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Abstract
Let A and B be two point sets in the plane of sizes r and n respectively (assume r ≤ n), and let
k be a parameter. A matching between A and B is a family of pairs in A × B so that any point
of A ∪ B appears in at most one pair. Given two positive integers p and q, we define the cost of
matching M to be c(M) =

∑
(a,b)∈M‖a − b‖

q
p where ‖·‖p is the Lp-norm. The geometric partial

matching problem asks to find the minimum-cost size-k matching between A and B.
We present efficient algorithms for geometric partial matching problem that work for any powers

of Lp-norm matching objective: An exact algorithm that runs in O((n+ k2) polylogn) time, and a
(1 + ε)-approximation algorithm that runs in O((n+ k

√
k) polylogn · log ε−1) time. Both algorithms

are based on the primal-dual flow augmentation scheme; the main improvements involve using
dynamic data structures to achieve efficient flow augmentations. With similar techniques, we give an
exact algorithm for the planar transportation problem running in O(min{n2, rn3/2} polylogn) time.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases partial matching, transportation, optimal transport, minimum-cost flow,
bichromatic closest pair

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.6

Related Version A full version of the paper is available at https://arxiv.org/abs/1903.09358.

Funding Work on this paper was supported by NSF under grants CCF-15-13816, CCF-15-46392,
and IIS-14-08846, by an ARO grant W911NF-15-1-0408, and by BSF Grant 2012/229 from the
U.S.-Israel Binational Science Foundation.

Acknowledgements We thank Haim Kaplan for discussion and suggestion to use Goldberg et al. [9]
algorithm. We thank Debmalya Panigrahi for helpful discussions.

1 Introduction

Given two point sets A and B in the plane, we consider the problem of finding the minimum-
cost partial matching between A and B. Formally, suppose A has size r and B has size n
where r ≤ n. Let G(A,B) be the undirected complete bipartite graph between A and B,
and let the cost of edge (a, b) be c(a, b) = ‖a − b‖qp, for some positive integers p and q. A
matching M in G(A,B) is a set of edges sharing no endpoints. The size of M is the number
of edges in M . The cost of matching M , denoted c(M), is defined to be the sum of costs of
edges in M . For a parameter k, the problem of finding the minimum-cost size-k matching in
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6:2 Efficient Algorithms for Geometric Partial Matching

G(A,B) is called the geometric partial matching problem. We call the corresponding problem
in general bipartite graphs (with arbitrary edge costs) the partial matching problem.1

We also consider the following generalization of bipartite matching. Let φ : A ∪B → Z
be an integral supply-demand function with positive value on points of A and negative
value on points of B, satisfying

∑
a∈A φ(a) = −

∑
b∈B φ(b). Let U := maxp∈A∪B |φ(p)|. A

transportation map is a function τ : A × B → R≥0 such that
∑
b∈B τ(a, b) = φ(a) for all

a ∈ A and
∑
a∈A τ(a, b) = −φ(b) for all b ∈ B. We define the cost of τ to be

c(τ) :=
∑

(a,b)∈A×B

c(a, b) · τ(a, b).

The transportation problem asks to compute a transportation map of minimum cost.

Related work. Maximum-size bipartite matching is a classical problem in graph algorithms.
Upper bounds include the O(m

√
n) time algorithm by Hopcroft and Karp [10] and the

O(mmin{
√
m,n2/3}) time algorithm by Even and Tarjan [7], where n is the number of nodes

and m is the number of edges. The first improvement in over thirty years was made by
Mądry [15], which uses an interior-point algorithm, runs in O(m10/7 polylogn) time.

The Hungarian algorithm [13] computes a minimum-cost maximum matching in a bi-
partite graph in roughly O(mn) time. Faster algorithms have been developed, such as the
O(m

√
n log(nC)) time algorithms by Gabow and Tarjan [8] and the improved O(m

√
n logC)

time algorithm by Duan et al. [6] assuming the edge costs are integral; here C is the maximum
cost of an edge. Ramshaw and Tarjan [17] showed that the Hungarian algorithm can be
extended to compute a minimum-cost partial matching of size k in O(km+ k2 log r) time,
where r is the size of the smaller side of the bipartite graph. They also proposed a cost-scaling
algorithm for partial matching that runs in time O(m

√
k log(kC)), again assuming that costs

are integral. By reduction to unit-capacity min-cost flow, Goldberg et al. [9] developed a
cost-scaling algorithm for partial matching with an identical running time O(m

√
k log(kC)),

again only for integral edge costs.
In geometric settings, the Hungarian algorithm can be implemented to compute an optimal

perfect matching between A and B (assuming equal size) in time O(n2 polylogn) [11] (see also
[21, 1]). This algorithm computes an optimal size-k matching in time O(kn polylogn). Faster
approximation algorithms have been developed for computing perfect matchings in geometric
settings [21, 22, 4, 19]. Recall that the cost of the edges are the qth power of their Lp-distances.
When q = 1, the best algorithm to date by Sharathkumar and Agarwal [18] computes (1 + ε)-
approximation to the value of optimal perfect matching in O(n polylogn · poly ε−1) expected
time with high probability. Their algorithm can also compute a (1 + ε)-approximate partial
matching within the same time bound. For q > 1, the best known approximation algorithm
to compute a perfect matching runs in O(n3/2 polylogn log(1/ε)) time [19]; it is not obvious
how to extend this algorithm to the partial matching setting.

