; Chicco, Tötsch and Jurman, 2021; Whalen et al., 

2022). 

 

A final issue explored in this thesis was the taxonomic composition of currently 

characterised AMPs and how this affects AMP finding methods. This is especially 

important for studies which focus on identifying novel AMPs in organisms from taxa that 

have low representation in the AMP database. These types of studies are increasingly 

common as modern genome sequencing methods are revealing genomic resources for 

a wide range of non-model taxa. A recent study assessed the effectiveness of various 

machine learning based AMP prediction tools on different invertebrate taxa and found 

considerable variation in performance between taxa and predictors (Rádai, Kiss and 

Nagy, 2021). In that paper the goal was to provide an indication of which predictors 

perform best in different taxonomic groups. While such a review may provide a useful 

guide for users in the short-term it is not clear to what extent the results generalise to 

taxa or predictors that were not included. In this thesis (chapter 4) I attempted a more 

general approach to addressing the issue of taxonomic bias in AMP prediction by 1) 

training custom organism specific models where the training data for that model 

excluded all proteins belonging to the target organism and 2) developing a novel 

taxonomic distance metric that measured how well an organism is represented in the 

training data. Overall, no significant difference was discovered in the performance of the 

custom machine learning models relative to taxonomic distance, however considerable 

variation in performance was observed between organisms. This might indicate that 

taxonomic distance alone is not a good predictor of model performance, and therefore 

that exhaustive approaches such as that of (Rádai, Kiss and Nagy, 2021) are 

necessary. Alternatively it might reflect some of the many difficulties I encountered in 

generating high quality, independent, taxon-specific test sets. As AMP databases 

improve it may be worthwhile repeating the work in chapter 4 to re-evaluate the 

relationship between performance and taxonomic distance with improved data. 

Nevertheless, one clear finding was obtained in chapter 4, namely that machine 

learning AMP predictors that use physicochemical properties as features are better 

equipped to predict AMPs in taxonomically distant organisms compared with 
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conventional sequence similarity methods such as BLAST, which showed a significant 

decline in performance with taxonomic distance. This thesis was the first to empirically 

test the relative effectiveness of machine learning based AMP prediction and homology-

based methods to discover AMPs in organisms that span a wide taxonomic range.  

 

A survey of methods used to identify novel AMPs provided as part of chapter 4 

highlighted the fact that homology-based methods remain more widely used than 

machine learning AMP predictors as tools to produce candidate lists for experimental 

validation. It may be that homology-based searches are preferred by some authors as 

their focus is on finding similar AMPs in taxonomically close organisms, e.g. (Panteleev 

et al., 2020; Xiao et al., 2020; Chen et al., 2021; Peel et al., 2021; Zhuang et al., 2021). 

Nevertheless, I found that homology-based searches are also used to discover AMPs 

on a genome-wide scale, including on organisms that are not well represented in the 

AMP database (Duwadi et al., 2018; Wang et al., 2019; Yakovlev et al., 2020; 

Hayashida and da Silva Junior, 2021; Zhang et al., 2021a). Based on my findings in 

chapter 4 I would expect that these authors would benefit from adopting a machine-

learning AMP prediction approach, and that this recommendation be applied for any 

organism that lacks strong representation of AMPs from close relatives in public 

sequence databases. 

5.2 Limitations and Future directions 

This thesis discovered some issues that currently limit the ability of AMP predictors to 

reach optimal performance. These limitations are overall related to available data, which 

also cover limitations to the field in general. 

 

First, AMPs are diverse (Schmitt, Rosa and Destoumieux-Garzón, 2016) and in addition 

to evolving from common ancestry, can also arise via convergent evolution (Unckless 

and Lazzaro, 2016; Lazzaro, Zasloff and Rolff, 2020). Despite over 3,000 AMPs 

currently known and available to be used in the training data in AMP predictors, a large 

proportion of these comprise close homologs from a select few taxa. Therefore, it is 
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likely many AMPs and potential AMP families remain undiscovered. Despite the fact 

that machine learning based AMP predictors are trained on physicochemical properties, 

which can reflect antimicrobial activity (Torrent et al., 2011; Meher et al., 2017), 

physicochemical properties can vary between different AMP families (Khamis et al., 

2015; Wang et al., 2020c; Rádai, Kiss and Nagy, 2021). Furthermore, physicochemical 

properties of AMPs may not be consistent across taxa, even for AMPs that correspond 

to the same AMP families (Rádai, Kiss and Nagy, 2021). In addition, there are also AMP 

families that are distinct to certain taxonomic groups, e.g thionins in plants (Höng et al., 

