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Preface to “Hydro-Ecological Modeling” 
In recent decades, predictions of water balance, floods and droughts based on 

hydrological models improved drastically. However, the impact of ecological 
processes on water regimes and the ecological response to changing hydrological 
conditions has often been ignored, or understood as a static boundary condition 
and is scarcely included in the analyses of model performance. Simulating the 
complex interactions of water and ecosystem processes, however, requires the 
prediction of hydrological fluxes and states on the one side, and the coupling of 
the hydrological and ecosystem process models on the other. 

This Special Issue presents twelve modeling studies exploring the interaction 
of ecological processes and water fluxes from Europe, Asia, North America, Africa 
and Australia. In these different climatic settings, half of the studies focus on the 
impact of ecological change on the water balance. Examples are the influence of 
bushfires, land use change driven by socio-economic processes or algae blooms 
that change the availability of water resources. The second set of studies focusses 
more on the problem, how water fluxes drive ecological processes. In these studies, 
water is understood as a habitat, a transport agent for nutrients, or as a crucial 
resource for plant development. 

 

Lutz Breuer and Philipp Kraft  
Guest Editors 





  
 

 
Chapter 1:  
Ecological Controls on Water 
Resources 
 
 
 
 
 
 
 
 
 
 
 
 
  



 



Climate or Land Use?—Attribution of
Changes in River Flooding in the Sahel Zone
Valentin Aich, Stefan Liersch, Tobias Vetter, Jafet C. M. Andersson,
Eva N. Müller and Fred F. Hattermann

Abstract: This study intends to contribute to the ongoing discussion on whether land
use and land cover changes (LULC) or climate trends have the major influence on the
observed increase of flood magnitudes in the Sahel. A simulation-based approach is
used for attributing the observed trends to the postulated drivers. For this purpose,
the ecohydrological model SWIM (Soil and Water Integrated Model) with a new,
dynamic LULC module was set up for the Sahelian part of the Niger River until
Niamey, including the main tributaries Sirba and Goroul. The model was driven
with observed, reanalyzed climate and LULC data for the years 1950–2009. In order
to quantify the shares of influence, one simulation was carried out with constant land
cover as of 1950, and one including LULC. As quantitative measure, the gradients of
the simulated trends were compared to the observed trend. The modeling studies
showed that for the Sirba River only the simulation which included LULC was able to
reproduce the observed trend. The simulation without LULC showed a positive trend
for flood magnitudes, but underestimated the trend significantly. For the Goroul
River and the local flood of the Niger River at Niamey, the simulations were only
partly able to reproduce the observed trend. In conclusion, the new LULC module
enabled some first quantitative insights into the relative influence of LULC and
climatic changes. For the Sirba catchment, the results imply that LULC and climatic
changes contribute in roughly equal shares to the observed increase in flooding.
For the other parts of the subcatchment, the results are less clear but show, that
climatic changes and LULC are drivers for the flood increase; however their shares
cannot be quantified. Based on these modeling results, we argue for a two-pillar
adaptation strategy to reduce current and future flood risk: Flood mitigation for
reducing LULC-induced flood increase, and flood adaptation for a general reduction
of flood vulnerability.

Reprinted from Water. Cite as: Aich, V.; Liersch, S.; Vetter, T.; Andersson, J.C.M.;
Müller, E.N.; Hattermann, F.F. Climate or Land Use?—Attribution of Changes in
River Flooding in the Sahel Zone. Water 2015, 7, 2796–2820.

1. Introduction

Catastrophic flooding in the Sahelian part of the Niger basin has become an
increasing threat during the last decades, leading to more than ten million people
affected since the year 2000 [1]. Tarhule et al. (2005) [2] were some of the first to
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bring the topic into academic research, referring to it as the “other Sahelian hazard”.
Aich et al. (2014) [1] recently published a comprehensive overview of flooding
characteristics within the entire Niger basin, including a review of existing literature
and damage statistics from different sources. They found that the Sahelian part
of the Niger basin was particularly affected by catastrophic floods, with an almost
exponential increase in people affected over the last decades. They also showed that
the increasing flood risk was related to the extreme population growth, the increasing
vulnerability of the population, and an increase in flood magnitude.

