103 research outputs found

    Flash Flood Early Warning Research in China

    Get PDF
    Along with global climate change, extreme rainfall causes severe flash flood disasters, especially in mountainous areas. As about 67% of the terrestrial part of the whole country is mountain area with frequent heavy rainfall, China suffers from flash flood disasters throughout its history. As flash floods are distributed extensively and its influence sphere highly concentrated, it is unreasonable and uneconomical to prevent flash flood disasters mainly via engineering measures. Then, China starts exploring about flash flood early warning, which is optimal for developing country with dense populations, since the 1990s. Based on the literature research, a systematic framework for Chinese flash flood early warning research has been developed. In this frame, flash flood early warning is classified into long-term warning and real-time warning. This chapter presents the Chinese achievements in analysis methods for long-term warning, computational methods for real-time warning indicators, improving data sources used for real-time warnings and the information construction of real-time warning systems. In addition, the suggestions for future study are presented

    A Web GIS Based Simulation Tool For Coastal Urban Flood Prediction

    Full text link
    Flooding in urban areas due to heavy rainfall coupled with high tides is a major concern affecting development of coastal cities all over the world. There is a spectrum of models such as 2D distributed flood models to simplified storage cell models using analytical expressions. All such models demand a high level of skill to handle geospatial data making it difficult for decision makers. Thus development of web GIS based hydrological application becomes essential. Traditionally, most web GIS based applications have used conceptual model because of low data requirements and parameter calibrations. In this paper web GIS based integrated flood model has been presented. Both the web GIS server and the associated hydrological model have been indigenously built. The web GIS server has been built using Java, Java Servlet Page, JQuery, HTML and XML technologies while the associated hydrological model has been built in MATLAB language and both are stored on the server side. The data input to the model is from the client-side through web browser. The model is capable of simulation 1D overland flow using mass balance approach, 1D diffusion wave based channel flow model and quasi 2D raster based floodplain model. The study presents a web GIS based urban flood simulation tool for a coastal urban catchment of Navi Mumbai, India. The three main outputs from the tool are a) generation discharge and stage hydrographs at any point along the channel; b) Water level profile plot at any hour of the simulation and c) Flood map animation in case of flooding in channel. The results of the model application indicate that the model can be used as an effective coastal urban flood simulation tool

    Sustainable Agriculture and Advances of Remote Sensing (Volume 1)

    Get PDF
    Agriculture, as the main source of alimentation and the most important economic activity globally, is being affected by the impacts of climate change. To maintain and increase our global food system production, to reduce biodiversity loss and preserve our natural ecosystem, new practices and technologies are required. This book focuses on the latest advances in remote sensing technology and agricultural engineering leading to the sustainable agriculture practices. Earth observation data, in situ and proxy-remote sensing data are the main source of information for monitoring and analyzing agriculture activities. Particular attention is given to earth observation satellites and the Internet of Things for data collection, to multispectral and hyperspectral data analysis using machine learning and deep learning, to WebGIS and the Internet of Things for sharing and publishing the results, among others

    Flood modelling using data available on the Internet

    Get PDF
    Includes bibliographical references (p. 95-102).The aim of this study was to determine if sufficient data at no charge is available on the Internet to use as input to a free and open source hydrological model for use in a flood monitoring system. As such, the monitoring system would be SensorWeb enabled. The study area is the C83A quaternary catchment (746 km2) in the Northern Free State, part of the Vaal primary catchment in South Africa

    Advances in Modeling and Management of Urban Water Networks

    Get PDF
    The Special Issue on Advances in Modeling and Management of Urban Water Networks (UWNs) explores four important topics of research in the context of UWNs: asset management, modeling of demand and hydraulics, energy recovery, and pipe burst identification and leakage reduction. In the first topic, the multi-objective optimization of interventions on the network is presented to find trade-off solutions between costs and efficiency. In the second topic, methodologies are presented to simulate and predict demand and to simulate network behavior in emergency scenarios. In the third topic, a methodology is presented for the multi-objective optimization of pump-as-turbine (PAT) installation sites in transmission mains. In the fourth topic, methodologies for pipe burst identification and leakage reduction are presented. As for the urban drainage systems (UDSs), the two explored topics are asset management, with a system upgrade to reduce flooding, and modeling of flow and water quality, with analyses on the transition from surface to pressurized flow, impact of water use reduction on the operation of UDSs, and sediment transport in pressurized pipes. The Special Issue also includes one paper dealing with the hydraulic modeling of an urban river with a complex cross-section

    Hydro-Ecological Modeling

    Get PDF
    Water is not only an interesting object to be studied on its own, it also is an important component driving almost all ecological processes occurring in our landscapes. Plant growth depends on soil water content, as well is nutrient turnover by microbes. Water shapes the environment by erosion and sedimentation. Species occur or are lost depending on hydrological conditions, and many infectious diseases are water-borne. Modeling the complex interactions of water and ecosystem processes requires the prediction of hydrological fluxes and stages on the one side and the coupling of the ecosystem process model on the other. While much effort has been given to the development of the hydrological model theory in recent decades, we have just begun to explore the difficulties that occur when coupled model applications are being set up

