163 research outputs found

    Faster Maximium Priority Matchings in Bipartite Graphs

    Get PDF
    A maximum priority matching is a matching in an undirected graph that maximizes a priority score defined with respect to given vertex priorities. An earlier paper showed how to find maximum priority matchings in unweighted graphs. This paper describes an algorithm for bipartite graphs that is faster when the number of distinct priority classes is limited. For graphs with kk distinct priority classes it runs in O(kmn1/2)O(kmn^{1/2}) time, where nn is the number of vertices in the graph and mm is the number of edges

    Faster Maximium Priority Matchings in Bipartite Graphs

    Get PDF
    A maximum priority matching is a matching in an undirected graph that maximizes a priority score defined with respect to given vertex priorities. An earlier paper showed how to find maximum priority matchings in unweighted graphs. This paper describes an algorithm for bipartite graphs that is faster when the number of distinct priority classes is limited. For graphs with k distinct priority classes it runs in O(kmn1/2) time, where n is the number of vertices in the graph and m is the number of edges

    Efficient Algorithms for Geometric Partial Matching

    Get PDF
    Let A and B be two point sets in the plane of sizes r and n respectively (assume r <= n), and let k be a parameter. A matching between A and B is a family of pairs in A x B so that any point of A cup B appears in at most one pair. Given two positive integers p and q, we define the cost of matching M to be c(M) = sum_{(a, b) in M}||a-b||_p^q where ||*||_p is the L_p-norm. The geometric partial matching problem asks to find the minimum-cost size-k matching between A and B. We present efficient algorithms for geometric partial matching problem that work for any powers of L_p-norm matching objective: An exact algorithm that runs in O((n + k^2)polylog n) time, and a (1 + epsilon)-approximation algorithm that runs in O((n + k sqrt{k})polylog n * log epsilon^{-1}) time. Both algorithms are based on the primal-dual flow augmentation scheme; the main improvements involve using dynamic data structures to achieve efficient flow augmentations. With similar techniques, we give an exact algorithm for the planar transportation problem running in O(min{n^2, rn^{3/2}}polylog n) time

    Partial-Matching and Hausdorff RMS Distance Under Translation: Combinatorics and Algorithms

    Full text link
    We consider the RMS distance (sum of squared distances between pairs of points) under translation between two point sets in the plane, in two different setups. In the partial-matching setup, each point in the smaller set is matched to a distinct point in the bigger set. Although the problem is not known to be polynomial, we establish several structural properties of the underlying subdivision of the plane and derive improved bounds on its complexity. These results lead to the best known algorithm for finding a translation for which the partial-matching RMS distance between the point sets is minimized. In addition, we show how to compute a local minimum of the partial-matching RMS distance under translation, in polynomial time. In the Hausdorff setup, each point is paired to its nearest neighbor in the other set. We develop algorithms for finding a local minimum of the Hausdorff RMS distance in nearly linear time on the line, and in nearly quadratic time in the plane. These improve substantially the worst-case behavior of the popular ICP heuristics for solving this problem.Comment: 31 pages, 6 figure
    • …
    corecore