However, the reason for the increase in flood magnitude in the Sahel is still not
fully understood. Descroix et al. (2012) [3] stated that climate is not the cause of the
phenomenon, since the increasing discharges are accompanied by decreasing rainfall
rates. This inconsistency is called “the Sahel Paradox” (SP) and is described in detail
in Descroix et al. 2013 [4]. Based on their statistical analysis and field observations on
infiltration, they argued that the effect of land use and land cover change (LULC),
from the local to the meso-scale, caused the increased discharge in the region. The
main processes were land clearing and the transformation of savannah into pasture,
agricultural land or degraded savannah. This led to soil crusting and a decrease in
infiltrability, which subsequently led to an increase in flood magnitude during the
heavy rains of the Sahelian rainy season.

In contrast to their study, Aich et al. (2014) [1] identified climatic changes
and a return to wet conditions as the major driver of increasing flood magnitudes
in the Niger basin, including the Sahelian region. Aich et al. (2014) [1] used a
data-based attribution approach and compared time series of maximum annual
discharge (AMAX) with precipitation time series, as well as time series of flashiness
of discharge, as a proxy for LULC. They showed that even though the LULC caused
an increase in flashiness since at least the 1960s, the AMAX decreased until the
1980s and they concluded that LULC could not be the major driver of the increased
flood regime in the Sahel. In addition, they demonstrated that the SP only existed
during the 1970s and 1980s, after which the trends of precipitation and discharge
again correlated.

This study intends to contribute to the discussion on the reasons for the
increasing flood risk in the Sahelian part of the Niger basin. The specific research
question is, to which share LULC and/or climatic changes cause the increase of
river flooding in the area. To this end, a simulation-based attribution approach
proposed by Merz et al. (2012) [5] is used. Merz et al. (2012) [5] introduced a
hypothesis testing framework for attributing changes of flood regime, which is
based on testing the consistency or inconsistency of plausible drivers with the
observed flood trend and providing a confidence level for the attribution. They
distinguished between a data-based and a simulation-based attribution approach.
The data-based attribution compares flood time series or their statistics with those
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of the assumed driver, for example, by evaluating the correlation between the time
series of the potential cause and effect variables. It is common and widely used in the
literature (e.g., [1,6–11]). The simulation-based approach has been used in several
studies with conceptual rainfall-runoff models [12–16]. Process-based hydrological
models have not been widely used for attribution approaches. There are studies,
which distinguish climate change and LULC impacts on historical trends in flood
magnitude, but not systematically and within one modeling approach (e.g., [17]).
To the best of our knowledge, the only study published which follows the protocol
of Merz et al. (2012) [5] is that by Hundecha and Merz (2012) [18]. Hundecha and
Merz (2012) [18] drove a hydrological model with a large number of stationary and
non-stationary climate time series in order to study whether the observed flood trend
was climate driven.

In this study, we analyze the effects of LULC on the flood trend using the
process-based based ecohydrological model SWIM (Soil and Water Integrated Model)
with integrated dynamic land use change. The ecohydrological model is applied to
simulate flood discharges for the time period 1950–2009 with two different settings.
The discharge is simulated with static land cover as of 1950 in order to show how
the discharge would have developed over the last 60 years if there had not been
any LULC. The second/control run implicitly includes past LULC. We hypothesize
that the comparison of the modelled discharge of these two scenarios will give some
initial quantitative insights into the relative share of LULC and climatic changes on
changes in the Sahel flood regimes.

There is an ongoing debate over whether the observed “return to wet conditions”
in West Africa itself can be attributed to global climate change or is still within the
boundaries of natural climatic variability [19–21]; without taking sides, we refer to
the recent changes of the precipitation patterns as “climatic” changes.

Since this study is the first to attribute LULC to flood trends via a process-based
hydrological model following the proposed protocol of Merz et al. (2012) [5], it might
additionally shed first light on the requirements of data quality/availability and the
efficiency of the hydrological model in order to achieve robust attribution statements.