The transportation problem can also be formulated as an instance of the minimum-cost
flow problem. The strongly polynomial uncapacitated min-cost flow algorithm by Orlin [16]
solves the transportation problem in O((m + n logn)n logn) time. Lee and Sidford [14]
give a weakly polynomial algorithm that runs in O(m

√
n polylog(n,U)) time, where U is

the maximum amount of node supply-demand. Agarwal et al. [2, 3] showed that Orlin’s
algorithm can be implemented to solve 2D transportation in time O(n2 polylogn). In case

1 Partial matching is also called imperfect matching or imperfect assignment [17, 9].
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of O(1)-dimension Euclidean space, by adapting the Lee-Sidford algorithm, they developed
a (1 + ε)-approximation algorithm that runs in O(n3/2 poly ε−1 polylog(n,U)) time. They
also gave a Monte-Carlo algorithm that computes an O(log2(1/ε))-approximate solution
in O(n1+ε) time with high probability. Recently, Khesin, Niklov, and Paramonov [12]
obtained a (1+ε)-approximation in low-dimensional Euclidean space that runs in randomized
O(npoly ε−1 polylog(n,U)) time.

Our results. There are three main results in this paper. First in Section 2 we present an
efficient algorithm for computing an optimal partial matching in the plane.

I Theorem 1. Given two point sets A and B in the plane each of size at most n and an
integer k ≤ n, a minimum-cost matching of size k between A and B can be computed in
O((n+ k2) polylogn) time.

We use bichromatic closest pair (BCP) data structures to implement the Hungarian
algorithm efficiently, similar to Agarwal et al. [1] and Kaplan et al. [11]. But unlike their
algorithms which take Ω(n) time to find an augmenting path, we show that afterO(n polylogn)
time preprocessing, an augmenting path can be found in O(k polylogn) time. The key is to
recycle (rather than rebuild) our data structures from one augmentation to the next. We
refer to this idea as the rewinding mechanism.

Next in Sections 3, we obtain a (1 + ε)-approximation algorithm for the geometric partial
matching problem in the plane by providing an efficient implementation of the unit-capacity
min-cost flow algorithm by Goldberg et al. [9].

I Theorem 2. Given two point sets A and B in R2 each of size at most n, an integer k ≤ n,
and a parameter ε > 0, a (1 + ε)-approximate min-cost matching of size k between A and B
can be computed in O((n+ k

√
k) polylogn · log ε−1) time.

The main challenge here is how to deal with the dead nodes, which neither have excess/de-
ficit nor have flow passing through them, but still contribute to the size of the graph. We show
that the number of alive nodes is only O(k), and then represent the dead nodes implicitly
so that the Hungarian search and computation of a blocking flow can be implemented in
O(k polylogn) time.

Finally in Section 4 we present a faster algorithm for the transportation problem in R2

when the two point sets are unbalanced.

I Theorem 3. Given two point sets A and B in R2 of sizes r and n respectively with r ≤ n,
along with supply-demand function φ : A∪B → Z, an optimal transportation map between A
and B can be computed in O(min{n2, rn3/2} polylogn) time.

Our result improves over the O(n2 polylogn) time algorithm by Agarwal et al. [3] for
r = o(

√
n). Similar to their algorithm, we also use the strongly polynomial uncapacitated

minimum-cost flow algorithm by Orlin [16], but additional ideas are needed for efficient
implementation. Unlike in the case of matchings, the support of the transportation problem
may have size Ω(n) even when r is a constant; so naïvely we can no longer spend time
proportional to the size of support of the transportation map. However, with careful
implementation we ensure that the support is acyclic, and one can find an augmenting path
in O(r

√
npolylogn) time with proper data structures, assuming r ≤

√
n.

SoCG 2019



6:4 Efficient Algorithms for Geometric Partial Matching

2 Minimum-cost partial matchings using Hungarian algorithm

In this section, we solve the geometric partial matching problem and prove Theorem 1 by
implementing the Hungarian algorithm for partial matching in O((n+ k2) polylogn) time.

A node v is matched by matchingM if v is the endpoint of some edge inM ; otherwise v is
unmatched. Given a matchingM , an augmenting path Π = (a1, b1, . . . , a`, b`) is an odd-length
path with unmatched endpoints (a1 and b`) that alternates between edges outside and inside
of M . The symmetric difference M ⊕Π creates a new matching of size |M |+ 1, called the
augmentation of M by Π. The dual to the standard linear program for partial matching has
one dual variable for each node v, called the potential π(v) of v. Given potential π, we can
define the reduced cost of the edges to be cπ(v, w) := c(v, w)− π(v) + π(w). Potential π is
feasible on edge (v, w) if cπ(v, w) is nonnegative. Potential π is feasible if π is feasible on
every edge in G. We say that an edge (v, w) is admissible under potential π if cπ(v, w) = 0.

Fast implementation of Hungarian search. The Hungarian algorithm is initialized with
M ← ∅ and π ← 0. Each iteration of the Hungarian algorithm augments M by an admissible
augmenting path Π, discovered using a procedure called the Hungarian search. The algorithm
terminates after k augmentations, exactly when |M | = k; Ramshaw and Tarjan [17] showed
that M is guaranteed to be an optimal partial matching.