2021) which could have distinct physicochemical properties. AMP predictor models can 

therefore potentially be optimised by constructing taxon specific models. However, this 

is heavily dependent on the availability of taxon specific AMPs, which are currently 

lacking for many taxa. Therefore, it is recommended that the AMP discovery field focus 

their attention on finding, and experimentally verifying activity for, AMPs in taxa currently 

not well represented. As this requires a lot of resources, efforts should initially be 

focussed on a single representative organism for under-represented taxa of particular 

interest. A genome-wide optimised AMP predictor can then be used on the proteome of 

that organism to find AMP candidates. The most likely candidates (i.e. those with high 

probability scores and suitable structures) can then be synthesised and characterised. 

Once verified, these proteins can be appropriately annotated in the proteome of the 

organism and added to the training data of the model. With the added AMPs, the model 

can then be retrained to increase its learning ability. Repeating this cycle, and 

complementing the search with homology-based prediction should eventually reveal a 

high proportion of the AMP repertoire for the organism.  

 

A potential method to select organisms that represent taxa currently understudied for 

AMPs is by examining the number of AMPs currently characterised in various taxa 

whilst similarly considering the number of species present in these taxa. For instance, 

investigation of the number of AMPs present in various taxa in the Swiss-Prot database 

revealed that the majority of currently characterised AMPs correspond to the Chordata 

phylum (see Figure 5.2). The Arthropoda phylum is represented by approximately half 

of the number of AMPs compared to Chordata, despite the Arthropoda phylum 
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containing far more species. This apparent preference for characterising AMPs in select 

taxonomic groups can also be observed on a finer level, e.g. within classes in the 

Chordata and Arthropoda phyla (Figure 5.2B) which clearly shows the uneven 

distribution of characterised AMPs in different taxa.  

 
Figure 5.2: Phylogenetic trees constructed using the NCBI Taxonomy Browser 
https://www.ncbi.nlm.nih.gov/Taxonomy/CommonTree/wwwcmt.cgi and the ggtree R 
package (Yu et al., 2016) displaying the number of antimicrobial peptides in A) bacteria 
and phyla within Eukaryota and B) classes within the metazoan phyla Chordata (pink 
branches) and Arthropoda (brown branches) in the Swiss-Prot database (accessed April 
2021). 

 
Invertebrates are likely a good source of novel AMPs due to their extensive species 

diversity and potential for taxon specific AMPs. In addition, invertebrates lack an 

adaptive immune system which may mean they contain a higher diversity of AMPs to 

act as their defence mechanism (Tincu and Taylor, 2004). Furthermore, there are 
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multiple invertebrate taxonomic groups in which relatively few AMPs have been 

characterised, despite their species diversity. This is especially apparent in the 

metazoan phyla Mollusca, Nematoda, Cnidaria, Echinodermata and Platyhelminthes 

(see Figure 5.2A). These phyla largely reflect marine invertebrates which have been 

frequently highlighted as a promising source for novel AMP discovery (Tincu and Taylor, 

2004; Rosenstiel et al., 2009; Destoumieux-Garzón et al., 2016; Schmitt, Rosa and 

Destoumieux-Garzón, 2016; Panteleev et al., 2020; Wu et al., 2021). Therefore, 

selecting organisms within these unrepresented taxa as a focal point for AMP discovery 

can greatly improve the training data for AMP predictors, especially to discover taxon 

specific AMPs. 

 

Another way in which organisms can be under-represented in AMP databases is if they 

lack high quality genomic resources. Amphibians are a case in point as they are highly 

studied for AMPs (Wang, Li and Wang, 2016) but since there are few whole genome 

sequences for amphibians their AMP repertoires have not been compiled into reference 

proteomes. This was a limitation in chapter 4 where reference proteomes were used for 

benchmarking in order to ensure that a complete set of AMP and non-AMP sequences 

were used. Therefore, targeted genome sequencing to increase diversity of available 

organisms, in combination with effort to discover AMPs in these unrepresented 

organisms, can greatly improve the utility of benchmarking methods suggested in 

chapter 3. 