2. Materials and Methods

2.1. Regional Setting

The Sahelian part of the Niger River is located downstream of Diré in Mali and
extends to around Niamey in the state of Niger (Figure 1). This part of the Niger
basin until Niamey covers around 297,400 km2. Its landscape is characterized by
plateaus and smooth valleys with long slopes. The climate is semi-arid, with annual
precipitation ranging from 267 mm in Ansongo to 540 mm in Niamey. The potential
evapotranspiration in the area is 3500 mm per year [3]. The typically convective
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rainfalls occur within the rainy season between June and October. The vegetation
in the region and its changes since the 1950s are described in detail in Descroix et al.
(2012) [3]. The original bushy and woody savannah types have been replaced almost
completely by crop fields, pasture and a patchwork of woody savannah vegetation
called Tiger Bush. The northern part, in which the Sirba catchment is located, is too
dry for effective rain fed agriculture and was therefore turned mainly into extensively
or intensively used pastoral land (Figures 2 and 3). In contrast, the southern part in
which the Sirba catchment is located has mainly been converted into cropland.

Water 2015, 7 2799 

 

 

The potential evapotranspiration in the area is 3500 mm per year [3]. The typically convective rainfalls 

occur within the rainy season between June and October. The vegetation in the region and its changes 

since the 1950s are described in detail in Descroix et al. (2012) [3]. The original bushy and woody 

savannah types have been replaced almost completely by crop fields, pasture and a patchwork of woody 

savannah vegetation called Tiger Bush. The northern part, in which the Sirba catchment is located, is 

too dry for effective rain fed agriculture and was therefore turned mainly into extensively or intensively 

used pastoral land (Figures 2 and 3). In contrast, the southern part in which the Sirba catchment is located 

has mainly been converted into cropland. 

 

Figure 1. Map of the research area in West Africa including land use classes used in the model 

as base map in the year 2000. The orange, green, and red outlines mark the watershed of the 

gauging stations Alcongui (Goroul River), Garbe-Kourou (Sirba River) and the watershed of 

Niamey (Niger River). The grey dots show the grid of the PGFv2 climate reanalysis data set. 

The red dots show the grid of the climate data used for the analysis. The hatched area marks the 

region which is used for the quantification of land use and land cover changes. 

Most of the discharge in the Sahelian part of the Niger originates in its upstream regions within  

the Guinean highlands. The Inner Niger Delta, a large wetland, limits the Upper Niger basin. The wetland 

smooths the river flow and protracts the peak. The outlet of the delta is close to Diré, and the flood, 

generated in the Guinean highlands, occurs between November and January. This flood, referred to as 

Figure 1. Map of the research area in West Africa including land use classes used in
the model as base map in the year 2000. The orange, green, and red outlines mark
the watershed of the gauging stations Alcongui (Goroul River), Garbe-Kourou
(Sirba River) and the watershed of Niamey (Niger River). The grey dots show the
grid of the PGFv2 climate reanalysis data set. The red dots show the grid of the
climate data used for the analysis. The hatched area marks the region which is used
for the quantification of land use and land cover changes.
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Most of the discharge in the Sahelian part of the Niger originates in its upstream
regions within the Guinean highlands. The Inner Niger Delta, a large wetland, limits
the Upper Niger basin. The wetland smooths the river flow and protracts the peak.
The outlet of the delta is close to Diré, and the flood, generated in the Guinean
highlands, occurs between November and January. This flood, referred to as the
“Guinean Flood”, passes through Niamey between December and the beginning of
March [1]. Transmission losses are high between Diré and Niamey, resulting in higher
annual discharge at Diré compared to Niamey. Little additional runoff is generated
locally in the Sahelian part [22]. This locally generated discharge comes mainly from
the plateaus of the right-bank subbasins and results in another flood peak in the
Sahelian Niger, previous to the Guinean Flood. This first peak occurs during the
rainy season (July–November) and is called the “Red Flood” due to the red color of
the sedimentary load of the local iron oxide rich soils. The two main tributaries are
the Goroul (44,900 km2) and Sirba Rivers (38,750 km2), which are analyzed in this
study (gauging stations Alcongui and Garbe-Kourou). Both are intermittent rivers,
and the annual peaks vary substantially, with values between 35 and 300 m3/s for
Alcongui and 20 and 460 m3/s for Garbe-Kourou (1950–2009). The vast subbasins
to the East reach up into the central Sahara and contribute only a minor amount
of inflow, and local tributaries are endorheic most of the year. The Guinean and
Red Floods can usually be clearly distinguished. The peak of the Guinean Flood is
already smoothed due to the large watershed and the dynamics of the Inner Niger
Delta, whereas the peak of the Red Flood is more jagged and flashy. However, in
years where the Red Flood is very low, a separate peak cannot be distinguished. This
happened regularly during the 1950s and 1970s but has occurred significantly less
often since the 1980s [1].
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Figure 2. Land use and land cover changes between 1950 and 2005 for crop and
pasture after Hurtt et al. (2011) [23].