The Hungarian search grows a set of reachable nodes X from all unmatched v ∈ A using
augmenting paths of admissible edges. Initially, X is the set of unmatched nodes in A. Let
the frontier of X be the edges in (A∩X)× (B \X). X is grown by relaxing an edge (a, b) in
the frontier: Add b into X, modify potential to make (a, b) admissible, preserve cπ on other
edges within X, and keep π feasible on edges outside of X. Specifically, the algorithm relaxes
the min-reduced-cost frontier edge (a, b), and then raises π(v) by cπ(a, b) for all v ∈ X. If b is
already matched, then we also relax the matching edge (a′, b) and add a′ into X. The search
finishes when b is unmatched, and an admissible augmenting path now can be recovered.

In the geometric setting, we find the min-reduced-cost frontier edge using a dynamic
bichromatic closest pair (BCP) data structure, similar to [3, 21]. Given two point sets P
and Q in the plane and a weight function ω : P ∪Q→ R, the BCP is two points a ∈ P and
b ∈ Q minimizing the additively weighted distance c(a, b)− ω(a) + ω(b). Thus, a minimum
reduced-cost frontier edge is precisely the BCP of point sets P = A ∩X and Q = B \X,
with ω = π. Note that the “state” of this BCP is parameterized by X and π.

The dynamic BCP data structure by Kaplan et al. [11] supports point insertions and
deletions in O(polylogn) time and answers queries in O(log2 n) time for our setting. Each
relaxation in the Hungarian search requires one query, one deletion, and at most one insertion
(aside from the potential updates). As |M | ≤ k throughout, there are at most 2k relaxations
in each Hungarian search, and the BCP can be used to implement each Hungarian search in
O(k polylogn) time.

Rewinding mechanism. We observe that exactly one node of A is newly matched after an
augmentation. Thus (modulo potential changes), we can obtain the initial state of the BCP
for the (i+ 1)-th Hungarian search from the i-th one with a single BCP deletion.

If we remember the sequence of points added to X in the i-th Hungarian search, then at
the start of the (i+ 1)-th Hungarian search we can rewind this sequence by applying the
opposite insert/delete operation to each BCP update in reverse order to obtain the initial
state of the i-th BCP. With one additional BCP deletion, we have the initial state of the
(i+ 1)-th BCP. The number of insertions/deletions is bounded by the number of relaxations
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per Hungarian search which is O(k). Therefore we can recover, in O(k polylogn) time, the
initial BCP data structure for each Hungarian search beyond the first. We refer to this
procedure as the rewinding mechanism.

Potential updates. We modify a trick from Vaidya [21] to batch potential updates. Potential
is tracked with a stored value γ(v), while the true value of π(v) may have changed since γ(v)
was last recorded. This is done by aggregating potential changes into a variable δ, which is
initially 0 at the very beginning of the algorithm. Whenever we would raise the potential
of all nodes in X, we raise δ by that amount instead. We maintain the following invariant:
π(v) = γ(v) for v 6∈ X, and π(v) = γ(v) + δ for v ∈ X.

At the beginning of the algorithm, X is empty and stored values are equal to true values.
When a ∈ A is added to X, we update its stored value to π(a)− δ for the current value of δ,
and use that stored value as its BCP weight. Since the BCP weights are uniformly offset
from π(v) by δ, the pair reported by the BCP is still minimum. When b ∈ B is added to X,
we update its stored value to π(b)− δ (although it won’t be added to a BCP set). When a
node is removed from X (e.g. by augmentation or rewinding), we update the stored potential
γ(v) ← π(v) + δ, again for the current value of δ. Unlike Vaidya [21] and for the sake of
rewinding, we do not reset δ across Hungarian searches.

There are O(k) relaxations and thus O(k) updates to δ per Hungarian search. O(k) stored
values are updated per rewinding, so the time spent on potential updates per Hungarian
search is O(k). Putting everything together, our implementation of the Hungarian algorithm
runs in O((n+ k2) polylogn) time. This proves Theorem 1.

3 Approximating min-cost partial matching through cost-scaling

In this section we describe an approximation algorithm for computing a min-cost partial
matching. We reduce the problem to computing a min-cost circulation in a flow network
(Section 3.1). We adapt the cost-scaling algorithm by Goldberg et al. [9] for computing
min-cost flow of a unit-capacity network (Section 3.2). Finally, we show how their algorithm
can be implemented in O

(
(n+ k3/2) polylog(n) log(1/ε)

)
time in our setting (Section 3.3).

3.1 From matching to circulation
Given a bipartite graph G with node sets A and B, we construct a flow network N = (V, ~E)
in a standard way [17] so that a min-cost matching in G corresponds to a min-cost integral
circulation in N .

Flow network. Each node in G becomes a node in N and each edge (a, b) in G becomes an
arc a�b in N ; we refer to these nodes and arcs as bipartite nodes and bipartite arcs. We also
include a source node s and sink node t in N . For each a ∈ A, we add a left dummy arc s�a
and for each b ∈ B a right dummy arc b�t. The cost c(v�w) is equal to c(v, w) if v�w is a
bipartite arc and 0 if v�w is a dummy arc. All arcs in N have unit capacity.