 

Another potential limitation of benchmarking on whole proteomes (suggested in chapter 

3) is the likelihood that AMP classification in these resources is incomplete. Even in 

organisms with the best characterised AMP repertoires it is highly likely that additional 

AMPs remain to be discovered. This means that benchmarking based on these 

proteomes is likely to result in inflated estimates of the false positive rate. 

 

To optimise the usability for AMP prediction models in a genome-scanning context, a 

future predictor that can distinguish between the components of an AMP precursor 

sequence could potentially achieve higher performance. This is because the N-terminal 
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signal peptide, mature AMP region and C-terminal region all likely have different 

physicochemical properties. If an input sequence could be subdivided into these 

components it would be possible to calculate their physicochemical properties 

separately and provide them as input to a composite predictor. Partitioning the input 

sequence precisely is currently an unsolved problem, however, very accurate methods 

already exist to identify the signal peptide (Teufel et al., 2022). Pro-peptide cleavage 

can also be predicted using ProP (Duckert, Brunak and Blom, 2004) or MatureP 

(Orfanoudaki et al., 2017), and the AMP mature peptide is normally between 20 and 30 

amino acids in length. Thus an approximate partitioning would be possible and might 

still provide improved performance over existing models which treat the entire sequence 

as a single entity. A very simple option to generate a composite predictor would be to 

aggregate features from all three regions. Alternatively, separate models could be 

trained on each segment based on Swiss-Prot data where this is known (see Figure 

3.1) and their results aggregated to form an ensemble prediction.  

5.3 Conclusion 

In summary, through the generation of the novel AMP predictor, ampir, this thesis 

demonstrated a need for developers to integrate greater knowledge of AMP protein 

structure and typical use-cases in the development and evaluation of AMP prediction 

models. Specifically, chapter 2 and 3 encompass a need to achieve a better match 

between data used for developing and testing AMP predictors, and the data that are 

present in real datasets such as proteomes. The two key aspects of this are 

composition (the types of molecules present) and balance (the ratio of AMPs and non-

AMPs). Neither is trivial to achieve, however, this thesis proposed advances on current 

practices. These recommendations include the exclusive inclusion of precursor protein 

sequences in the training and testing data for AMP predictors. Furthermore, 

benchmarking should include tests on highly imbalanced data and report statistics 

sensitive to balance to reflect the fact that AMPs typically comprise a very small fraction 

of a typical genome. Finally, AMP predictors should use benchmark datasets that are 
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compositionally similar to realistic input data (e.g. proteomes) as an additional 

benchmarking procedure.  

 

Chapter 4 found that machine learning based AMP predictors are more effective at 

discovering AMPs on a genome-wide scale in taxonomically distant organisms 

compared to homology-based methods. However, AMP predictors must be optimised 

for genome-wide scanning (see chapters 2 and 3) for this to hold true. Nevertheless, a 

machine learning based AMP prediction approach is a valuable method for AMP 

discovery, especially for organisms belonging to taxa that are not well represented in 

AMPs.  

 

Finally, ampir is available as an open source and well documented package in R, and 

also as a convenient web server. It can therefore be used by the wider community to aid 

AMP discovery, as well as serve as a reference point for future AMP predictors that 

wish to specialise in genome-wide scanning. 
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Appendices 

 
In the interest of reproducibility and transparency, methodology details, code and data 
necessary to reproduce the content in this thesis can be found online: 
 
Chapter 2: ampir: an R package for fast genome-wide prediction of antimicrobial 
peptides 
  
 Ampir software sourcecode and documentation:  

 https://github.com/Legana/ampir 
 
 Ampir Shiny App sourcecode:  

 https://github.com/Legana/ampir_shiny 
 
 Ampir methodology:  

 https://github.com/Legana/AMP_pub 
 
Chapter 3: Benchmarking antimicrobial peptide (AMP) machine learning models in a 
genome-scanning context 
 

  https://github.com/Legana/AMP_prediction_in_genomes 
 
Chapter 4: When are machine learning AMP predictors better than homology for AMP 
detection in genomes? 

 https://github.com/Legana/ML_vs_homology 
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Supplementary information for Chapter 1: General introduction 
 

Table S1.1: Novel AMPs found between 2018-2021 which were experimentally verified. 