7



Water 2015, 7 2800 

 

 

the “Guinean Flood”, passes through Niamey between December and the beginning of March [1]. 

Transmission losses are high between Diré and Niamey, resulting in higher annual discharge at Diré 

compared to Niamey. Little additional runoff is generated locally in the Sahelian part [22]. This locally 

generated discharge comes mainly from the plateaus of the right-bank subbasins and results in another 

flood peak in the Sahelian Niger, previous to the Guinean Flood. This first peak occurs during the rainy 

season (July–November) and is called the “Red Flood” due to the red color of the sedimentary load of 

the local iron oxide rich soils. The two main tributaries are the Goroul (44,900 km2) and Sirba Rivers 

(38,750 km2), which are analyzed in this study (gauging stations Alcongui and Garbe-Kourou). Both are 

intermittent rivers, and the annual peaks vary substantially, with values between 35 and 300 m3/s for 

Alcongui and 20 and 460 m3/s for Garbe-Kourou (1950–2009). The vast subbasins to the East reach up 

into the central Sahara and contribute only a minor amount of inflow, and local tributaries are endorheic 

most of the year. The Guinean and Red Floods can usually be clearly distinguished. The peak of  

the Guinean Flood is already smoothed due to the large watershed and the dynamics of the Inner Niger 

Delta, whereas the peak of the Red Flood is more jagged and flashy. However, in years where the Red 

Flood is very low, a separate peak cannot be distinguished. This happened regularly during the 1950s 

and 1970s but has occurred significantly less often since the 1980s [1]. 

 

Figure 2. Land use and land cover changes between 1950 and 2005 for crop and pasture 

after Hurtt et al. (2011) [23]. 

 

Figure 3. Changes in the main land use classes of crop, savannah, and pasture from 1950 

until 2005 for the watershed of the Niger River between Ansongo and Niamey, and  

the catchments of the Sirba and Goroul Rivers (see area in Figure 1).  

Figure 3. Changes in the main land use classes of crop, savannah, and pasture from
1950 until 2005 for the watershed of the Niger River between Ansongo and Niamey,
and the catchments of the Sirba and Goroul Rivers (see area in Figure 1).

2.2. Ecohydrological Model and Model Set-Up

The ecohydrological model SWIM (Soil and Water Integrated Model) is
a continuous-time (daily) and spatially semi-distributed model of intermediate
complexity for river basins [24]. SWIM was developed based on two models: Soil
and Water Assessment Tool (SWAT) [25] and MATSALU [26], with the aim to provide
a tool for climate and LULC impact assessment in meso-scale and large river basins.
It integrates hydrological processes, vegetation growth, nutrient cycling, erosion and
sediment transport at the river basin scale [27]. The hydrological system of the model
comprises four main segments: The soil surface, the root zone of the soil, the shallow
aquifer, and the deep aquifer. On the soil surface, the surface runoff is estimated as
a non-linear function of precipitation and a retention coefficient. It depends on soil
water content, land use, and soil type (modified after the Soil Conservation Service
curve number approach [28]). The soil column is subdivided into several layers. In
these layers, the water balance is calculated, including precipitation, surface runoff,
evapotranspiration, subsurface runoff, and percolation. Hydrological processes
represented in the shallow aquifer are groundwater recharge, capillary rise to the soil
profile, lateral flow, and percolation to the deep aquifer. Potential evapotranspiration
is calculated using the method of Turc-Ivanov [29]. Actual evaporation from soil and
transpiration by plants are simulated following the Ritchie concept [30].