Let φ : V → Z be an integral supply/demand function on nodes of N . The positive values
of φ(v) are referred to as supply, and the negative values of φ(v) as demand. A pseudoflow
f : ~E → [0, 1] is a function on arcs of N . The support of f in N , denoted as supp(f), is the
set of arcs with positive flow. Given a pseudoflow f , the imbalance of a node is

φf (v) := φ(v) +
∑

w�v∈~E

f(w�v)−
∑

v�w∈~E

f(v�w).

SoCG 2019



6:6 Efficient Algorithms for Geometric Partial Matching

We call positive imbalance excess and negative imbalance deficit. A node is balanced if it
has zero imbalance. If all nodes are balanced, the pseudoflow is a circulation. The cost of a
pseudoflow is defined to be

c(f) :=
∑

v�w∈supp(f)

c(v�w) · f(v�w).

The minimum-cost flow problem (MCF) asks to find a circulation of minimum cost.
If we set φ(s) = k, φ(t) = k, and φ(v) = 0 for all v ∈ A∪B, then an integral circulation f

corresponds to a partial matching M of size k and vice versa. Moreover, c(M) = c(f). Hence,
the problem of computing a min-cost matching of size k in G transforms to computing an
integral circulation in N . The following lemma will be useful for our algorithm.

I Lemma 4. Let N be the network constructed from the bipartite graph G above.
(i) For any integral circulation g in N , the size of supp(g) is at most 3k.
(ii) For any integral pseudoflow f in N with O(k) excess, the size of supp(f) is O(k).

3.2 A cost-scaling algorithm
Before describing the algorithm, we need to introduce a few more concepts.

Residual network and admissibility. If f is an integral pseudoflow on N (that is, f(v�w) ∈
{0, 1} for every arc in ~E), then each arc v�w in N is either idle with f(v�w) = 0 or saturated
with f(u�v) = 1.

Given a pseudoflow f , the residual network Nf = (V, ~Ef ) is defined as follows. For each
idle arc v�w in ~E, we add a forward residual arc v�w in Nf . For each saturated arc v�w
in ~E, we add a backward residual arc w�v in Nf . The set of residual arcs in Nf is therefore

~Ef := {v�w | f(v�w) = 0} ∪ {w�v | f(v�w) = 1}.

The cost of a forward residual arc v�w is c(v�w), while the cost of a backward residual
arc w�v is −c(v�w). Each arc in Nf also has unit capacity. By Lemma 4, Nf has O(k)
backward arcs if f has O(k) excess.

A residual pseudoflow g in Nf can be used to change f into a different pseudoflow on N
by augmentation. For simplicity, we only describe augmentation for the case where f and g
are integral. Specifically, augmenting f by g produces a pseudoflow f ′ in N where

f ′(v�w) =


0 w�v ∈ ~Ef and g(w�v) = 1,
1 v�w ∈ ~Ef and g(v�w) = 1,
f(v�w) otherwise.

Using LP duality for min-cost flow, we assign potential π(v) to each node v in N . The
reduced cost of an arc v�w in N with respect to π is defined as

cπ(v�w) := c(v�w)− π(v) + π(w).

Similarly we define the reduced cost of arcs in Nf : the reduced cost of a forward residual
arc v�w in Nf is cπ(v�w), and the reduced cost of a backward residual arc w�v in Nf is
−cπ(v�w). Abusing the notation, we also use cπ to denote the reduced cost of arcs in Nf .

The dual feasibility constraint asks that cπ(v�w) ≥ 0 holds for every arc v�w in ~E;
potential π that satisfy this constraint is said to be feasible. Suppose we relax the dual
feasibility constraint to allow some small violation in the value of cπ(v�w). We say that a
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pair of pseudoflow f and potential π is θ-optimal [20, 5] if cπ(v�w) ≥ −θ for every residual
arc v�w in ~Ef . Pseudoflow f is θ-optimal if it is θ-optimal with respect to some potential
π; potential π is θ-optimal if it is θ-optimal with respect to some pseudoflow f . Given a
pseudoflow f and potential π, a residual arc v�w in ~Ef is admissible if cπ(v�w) ≤ 0. We
say that a pseudoflow g in Nf is admissible if g(v�w) > 0 only on admissible arcs v�w, and
g(v�w) = 0 otherwise.2 We will use the following well-known property of θ-optimality.

I Lemma 5. Let f be an θ-optimal pseudoflow in N and let g be an admissible pseudoflow
in Nf . Then f augmented by g is also θ-optimal in N .

Using Lemma 4, the following lemma can be proved about θ-optimality:

I Lemma 6. Let f be a θ-optimal integer circulation in N , and f∗ be an optimal integer
circulation for N . Then, c(f) ≤ c(f∗) + 6kθ.

Estimating the value of c(f∗). We now describe a procedure for estimating c(f∗) within
a polynomial factor, which is used to initialize the cost-scaling algorithm.