AMP 
name 

Sequence 
data 

Method Candi
dates 
found 

Additional 
steps 

Number 
tested 
for AMP 
activity 

Final 
number 
with 
AMP 
activity 

AMP 
type 

AMP 
activity 

Organ
ism 

Reference 
and DOI 

SpCru
s6 

Transcripto
me from 
hemocyte, 
gill and 
hepatopanc
reas 

BLAST to 
other 
invertebrate 
crustins 

- Alignment to 
other crustins. 
SignalP. 
Physicochemic
al properties 

1 1 Crustin Gram 
+, 
antiviral 

Mud 
crab: 
Scylla 
param
amosa
in 

Du et al. 
2019 
 
10.1016/j.fs
i.2018.10.0
72 

LFB cDNA from 
RNA skin 
secretion 
sample 

PCR 
amplificatio
n based on 
primer 
targeting 
the signal 
peptide 
region in 
this AMP 
family.  

- BLAST for 
structure. 
Physicochemic
al properties. 
2D structures. 

1 1 Brevini
n-like 

Gram+,
gram-, 
antifun
gal 

Frog: 
Limno
nectes 
fujiane
nsi 

Li et al. 
2019 
 
10.3390/bio
m9060242 

DRP-
AC4 

Translation 
of cDNA, 
cloned from 
cDNA 
library from 

PCR 
amplificatio
n from 
highly 
conserved 
AMP 

- Alignment to 
other 
dermaseptins. 
Physicochemi
cal properties. 

1 1 Derma
septin, 
α-
helical 

gram +, 
gram - 

Frog: 
Agalyc
hnis 
callidr
yas 

Gong et al. 
2020 

 
10.3390/ant
ibiotics9050
243 
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skin 
secretion 

precursor 
primer from 
closely 
related 
Phyllomedu
sa species. 

Secondary 
structures. 

Brevini
n-
1GHd 

cDNA from 
RNA skin 
secretion 
sample 

PCR 
amplificatio
n from 
highly 
conserved 
AMP 
precursor 
domain 
primer from 
closely 
related 
Rana 
species. 

- BLAST to all 
sequences in 
GenBank. 
Primary and 
secondary 
structures. 
Physicochemic
al properties. 

1 1 Brevini
n,α-
helical 

Gram 
+, gram 
-, 
antifun
gal  

Frog: 
Hylara
na 
guenth
eri 

Jiang et al. 
2020 

 
10.1042/BS
R20200019 

Kassin
atuerin
-3 

cDNA from 
RNA skin 
secretion 
sample.  

PCR 
amplificatio
n designed 
on 5′-
untranslate
d region of 
Kassina 
species. 

- Secondary 
structure. 
Physicochemic
al properties. 

1 1 Kassin
atuerin 

Gram 
+, 
antifun
gal 

Frog: 
Kassin
a 
seneg
alensi
s 

Wang et al. 
2020 

 
10.3390/bio
logy907014
8 

KH.C1
.640, 
KH.C7
.94, 
KH.S1
531.4, 
KH.S9
08.1, 
and 

Genome 
 

Rules 
based 
screening 
method 
based on 
physicoche
mical 
properties 
and 

22 SignalP. 
Structure. 
Membrane 
spanning 
regions to 
eliminate 
transmembrane 
proteins. 
Physicochemic

5 3 Linear 
cationic 
α-
helical 
peptide 
(LCAM
P) 

Gram 
+, gram 
-, 
fungal 
(excludi
ng 
KH.S92
1.1) 

Sea 
squirt: 
Ciona 
intesti
nalis 

Ohtsaka 
and Inagaki 
2020 
10.1038/s4
1598-020-
69485-y 
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KH.S9
21.1 

subcellular 
localisation 

al properties 
range. 

Pom-1 
and 
Pom-2 

37 Peptides 
found via 
MS/MS on 
whole 
organism 
matched to 
SwissProt 
Mollusca 
proteins 
and APD3 
AMP 
database 
with 
MaxQuant 

Machine 
learning. 
CAMP3, 
AMPscann
er and 
iAMPPpred. 
Results 
merged and 
prob_AMP 
values 
averaged 
for every 
sequence. 

37 Two highest 
scoring 
peptides were 
chosen. 
Physicochemic
al properties. 
Structure. 

2 2 α-
helical 

Gram + 
(Pom1 
only), 
gram - 

Snail: 
Poma
cea 
poeya
na 

Garcia et 
al. 2020 

 
10.3390/bio
m10111473 

Catheli
cidin-
MH 

cDNA from 
RNA skin 
secretion 
sample.  