A simplified Environmental Policy Integrated Climate (EPIC) approach [31]
is integrated in the model for the simulation of arable crops and other general
vegetation types (e.g., pasture, savannah, evergreen forest), using specific parameter
values for each crop/vegetation type. The parameter settings of the newest version
of the SWAT model are used for the aggregated vegetation types of the SWIM
model [32]. These parameter settings have been widely used in the African context
for LULC studies (e.g., [33–36]). The effects of the vegetation on the hydrological
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processes include the cover-specific retention coefficient, impacting surface runoff
and influencing the amount of transpiration. Transpiration is simulated as a function
of potential evapotranspiration and leaf area index. A more detailed description of
the representation of hydrological processes within SWIM is given in Huang et al.
(2013) [27].

SWIM disaggregates a river basin into subbasins and hydrotopes. The subbasins
are delineated on the basis of flow accumulation in a Digital Elevation Model. The
hydrotopes are created by overlaying the subbasin map with maps of land use and
soil. They represent the spatial units used to simulate all water flows and nutrient
cycling in soil as well as vegetation growth based on the principle of similarity
(i.e., assuming that units within one subbasin that have the same land use and soil
types behave similarly). The model was applied for impact studies in several basins
in Africa and showed good efficiency for the whole Niger, the Blue Nile, the Limpopo
and the Congo [36,37]. In addition, a multi-model intercomparison of hydrological
models of Vetter et al. (2015) has shown that SWIM is quite capable of simulating
flow in the Niger basin [38].

For this study, the model has been set up for the Sahelian part of the Niger River,
from Diré in Mali to Niamey in the state of Niger. Since the model is only used for
modeling river flows in the past, monitored discharges are routed into the model
at the Diré gauge. The model includes 255 subbasins for the 297,000 km2 area of
the watershed. These subbasins are integrated to form three subcatchments which
are the catchments Goroul (station Alcongui), Sirba (station Garbe-Kourou), and
Niger (between the stations Diré and Niamey) (Figure 1). These subcatchments were
calibrated individually in order to fit the model as closely as possible to the regional
conditions (see Section 2.5).

2.3. Dynamic Land Use Change Module

The newly developed land use change module (LUCM) for the SWIM model
is used for the first time in this study. It changes the land classes at any frequency
or given point in time, while keeping the instantaneous balance of water and other
modelled fluxes constant during the change, for example soil water content (SWC).
This means that the number and the areas of hydrotopes within a subbasin can
change and new hydrotopes can appear or others disappear.

The land-use status at given points in time (see Section 2.4.3) are read in by the
LUCM (in this study every five years; Shorter frequencies up to a daily change are
possible). The LUCM transforms the land classes and rearranges the hydrotopes on
the basis of so-called stable units (SU). SU are areas within a subbasin and do not
change their extent, like areas with uniform soil, for example. For these SU, fluxes
like SWC remain constant during the change, even if the land class changes. Thereby,
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all given information on LULC on the subbasin level is used, and the transformation
of the hydrotopes does not alter the balances of water or other relevant fluxes.

The following two examples shall illustrate the main processes when hydrotopes
increase or decrease within a SU. If the shares of crop and pasture increase and the
savannah deceases, the SWC of the old hydrotopes have to be newly distributed. The
SWC of the savannah is reduced according to its areal share. The residual SWC is
then added proportionally to crop and pasture, depending on their areal increase.

In another case, an existing SU consists of cropland and savannah. In the new
land use, there is also pasture on the SU. Meanwhile, crop and savannah shrink. In
this case, the SWC of crop and savannah is reduced proportionally and the residual
SWC is completely added to the new pasture.