Let T be a minimum spanning tree of A∪B under the cost function c. Let e1, e2, . . . , en−1
be the edges of T sorted in nondecreasing order of length. Let Ti be the forest consisting of
the nodes of A∪B and edges e1, . . . , ei. We call a matchingM intra-cluster if both endpoints
of each edge in M lie in the same connected component of Ti. The following lemma will be
used by our cost-scaling algorithm:

I Lemma 7. Let A and B be two point sets in the plane. Define i∗ to be the smallest index
i such that there is an intra-cluster matching of size k in Ti∗ . Set θ := nq · c(ei∗). Then
(i) The value of i∗ can be computed in O(n logn) time.
(ii) c(ei∗) ≤ c(f∗) ≤ θ.
(iii) There is a θ-optimal circulation in the network N with respect to the all-zero potential,

assuming φ(s) = k, φ(t) = −k, and φ(v) = 0 for all v ∈ A ∪B.

As a consequence of Lemmas 7(ii) and 6, we have:

I Corollary 8. The cost of a θ-optimal integral circulation in N is at most (1 + ε)c(f∗),
where θ := ε

6k · c(ei∗).

Overview of the algorithm. We are now ready to describe our algorithm, which closely
follows Goldberg et al. [9]. The algorithm works in rounds called scales. Within each scale,
we fix a cost scaling parameter θ and maintain potential π with the following property:

(∗) There exists a 2θ-optimal integral circulation in N with respect to π.

For the initial scale, we set θ ← θ and π ← 0. By Lemma 7(iii), property (∗) is satisfied
initially. Each scale of the algorithm consists of two stages. In the scale initialization stage,
Scale-Init computes a θ-optimal pseudoflow f . In the refinement stage, Refine converts f
into a θ-optimal (integral) circulation g. In both stages, π is updated as necessary. If θ ≤ θ,
we return g. Otherwise, we set θ ← θ/2 and start the next scale. Note that property (∗) is
satisfied in the beginning of each scale.

By Corollary 8, when the algorithm terminates, it returns an integral circulation f̃ in N
of cost at most (1 + ε)c(f∗), which corresponds to a (1 + ε)-approximate min-cost matching
of size k in G. The algorithm terminates in log2(θ/θ) = O(log(n/ε)) scales.

2 The same admissibility/feasibility definitions will be used later in Section 4. However, the algorithm in
Section 4 maintains a 0-optimal f and therefore admissible residual arcs always have cπ(v�w) = 0.

SoCG 2019



6:8 Efficient Algorithms for Geometric Partial Matching

Scale initialization. In the first scale, we compute a θ-optimal pseudoflow by simply setting
f(v�w) ← 0 for all arcs in ~E. For subsequent scales, we initialize f to the 2θ-optimal
circulation of the previous scale. First, we raise the potential of all nodes in A by θ, all nodes
in B by 2θ, and t by 3θ. The potential of s is unchanged. Such potential change increases
the reduced cost of all forward arcs to at least −θ.

Next, for each backward arc w�v in Nf with cπ(w�v) < −θ, we set f(v�w)← 0 (that
is, make arc v�w idle), which replaces the backward arc w�v in Nf with forward arc v�w
of positive reduced cost. After this step, the resulting pseudoflow must be θ-optimal as all
arcs of Nf have reduced cost at least −θ.

The desaturation of each backward arc creates one unit of excess. Since there are at most
3k backward arcs, the pseudoflow has at most 3k excess after Scale-Init. There are O(n)
potential updates and O(k) arcs to desautrate, so the time required for Scale-Init is O(n).

Refinement. The procedure Refine converts a θ-optimal pseudoflow with O(k) excess
into a θ-optimal circulation, using a primal-dual augmentation algorithm. A path in Nf is
an augmenting path if it begins at an excess node and ends at a deficit node. We call an
admissible pseudoflow g in Nf an admissible blocking flow if g saturates at least one arc in
every admissible augmenting path in Ng. In other words, there is no admissible excess-deficit
path in the residual network after augmentation by g. Each iteration of Refine finds an
admissible blocking flow to be added to the current pseudoflow in two steps:
1. Hungarian search: a Dijkstra-like search that begins at the set of excess nodes and raises

potential until there is an excess-deficit path of admissible arcs in Nf .
2. Augmentation: construct an admissible blocking flow by performing depth-first search on

the set of admissible arcs of Nf . It suffices to repeatedly extract admissible augmenting
paths until no more admissible excess-deficit paths remain.

The algorithm repeats these steps until the total excess becomes zero. The following lemma
bounds the number of iterations in the Refine procedure at each scale.

I Lemma 9. Let θ be the scaling parameter and π0 the potential function at the beginning of
a scale, such that there exists an integral 2θ-optimal circulation with respect to π0. Let f be
a θ-optimal pseudoflow with excess O(k). Then Refine terminates within O(

√
k) iterations.

Proof. We sketch the proof, which is adapted from Goldberg et al. [9]. Let f0 be the assumed
2θ-optimal integral circulation with respect to π0, and let π be the potential maintained
during Refine. Let d(v) := (π(v)− π0(v))/θ, that is, the increase in potential at v in units
of θ. We divide the iterations of Refine into two phases: before and after every (remaining)
excess node has d(v) ≥

√
k. Each Hungarian search raises excess potential by at least θ,

since we use blocking flows. Thus, the first phase lasts at most
√
k iterations.