PCR 
amplificatio
n based on 
primer from 
cathelicidin 
domain 

- Physicochemic
al properties. 
Alignment to 
cathelicidins 
from other 
species. 
Stucture 

1 1 cathelic
idin 

Gram - 
, gram 
+, 
antifun
gal  

Frog: 
Microh
yla 
heymo
nsivog
t  

Chai et al. 
2021 

 
10.7554/eLi
fe.64411 
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Pugnin 
A and 
B 

Transcripto
me from 
skin 

BLAST to 
AMP, 
SignalP 
and 
amphibian 
skin 
databases. 
Machine 
learning, 
CAMP SVM 
predictor. 

375 Similarity and 
prob_AMP 
>90% 

 
Physico 
chemical 
properties. 
Secondary 
structure. 
Alignment and 
protein function 

 

2 2 α-
helical 

Gram - 
, gram 
+ 

Frog: 
Boana 
pugna
x 

Liscano et 
al. 2021 

 
10.3390/ph
armaceutic
s13040578 

14 
peptid
es 

Transcripto
me 

BLAST to 
CAMP 
database 

 
Machine 
learning 
(CAMP) 

177 Structure. 
Physicochemic
al properties. 
BLAST 
similarity score. 

22 14 α-
helical 

Gram - 
, gram 
+, 
antifun
gal 

Mealw
orm: 
Zopho
bas 
atratus  

Lee et al. 
2021 
 
10.1007/s1
0989-021-
10213-z 

Bthepc Hepcidin 
cDNA of 
liver tissue 

PCR 
amplificatio
n of 
Hepcidin 
primer from 
closely 
related 
species. 

- Alignment. 
Phylogenetic 
tree. 
Physicochemic
al properties. 
Structure  

1 1 Hepcidi
n 

gram +, 
gram -, 
antifun
gal  

Fish: 
Salmo 
trutta 

Huang et 
al. 2019 

 
10.1016/j.fs
i.2019.01.0
20 
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capitell
acin 

Genome  Homology 
to AMP 
gene 
preproalvin
ellacin 
encoding 
the AMP 
alvinellacin 
in related 
species 

- SignalP. 
Protein domain. 
Physicochemic
al properties. 
Structure. 

1 1 
𝛃𝛃-hairpin, 
BRICHOS-
domain 

 

gram +, 
gram - 

Polych
aeta: 
Capite
lla 
teleta 

Pantaleev 
et al. 2020 

 
10.3390/md
18120620 

7 
peptid
es  

Transcripto
me 

Machine 
learning 
(CAMP) 

 
BLAST to 
CAMP 
database 

248 Structure. 
Physicochemic
al properties. 
BLAST 
similarity score. 

14 7 
α-helical 

Gram 
+, gram 
-, 
antifun
gal 

Butterf
ly: 
Papilio 
xuthus  

Lee et al. 
2020 

 
10.3390/ins
ects111107
76 

CATH 
2, 
CATH
3 

Genome  Closely 
related 
cathelicins 
BLAST 
against 
goose 
genome 

- High similarity. 
Alignment. 
Tree.  

2 2 
cathelicidi
n 

gram +, 
gram - 

Bird: 
Anser 
cygnoi
des 

Xiao et al. 
2020 

 
10.1016/j.p
sj.2020.03.
021  

Lubeli
sin 

Metatranscr
iptome from 
cow rumen 

Machine 
learning 
(APD, 
AMPA, 
BACTIBAS
E, CAMP) 

208. 
  
13 
after 
spot 
screen 

Structures. 
Physicochemic
al properties. 
Spot screen 
(fluorescence) 

1 1 α-
helical 

Gram 
+, gram 
- 

rumen 
eukary
otome 

Onime at 
al. 2021 

 
10.1186/s1
2866-021-
02172-8 
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ZM-
804 

Transcripto
me 

Machine 
learning 
(CAMP) 
Top 
predicted 
peptide 
picked and 
checked 
with 
dbAMP, 
ClassAMP, 
iAMPpred 
and AntiBP. 

14 Top prediction 
score 
(prob_AMP). 
Physicochemic
al properties. 
Structure 

1 1 Cationi
c α-
helical 

Gram 
+, gram 
- 

Maize: 
Zea 
mays 

Hassan et 
al. 2021 

 
10.3390/ijm
s22052643 

HR-
CATH 

Skin 
transcripto
me 

BLAST skin 
transcripto
me to get 
cDNA of 
tiger frog 
cathelicidin 
gene  

- SignalP. 
Physicochemic
al properties. 
Alignment to 
other frog 
cathelicidins. 