    Book of Abstracts, ACOP2017 : 2nd Asian Conference on Permafrost

    Get PDF

    Urban flood simulation and integrated flood risk management

    Get PDF
    Climate change induces the probability of occurring natural disasters; e.g. floods, Sea Level Rise, Green House Gases. Flood is considered one of the most dangerous phenomena that tremendously and dramatically threatening the human being and environment worldwide. Rapid urban growth, demographic explosion, and unplanned land uses have exacerbated the problem of urban flooding, particularly in the cities of China. In addition to that, the concept of flood risk management and adaptation measures and strategies are still missed in the cities’ development future plans. The main objective of this Ph.D. dissertation is to investigate the flood risk analysis and assessment based on flood simulation and adaptive strategies for flood event through two case studies of Changsha city in south-central China. In case study I, fluvial flooding was considered on mesoscale and an MCA-based approach was proposed to assess the integrated flood risk of Changsha central city. HEC-RAS 1-D model was used to simulation the inundation characteristics for hazard analysis based on four risk dimensions: economic, social, environmental, and infrastructural risk. For infrastructural dimension, apart for direct damage on road segments, network analysis method was combined with inundation information and macroscopic traffic simulation to evaluate the impact on traffic volume as well as a decrease of road service level. Closeness centrality weighted with a travel time of pre- and after- flood was compared in order to measure the impact on urban accessibility. Integrated risk values were calculated using various weighting criteria sets. Sobol' indices were used as a tool of spatially-explicit global Uncertainty Analysis and Sensitivity Analysis (UA/SA) for damage models. In case study II, an agent-based modeling approach was proposed to simulate the emergency pluvial flood event caused by a short-time rainstorm in local areas of cities aiming at developing an interactive flood emergency management system capable of interpreting the risk and reduction strategy of the pluvial flood. The simulation integrated an inundation model with microscopic traffic simulation. It also reveals that all agents can benefit significantly from both engineering measures and the only pedestrian obtain relatively more benefits from risk warning with high awareness. The method provided potentials in studies on the adaptive emergency management and risk reduction, help both decision-makers and stakeholders to acquire deeper and comprehensive understanding of the flood risk. This Ph.D. study has investigated holistic methods and models’ selection in flood risk assessment and management to overcome data deficiency and to achieve the integration of different data. The results of the first case study reveal that the integrated methods have proved to be able to improved flood risk analysis and assessment especially for indirect damage of infrastructural system with network features. The global UA/SA based on Sobol' method and visualization with maps enable to gain the spatial distribution of uncertainty for various factors, the validation of damage models, and deeper and more comprehensive understanding of flood risk. Then based on the integrated risk assessment, functions of spatial planning in flood risk management were discussed, potentially providing guidance and support for decision-making. The results of the second case study denote that agent-based modeling and simulation can be effectively utilized for flood emergency management. Two scenarios focusing on specific risk reduction interventions were designed and compared. Engineering measures by improving capability of the drainage system and the surface permeability of waterlogging areas are the most effective means for damage mitigation. High public risk awareness still has great potential benefits of the in the event of emergencies, which can greatly enhance the effectiveness of the official warning. The agent-based modeling and simulation provided an effective method for analyzing the effectiveness of different strategies for reducing flood risk at the local scale and for supporting urban flood emergency management. The case studies also indicate the significance and necessity of establishing a platform and database to realize full sharing and synergies of spatial information resources for flood risk management, which is a vital issue to manage the urban flood risk and take effective measures correspondingly with responding to emergency extreme flood event. Keywords: urban flood; flood risk assessment; network analysis; flood simulation; flood risk managemen

    Advances in Modelling of Rainfall Fields

    Get PDF
    Rainfall is the main input for all hydrological models, such as rainfall–runoff models and the forecasting of landslides triggered by precipitation, with its comprehension being clearly essential for effective water resource management as well. The need to improve the modeling of rainfall fields constitutes a key aspect both for efficiently realizing early warning systems and for carrying out analyses of future scenarios related to occurrences and magnitudes for all induced phenomena. The aim of this Special Issue was hence to provide a collection of innovative contributions for rainfall modeling, focusing on hydrological scales and a context of climate changes. We believe that the contribution from the latest research outcomes presented in this Special Issue can shed novel insights on the comprehension of the hydrological cycle and all the phenomena that are a direct consequence of rainfall. Moreover, all these proposed papers can clearly constitute a valid base of knowledge for improving specific key aspects of rainfall modeling, mainly concerning climate change and how it induces modifications in properties such as magnitude, frequency, duration, and the spatial extension of different types of rainfall fields. The goal should also consider providing useful tools to practitioners for quantifying important design metrics in transient hydrological contexts (quantiles of assigned frequency, hazard functions, intensity–duration–frequency curves, etc.)
    • …
    corecore