At the start of the second phase, consider the set of arcs E+ := {v�w ∈ ~E | f(v�w) <
f0(v�w)}. One can argue that the remaining excess with respect to f is bounded above by
the size of any cut separating the excess and deficit nodes [9, Lemma 4]. The proof examines
cuts Yi := {v | d(v) > i} for 0 ≤ i ≤

√
k. By θ-optimality of f and 2θ-optimality of f0,

one can show that each arc in E+ crosses at most 3 cuts. Furthermore, the size of E+ is
O(k), bounded by the support size of f and f0. Averaging, there is a cut among Yis of size
O(k/

√
k), so the total excess remaining is O(

√
k). Each iteration of Refine eliminates at

least one unit of excess, so the number of second phase iterations is also at most O(
√
k). J

In the next subsection we show that after O(npolylogn) time preprocessing, an iteration
of Refine can be performed in O(k polylogn) time (Lemma 11). By Lemma 9 and the fact
the algorithm terminates in O(log(n/ε)) scales, the overall running time of the algorithm is
O((n+ k3/2) polylogn log(1/ε)), as claimed in Theorem 2.
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3.3 Fast implementation of refinement stage

We now describe a fast implementation of Refine. The Hungarian search and augmentation
steps are similar: each traversing through the residual network using admissible arcs starting
from the excess nodes. Due to lack of space, we only describe the former.

At a high level, let X be the subset of nodes visited by the Hungarian search so far.
Initially X is the set of excess nodes. At each step, the algorithm finds a minimum-reduced-
cost arc v�w in Nf from X to V \X. If v�w is not admissible, the potential of all nodes in
X is increased by dcπ(v�w)/θe to make v�w admissible. If w is a deficit node, the search
terminates. Otherwise, w is added to X and the search continues.

Implementing the Hungarian search efficiently is more difficult than in Section 2 because
(a) excess nodes may show up in A as well as in B, (b) a balanced node may become
imbalanced later in the scales, and (c) the potential of excess nodes may be non-uniform.
We therefore need a more complex data structure.

We call a node v of N dead if φf (v) = 0 and no arc of supp(f) is incident to v; otherwise
v is alive. Note that s and t are always alive. Let A` denote the set of alive nodes in A;
define B` similarly. There are only O(k) alive nodes, as each can be charged to its adjoining
supp(f) arcs or its imbalance. We treat alive and dead nodes separately to implement the
Hungarian search efficiently. By definition, dead nodes only adjoin forward arcs in Nf . Thus,
the in-degree (resp. out-degree) of a node in A \A` (resp. B \B`) is 1, and any path passing
through a dead node has a subpath of the form s�v�b for some b ∈ B or a�v�t for some
a ∈ A. Consequently, a path in Nf may have at most two consecutive dead nodes, and
in the case of two consecutive dead nodes there is a subpath of the form s�v�w�t where
v ∈ A \A` and w ∈ B \B`. We call such paths, from an alive node to an alive node with
only dead interior nodes, alive paths. Let the reduced cost cπ(Π) of an alive path Π be the
sum of cπ over its arcs. We say Π is weakly admissible if cπ(Π) ≤ 0.

We find the min-reduced-cost alive path of lengths 1, 2, and 3 leaving X, then relax the
cheapest among them (raise potential of X by dcπ(Π)/θe and add every node of Π into X).
Essentially, relaxing alive paths “skips over” dead nodes. Since reduced costs telescope on
paths, weak admissibility of an alive path depends only on the potential of its alive endpoints.
Thus, we can query the minimum alive path using a partial assignment of π on only the alive
nodes, leaving π over the dead nodes untracked. We now describe a data structure for each
path length. Note that our “time budget” per Hungarian search is O(k polylogn).

Finding length-1 paths. This data structure finds a min-reduced-cost arc from an alive
node of X to an alive node of V \X. There are O(k) backward arcs, so the minimum among
backward arcs can be maintained explicitly in a priority queue and retrieved in O(1) time.

There are three types of forward arcs: s�a for some a ∈ A`, b�t for some b ∈ B`, and
bipartite arc a�b with two alive endpoints. Arcs of the first (resp. second) type can be found
by maintaining A` \X (resp. B` ∩X) in a priority queue, but should only be queried if
s ∈ X (resp. t 6∈ X). The cheapest arc of the third type can be maintained using a dynamic
BCP data structure between A` ∩X and B` \X, with reduced cost as the weighted pair
distance. Such a data structure can be implemented so that insertions/deletions can be
performed in O(polylog k) time [11].

Finding length-2 paths. We describe how to find a cheapest path of the form s�v�b where
v is dead and b ∈ B`. A cheapest path a�v�t can be found similarly. Similar to length-1
paths, we only query paths starting at s if s ∈ X and paths ending at t if t 6∈ X.
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Note that cπ(s�v�b) = c(v, b) + π(b)− π(s). Since π(s) is common in all such paths, it
suffices to find a pair (v, w) between A \ A` and B` \X minimizing c(v, w) + π(w). This
is done by maintaining a dynamic BCP data structure between A \ A` and B` \X with
the cost of a pair (v, w) being c(v, w) + π(w). We may require an update operation for each
alive node added to X during the Hungarian search, of which there are O(k), so the time
spent during a search is O(k polylogn).