1 1 cathelic
idin  

Gram 
+, gram 
- 

Frog: 
Hoplo
batrac
hus 
rugulo
sus 

Chen et al. 
2021 

 
10.1016/j.c
bpc.2021.1
09072 

L1 Hemocyani
n of 
Litopenaeu
s vannamei 

 

Machine 
learning 
(AntiBP, 
CAMP, 
APD) 

20 Structure. 
Focus on 
predicted 
peptides with α-
helical 
structures  

5 5 α-
helical 
β-turn 
antimic
robial 
peptide 

Gram 
+, gram 
- 

Shrim
p: 
Litope
naeus 
vanna
mei 

Yang et al. 
2018 

 
10.1007/s0
0726-018-
2575-x 

DLP-
PH 

Shotgun 
cloning of 
skin 
secretion 
derived 
cDNA 
library 

PCR 
amplificatio
n of AMP 
5′-
untranslate
d region 
primer from 
closely 
related 
species. 

- Physicochemic
al properties. 
Structure 

1 1 α-
helical. 
Similar 
to 
distincti
n AMP 

Gram 
+, gram 
-, 
antifun
gal 

Frog: 
Phyllo
medus
a 
hypoc
hondri
alis 

Wu et al. 
2018 

 
10.3389/fmi
cb.2018.00
541 
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SmBD Transcripto
me 

BLAST 
against β-
defensins in 
2 other fish  

- SignalP. 
Physicochemic
al properties. 
Alignment. 
Structure. 

1 1 β-
defensi
n 

Gram 
+, gram 
- 

Fish: 
Scoph
thalmu
s 
maxim
us 

Zhuang et 
al. 2021 

 
10.1016/j.a
quaculture.
2021.73683
9 

PhciC
ath5  

Genome BLAST 
using 
mammalian 
cathelicidin
s as query 
sequences 

10 SignalP. 
Physicochemic
al properties. 
Alignment. Full 
length coding 
sequence. 

5 1 cathelic
idin 

Gram 
+, gram 
-, 
antifun
gal 

Koala: 
Phasc
olarcto
s 
cinere
us 

Peel et al. 
2021 

 
10.1371/jou
rnal.pone.0
249658 

PS-
029, 
TPS-
032, 
TPS-
035 

Transcripto
me 

Machine 
learning 
predictors 
(CAMP, 
ADAM)  

 
BLAST 
against 
AMP 
databases 

- Rules based 
screening 
based on 
physicochemic
al properties 
and structure 

15 3  Gram 
+, 
antifun
gal 

Butterf
ly: 
Porph
yromo
nas 
gingiv
alis 

Lee et al. 
2021 

 
10.3390/ins
ects120504
66 

13 
peptid
es 

Transcripto
me 

Machine 
learning 
predictors 
(CAMP, 
ADAM)  

 
BLAST 
against 
AMP 
databases 

193 Rules based 
screening 
based on 
physicochemic
al properties. a-
helix regions 
selected 

13 13 α-
helical 

Gram 
+, gram 
-, 
antifun
gal 

Beetle
: 
Psacot
hea 
hilaris 

Lee et al. 
2020 

 
10.3390/ins
ects111006
76 

LFMP-
001, 

Mucus 
mass spec, 

Alignment 
against 

- High alignment 
score. 

2 2  Gram + Slug: 
Limac

Hayashida 
& da Silva 
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LFMP-
002 

searched 
against 
Transcripto
me and 
SwissProt 

APD 
database  

Physicochemic
al properties.  

us 
flavus 

Junior 
2021. 
 
10.1007/s0
0284-021-
02552-3 

BING Plasma 
Mass spec , 
searched 
against 
NCBI db 

Machine 
learning 
(CAMP) 
 
BLAST 
against 
CAMP.  

430 Rules based 
using 
physicochemic
al properties. 

- 1 β-sheet  Gram -, 
gram + 

Fish: 
Oryzia
s 
latipes  

Dong et al. 
2021 
 
10.1038/s4
1598-021-
91765-4 

vBD10
8 , 
vBD12
2 

cDNA 
sequences 
from testis 
and 
epidymis 
RNA 
samples 

PCR 
amplificatio
n using 
primer of 
canine β-
defensin 

- Alignment. 
Physicochemic
al properties. 
SignaP. 