These examples show that the balance of the SWC remains constant during the
change on the SU. This holds also for all other simulated fluxes. Only parameters
connected to vegetation, such as biomass, for example, restart at zero for the
additional area or are reduced relative to the areal changes.

2.4. Data

2.4.1. Climate Data

Climate data are used to drive the simulations and to analyze the total annual
precipitation. For the modeling runs, a relatively dense spatial coverage of climate
input is needed, since the climate forcing is interpolated for each subbasin (see
Section 2.2). In the data-sparse research area, this can only be provided by reanalysis
data sets. For this study, three different data sets have been analyzed and compared
to data from six weather stations in the region, in order to check their performance in
the face of the requirements for an attribution study with regard to accuracy. The
WATCH Forcing Data 20th Century (WATCH) (1950–2001) [39], data from the Global
Soil Wetness Project Phase 3 (GSWP3) [40] and the second version of the Global
Meteorological Forcing Dataset for land surface modeling of Princeton University
(PGFv2) [41] (Figures 4 and 5) have been selected as potential model input. The visual
comparison of temperature and precipitation shows that all of the data sets generally
have good correspondence with the measured data, yet also all of them have some
deficits (PGFv2: Figures 4 and 5, WATCH: Supplementary Material Figures S1 and
S2, GSWP3: Figures S3 and S4). Regarding precipitation, distinct deviations of single
years or short periods do occur, as for example in all three data sets for the station
Timbuktu during the early 1990s. However, the general trends in precipitation are
represented in all three reanalysis products. Annual mean temperatures only rarely
deviate more than 1 �C from the observed station data and reproduce the general
trends also efficiently. Additional uncertainty derives from the limited evaluation.
The comparison only takes six stations into account for the whole region. These
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points cannot represent the whole area. These uncertainties deriving from the climate
data have to be taken into account when discussing the modeling results. The
comparison implies that single years should not be compared between the modeling
results and observations of discharge. However, since the major trends of the climate
data are represented in the analysis, the climate data can be used for reproducing
general trends with the model when results are carefully interpreted.
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Figure 4. Comparison of precipitation from interpolated PGFv2 reanalysis data (red)
with observations from six weather stations (black) in the research area. For each
station, the annual precipitation (left) and the cumulative sum of the precipitation
of the whole period (right) is depicted.

Since no systematic differences could be detected with regard to data quality,
the PGFv2 data set was finally selected since it is the newest of the three data sets. It
is a combination of a suite of global observation-based data sets with the National
Centers for Environmental Prediction—National Center for Atmospheric Research
reanalysis. The spatial resolution is at 0.5� � 0.5� and for the modeling the 3-hourly
data has been aggregated to daily data.

For the precipitation analysis, annual rainfall data is aggregated for each
subcatchment (Niger, Sirba, Goroul) by building the mean over all data points in the
subcatchment region (Figure 1). Since the Guinean Flood is completely generated
in the Upper Niger basin, the related rainfall data was aggregated for this region
outside the research area.
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Figure 5. Comparison of mean annual temperature of interpolated PGFv2
reanalysis data (red) with observations from six weather stations (black) in the
research area.

2.4.2. Discharge Data

Observed discharges from three monitoring stations (Figure 1) were used to
calibrate and validate the model and for the analysis of the AMAX. The observed
discharge at the Diré station was used as input for the model (see Section 2.2). The
observations are part of the Niger-HYCOS monitoring network, managed by the
Niger Basin Authority, which consists of daily water-level readings at more than
100 locations across the basin, as well as accompanying rating curves to compute
discharge at these locations [42].