Since the size of A \ A` is at least r − k, we cannot construct this BCP from scratch
at the beginning of each iteration. To resolve this, we use the idea of rewinding from
Section 2, with a slight twist. There are now two ways that the initial BCP may change
across consecutive Hungarian searches: (1) the initial set X may change as nodes lose excess
through augmentation, and (2) the set of alive/dead nodes in A may change. The first is
identical to the situation in Section 2; the number of excess depletions is O(k) over the course
of Refine. For the second, the alive/dead status of a node can change only if the blocking
flow found passes through the node. By Lemma 10 below, there are O(k) such changes per
Hungarian search, which can be done in O(k polylogn) time.

Finding length-3 paths. We now describe how to find the cheapest path of the form
s�v�w�t where v ∈ A\A` and w ∈ B\B`. Note that cπ(s�v�w�t) = c(v�w)−π(s)+π(t).
A pair (v, w) between A \A` and B \B` minimizing c(v, w) can be found by maintaining a
dynamic BCP data structure similar to the case of length-2 paths.

This BCP data structure has no dependency on X – the only update required comes
from membership changes to A` or B` after an augmentation. Applying Lemma 10 again,
there are O(k) alive/dead updates caused by an augmentation, so the time for these updates
per Hungarian search is O(k polylogn).

Updating potential. Potential updates for alive nodes can be handled in a batched fashion
as in Section 2. The three data structures above have no dependency on the dead node
potential; we leave them untracked as described before. The Hungarian search remains intact
since alive nodes are visited in the same order as when using arc-by-arc relaxations. However,
we need values of π on all nodes at the end of a scale (for the next Scale-Init) and for
individual dead nodes whenever they become alive (after augmentation).

We can reconstruct a “valid” potential in these situations. To recover potential for
v ∈ A \ A` we set π(v) ← π(s), and for v ∈ B \ B` we set π(v) ← π(t). Straightforward
calculation shows that such potential (1) preserves θ-optimality, and (2) makes Π (arc-wise)
admissible for any weakly admissible alive path Π. Hence, a blocking flow composed of
weakly admissible alive paths is admissible under the recovered potential.

The following lemma is crucial to the analysis of running time for the Hungarian search,
bounding both the number of relaxations and potential update/recovery operations.

I Lemma 10. Both Hungarian search and augmentation stages explore O(k) nodes, and the
blocking flow found in augmentation stage is incident to O(k) nodes.

Augmentation can also be implemented in O(k polylogn) time, after O(n polylogn) time
preprocessing, using similar data structures. We thus obtain the following:

I Lemma 11. After O(npolylogn) time preprocessing, each iteration of Refine can be
implemented in O(k polylogn) time.



P.K. Agarwal, H.-C. Chang, and A. Xiao 6:11

4 Transportation algorithm

Given two point sets A and B in R2 of sizes r and n respectively and a supply-demand
function φ : A ∪ B → Z as defined in the introduction, we present an O(rn3/2 polylogn)
time algorithm for computing an optimal transport map between A and B. By applying this
algorithm in the case of r ≤

√
n and the one by Agarwal et al. [3] when r >

√
n, we prove

Theorem 3. We use a standard reduction to the uncapacitated min-cost flow problem and
use Orlin’s algorithm [16] as well as some of the ideas from Agarwal et al. [3] for efficient
implementation under the geometric settings. We first present an overview of the algorithm
and then describe its fast implementation that achieves the desired running time.

4.1 Overview of the algorithm
Orlin’s algorithm follows an excess-scaling paradigm and the primal-dual framework. It
maintains a scale parameter ∆, a flow function f , and potential π on the nodes. Initially ∆
is equal to the total supply, f = 0, and π = 0. We fix a constant parameter α ∈ (0.5, 1). A
node v is called active if the magnitude of imbalance of v is at least α∆. At each step, using
the Hungarian search, the algorithm finds an admissible excess-to-deficit path between active
nodes in the residual network and pushes a flow of amount ∆ along this path.3 Repeat the
process until either active excess or deficit nodes are gone; when this happens, ∆ is halved.
The sequence of augmentations with a fixed value of ∆ is called an excess scale.

The algorithm also performs two preprocessing steps at the beginning of each excess scale.
First, if f(v�w) ≥ 3n∆, v�w is contracted to a single node z with φ(z) = φ(v) + φ(w).4
Second, if there are no active excess nodes and f(v�w) = 0 for every arc v�w, then ∆ is
aggresively lowered to maxv φ(v).

When the algorithm terminates, an optimal circulation in the contracted network is found.
We use the algorithm described in Agarwal et al. [3] to recover an optimal circulation for
the original network in O(npolylogn) time. Orlin showed that the algorithm terminates
within O(n logn) scales and performs a total of O(n logn) augmentations. In the next
subsection, we describe an algorithm that, after O(npolylogn) time preprocessing, finds an
admissible excess-to-deficit path in O(r

√
npolylogn) amortized time. Summing this cost

over all augmentations, we obtain the desired running time.