2 2 β-
defensi
n 

Gram 
+, gram 
- 

Fox: 
Vulpes 
lagopu
s 

Li et al. 
2021 

 
10.3390/ani
11071857 

Ds-
defens
in 

cDNA 
library from 
total RNA  

PCR 
amplificatio
n from 
highly 
conserved 
defensin 
signal 
peptide 
region. 

- Alignment, 
SignalP. 
Physicochemic
al properties. 
Tertiary 
structure. 

1 1 defensi
n 

Gram 
+, gram 
- 

Tick: 
Derma
centor 
silvaru
m 

Li et al. 
2021 

 
10.1007/s1
0493-020-
00584-1 



 

 164 

BsHep cDNA 
sequence 
from spleen 
RNA 

PCR 
amplificatio
n of 
Hepcidin 
primer from 
closely 
related 
species. 

- Alignment. 
Physicochemic
al properties. 
Structure. 

1 1 hepcidi
n 

Gram 
+, gram 
- 

Fish: 
Bostry
chus 
sinens
is 

Shen et al. 
2021 

 
10.1016/j.a
quaculture.
2021.73711
4 

Ctri95
94 

cDNA 
library from 
venom 
gland 

PCR 
amplificatio
n using 
primer. 
Details of 
primer not 
provided. 

- SignalP. 
Alignment. 
Structure 

1 1 Amphip
hilic 
cation 
α-
helical 

gram + Scorpi
on: 
Chaeri
lus 
tricost
atus 

He et al. 
2021 

 
10.3390/ant
ibiotics1008
0896 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



 

 165 

Supplementary information for Chapter 2: ampir: an R 
package for fast genome-wide prediction of antimicrobial 
peptides 

Table S2.1: Tests written for the functions within the ampir R package. 

ampir functions with test 
files 

Tests 

df_to_faa It writes a file 
It writes a file with the correct FASTA output 

calculate_features It results in a 45 column data.frame 
It works with multiple rows as input 
It returns an error when the input sequences are shorter than 
the min_length parameter. 
It returns the correct values for the physicochemical 
calculations. 

calc_pseudo_comp It gives correct results with default lambda parameter and with 
lambda_max 
It works with mixed length sequences  
Gives an error when sequence length is less than or equal to 
lambda_min 

chunk_rows It works when the parameter ncores is set to 1, 2 or 3. 

predict_amps It returns a data.frame with 3 columns 
It works when input contains: 
 invalid or short aa sequences, 
 sequences equal to min_len 
 only invalid sequences, 
 sequences contain a stop codon at the end 
It works with multiple cores 
It works when explicitly set model parameter to “precursor” or 
“mature”  
It gives an error when: 
 sequences are not in character format, 
 features are different to those included in ampir, 
 the model parameter is set to NULL,  
 the model parameter does not exist 

read_faa It results in a two column data.frame 

remove_nonstandardaa It returns a data.frame and that it removes the entire row of the 
sequence that contains nonstandard amino acids 
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Supplementary information for Chapter 3: Benchmarking 
antimicrobial peptide (AMP) classification models in a 
genome-scanning context 
 
To explore the effect of data imbalance on performance metrics, a precision-recall 

curve was used. It encapsulates the trade-off between the true positive rate (recall or 

sensitivity) and the positive predictive value (precision) for a predictive model using 

various probability thresholds. The traditional precision-recall curve contains recall 

on the x-axis and precision on the y-axis which can be used as a guide to maximise 

one metric over the other. However, as the output of AMP predictors are generally 

probability values, i.e. how likely is it that a protein sequence is an AMP or not, the 

interest here was to know which probability threshold includes the most number of 

true AMPs. Therefore, the recall and precision of a test dataset containing both 

AMPs and non-AMPs over a probability threshold were calculated using a custom 

function written in R. The probability predictions of the ampir v0.1 model on the 

balanced test set of ampir v.0.1, which contained 996 AMPs and non-AMPs, were 

used. To match the estimated 0.01 realistic proportion of AMPs in a genome, 100 

replications containing random selections of 10 AMPs and combined with all 996 

non-AMPs present in the test set of ampir v.0.1 were selected. The average recall 

and precision metrics were calculated for these datasets over a probability threshold 

of 0.01 to 0.99 (see Figure S3.1A). The precision and recall metrics can also be 

extrapolated from balanced test sets to indicate performance on imbalance data 

using Equation 3.2 for an 𝛼𝛼 value of 0.01, which refers to an AMP proportion of 0.01 