4.2 An efficient implementation
Recall in the previous sections that we could bound the running time of the Hungarian
search by the size of supp(f). Here, the number of active imbalanced nodes at any scale
is O(r), and the length of an augmenting path is also O(r). Therefore one might hope to
find an augmenting path in O(r polylogn) time, by adapting the algorithms described in
Sections 2 and 3. The challenge is that supp(f) may have Ω(n) size, therefore an algorithm
which runs in time proportional to the support size is no longer sufficient. Still, we manage
to implement Hungarian search in time O(r

√
npolylogn), by exploiting a few properties of

supp(f) as described below.
We note that each arc of supp(f) is admissible with reduced cost 0, so we prioritize the

relaxation of support arcs as soon as they arrive in X × (V \X), over the non-support arcs.
This strategy ensures the following crucial property.

3 Note that this augmentation may convert an excess node into a deficit node.
4 Intuitively, f(v�w) is so high that future scales cannot deplete the flow on v�w.
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I Lemma 12. If the support arcs supp(f) are relaxed as soon as possible, supp(f) is acyclic.

Next, similar to Section 3, we call node u alive if (a) u is an active imbalanced node or
(b) if u is incident to an arc of supp(f); u is dead otherwise. Unlike in Section 3, once a node
becomes alive it cannot be dead again. Furthermore, a dead node may become alive only at
the beginning of a scale (after the value of ∆ is reduced). Also, an augmenting path cannot
pass through a dead node. Therefore, we can ignore all dead nodes during Hungarian search,
and update the set of alive/dead nodes at the beginning of a scale.

Let BT ⊆ B` be the set of nodes that are either (a) active imbalanced nodes or (b)
incident to exactly one arc of supp(f). Lemma 12 implies that B` \BT has size O(r). We
can therefore find the min-reduced-cost arc between X ∩ A` and B` \ (BT ∪X) using a
BCP data structure as in Section 2, along with lazy potential updates and the rewinding
mechanism. The total time spent by Hungarian search on the nodes of B` \ BT will be
O(r polylogn). We subsequently focus on handling BT.

Handling BT. We now describe how we query a min-reduced-cost arc between X ∩A` and
BT \X. Each node b ∈ BT is incident to exactly one arc in supp(f). We partition these
nodes into clusters depending on their unique neighbor in Nf . That is, for a node a ∈ A`,
let BT

a := {b ∈ BT | a�b ∈ supp(f)}. We refer to BT
a as the star of a.

The crucial observation is that a is the only node in Nf reachable from each b ∈ BT
a , so

once the Hungarian search reaches a node of BT
a and thus a (recall we prioritize relaxing

support arcs), the Hungarian search need not visit any other nodes of BT
a , as they will

only lead to a. Hence, as soon as one node of BT
a is reached, all other nodes of BT

a can be
discarded from further consideration. Using this observation, we handle BT as follows.

We classify each a ∈ A` as light or heavy: heavy if |BT
a | ≥

√
n, and light if |BT

a | ≤ 2
√
n.

Note that if
√
n ≤ |BT

a | ≤ 2
√
n then a may be classified as light or heavy. We allow this

flexibility to implement reclassification in a lazy manner. Namely, a light node is reclassified
as heavy once |BT

a | > 2
√
n, and a heavy node is reclassified as light once |BT

a | <
√
n.

This scheme ensures that the star of a has gone through at least
√
n updates between two

successive reclassifications, and these updates will pay for the time spent in updating the
data structure when a is re-classified.

For each heavy node a ∈ A` \ X, we maintain a BCP data structure between BT
a

and X ∩ A`. Next, for all light nodes in A` \ X, we collect their stars into a single set
BT
< :=

⋃
a lightB

T
a . We maintain one single BCP data structure between BT

< and A` ∩X.
Thus, at most r different BCP data structures are maintained for stars.

Using these data structures, we can compute and relax a min-reduced-cost arc v�w
between A` ∩ X and BT \ X. If w lies in some star BT

a , then we also add a into X. If
a is light, then we delete BT

a from BT
< and update the BCP data structure of BT

<. If a is
heavy, then we stop querying the BCP data structure of BT

a for the remainder of the search.
Finally, since a becomes part of X, a is added to all O(r) BCP data structures. Recall that
r ≤
√
n by assumption. Adding arc v�w thus involves performing O(

√
n) insertion/deletion

operations in various BCP data structures, thereby taking O(
√
npolylogn) time.

Putting it together. While proof is omitted, the following lemma bounds the running time
of the Hungarian search.

I Lemma 13. Assuming all BCP data structures are initialized correctly, the Hungarian
search terminates within O(r) steps, and takes O(r

√
npolylogn) time.
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Once an augmenting path is found and the augmentation is performed, the set of
imbalanced nodes and the support arcs change. We thus need to update the sets BT, BT

a s,
and BT

<. This can be accomplished in O(r polylogn) amortized time. When we begin a new
Hungarian search, we use the rewinding mechanism to set various BCP data structures in
the right initial state. Finally, when we move from one scale to another, we also update the
sets A` and B`. Omitting all the details, we conclude the following.

I Lemma 14. Each Hungarian search can be performed in O(r
√
npolylogn) time.

Since there are O(n logn) augmentations and the flow in the original network can be
recovered from that in the contracted network in O(npolylogn) time [3], the total running
time of the algorithm is O(rn3/2 polylogn), as claimed in Theorem 3.
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