in a genome. The precision and recall metrics for 𝛼𝛼 = 0.01 (see Figure S3.1B) 

appear extremely similar to the average curves of 0.01 AMPs in the ampir v.0.1 test 

set across a range of probability values (see Figure S3.1A). This was as expected 

and shows the 𝛼𝛼 variable is a valid depiction as the proportion of AMPs in a test set. 
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Figure S3.1: Calculated precision and recall metrics for ampir v.0.1 based on 
alternative methods of rescaling test results to an 𝛼𝛼 value of 0.01, where 𝛼𝛼 
represents the proportion of AMPs in a genome. A: shows an average over 100 
random subsamples of the ampir v0.1 test set in which the proportion of true cases 
was reduced to 0.01. B: shows results calculated using the entire ampir v0.1 test set 
with values of the confusion matrix rescaled to match expectations for 𝛼𝛼 = 0.01 
based on equations 3.2 and 3.4. 
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Figure S3.2: The ability of various models to predict AMPs in the proteomes of 
Arabidopsis thaliana and Homo sapiens using the full x-axis range. The y-axis is 
scaled to show the full complement of known AMPs in each genome (294 for A. 
thaliana, 112 for H. sapiens). 

Table S3.1: Performance metrics of various AMP predictors on the proteomes of 
Homo sapiens and Arabidopsis thaliana 

For Homo sapiens 

Acc Sp Rec Pr F1 MCC AUR
OC 

AUP
RC 

Model 

0.97 0.97 0.86 0.05 0.09 0.20 0.94 0.30 ampir_precursor 

0.05 0.05 1.00 0.00 0.00 0.01 0.74 0.00 ampir_mature 

0.97 0.97 0.56 0.03 0.06 0.13 0.85 0.11 ampir_prec_nb 

0.50 0.50 0.92 0.00 0.01 0.03 0.79 0.01 AMP Scanner 

0.49 0.49 0.39 0.00 0.00 -0.01 0.42 0.00 amPEP 

0.62 0.62 0.80 0.00 0.01 0.04 0.81 0.01 AmpGram 
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0.52 0.52 0.27 0.00 0.00 -0.02 0.49 0.00 amPEPpy 

0.90 0.90 0.16 0.00 0.01 0.01 0.67 0.00 AMPlify 

For Arabidopsis thaliana 

Acc Sp Rec Pr F1 MCC AUR
OC 

AUP
RC 

Model 

0.99 0.99 0.99 0.38 0.54 0.60 1.00 0.83 ampir_precursor 

0.01 0.01 1.00 0.01 0.02 0.01 0.97 0.15 ampir_mature 

0.99 0.99 0.59 0.28 0.38 0.40 0.95 0.34 ampir_prec_nb 

0.47 0.47 1.00 0.01 0.03 0.08 0.92 0.09 AMP Scanner 

0.48 0.48 0.02 0.00 0.00 -0.09 0.16 0.00 amPEP 

0.59 0.59 0.86 0.02 0.03 0.08 0.86 0.14 AmpGram 

0.31 0.32 0.03 0.00 0.00 -0.12 0.24 0.00 amPEPpy 

0.96 0.99 0.02 0.05 0.03 0.01 0.62 0.05 AMPlify 

Acc: accuracy, Sp: specificity, Rec: recall, Pr: precision, F1: F1 score, MCC: 

Matthew’s correlation coefficient, AUROC: area under the ROC curve, AUPRC: area 

under the precision recall curve.  
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Supplementary information for Chapter 4: When are 
machine learning antimicrobial peptide (AMP) predictors 
better than homology for AMP detection in genomes? 

Table S4.1: AMPs present in the AMP database which were either not annotated as 
an AMP in the proteomes or which were entirely absent in the proteomes, despite 
belonging to the same respective organisms. 

Organism Name Number of AMPs in 
proteome not annotated 

as AMP 

AMPs absent in 
proteome 

Mus musculus 1 4 

Homo sapiens 1 0 

Bos taurus 1 3 

Oryctolagus cuniculus 0 0 

Ornithorhynchus anatinus 0 0 

Gallus gallus 1 0 

Oncorhynchus mykiss 2 10 

Drosophila melanogaster 3 0 

Penaeus vannamei 0 18 

Bombyx mori 0 2 

Arabidopsis thaliana 2 1 

Lithobates catesbeianus 1 13 

Escherichia coli K-12 0 25 
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