The AMAX for the time series of Alcongui on the Goroul River and
Garbe-Kourou on the Sirba River are created by selecting the highest daily discharge
per year, with gaps for years where the peak cannot be identified due to missing
values. The time series for Niamey has two peaks per year (see Section 2.1). The
second, the Guinean peak, occurs in most of the years after the 31st of December
but is still assigned to the rainy season of the previous year. For the Red Flood,
the procedure is not straightforward since the peak cannot be distinguished in
dry years hidden from the Guinean Flood and thus it cannot be quantified for all
years (see Section 2.1). For the simulation, this problem was solved by simulating the
discharge without the inflow of Diré, leading to a clear AMAX value of the Red Flood,
generated in the Sahelian part of the Niger basin after Diré. For the observation, it is
not possible to filter only the discharge which is generated in the basin downstream
of Diré. Therefore, identification of the AMAX depends on a clearly distinguishable
first peak of the hydrograph between July and October. For years when the flood
peak cannot be detected since it is too low and hidden under the Guinean flood
peak, the AMAX time series contains gaps, which affects the statistical analysis (see
Section 2.7).
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2.4.3. Land Cover and Land Use Change Data

For the representation of the LULC in the model, maps of the land cover for
different periods are needed. For this study, land use maps have been generated in
five year steps from 1950 until 2005. There is no data available which provides this
information to the degree of detail necessary for ecohydrological modeling at the
meso-scale with regard to land classes. Therefore, the land cover maps have been
derived using the information from two different data sets. In the first step, a base
map was derived which has the necessary details concerning land cover at a fine
spatial resolution. For the base map, land class information was derived from the
GLC2000 data set [43]. It differentiates between 27 land classes and has a spatial
resolution of 1

112 , which corresponds to 1 km at the equator. It is based on remote
sensing data and includes a detailed legend. The GLC2000 classes occurring in the
research area have been transformed to the classes of the ecohydrological model
(Figure 1, see Section 2.2).

However, this map only represents the one point in time at which the data
was collected (year 2000). Therefore, an additional data set was used which gives
information about the change in land cover with regard to crop, pasture, and
urban land but for different times in history. The information on areal changes
in crop and pasture was obtained from the Land-Use Harmonization project [23].
The harmonized land use scenarios connect historical reconstructions with future
scenarios and have been used as a basis for the Earth System Models of the fifth
Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). The
historical data for the period 1500–2005 are based on the model HYDE [44,45], and
contain information on changes to cropland, pasture and urban land at a 0.5� � 0.5�

resolution on an annual basis. The reconstruction of the data set is based on satellite
maps for the years they were available and for the more distant past by combining
information on population density, soil suitability, distance to rivers or lakes, slopes,
and specific biomes. Each grid point of the LULC data contained the percentage of
crop, pasture and urban land (Figure 2).

With this information on changes, the base map was altered for each of the
5-year time steps in order to have land use maps which represent the LULC, as
shown simplified in Figure 6. The LULC information was added to the base map
on the subbasin level of the model, and existing land classes changed accordingly.
The land classes of water, wetlands, sandy/stony desert and bare rock have been
kept constant in the year 2000. When pasture, crop and/or urban land increase
in a subbasin, other natural vegetation land classes like savannah or forest are
proportionally reduced in the same subbasin. If crop, pasture and/or urban land
decrease, the land classes of the natural vegetation increase proportionally.
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Figure 6. Exemplary process of how the information from the Land Use and Land
Cover data of the Land-Use Harmonization project is used on the subbasin level to
produce land cover maps for the different years which are then used by the land
use change module. The whole square represents one exemplary subbasin, with
small squares representing individual stable units (SU).

The emerging land class maps from 1950 until 2005 are used in the model as
explained in Section 2.4. In Figure 3 the changes are quantified for the watershed of
Niamey until Ansongo, corresponding to the area marked by climate grid points in
Figure 1. The related spatial distribution is shown in Figure 2.

Crop types were derived from a data set for West African crops [46]. The four
main types in the region are millet, sorghum, cowpea and rice. For every subbasin,
the same crop type has been used for the whole period, according to the dominant
crop in the data.

2.4.4. Soil and Topographic Data

Information on the soils in the research area for the modeling was derived
from the Digital Soil Map of the World [47]. Relevant parameters for the model
include depth, clay, silt and sand content, bulk density, porosity, available water
capacity, field capacity, and saturated conductivity for each of the soil layers. For
the delineation of the subbasins and necessary topographic information, a Digital
Elevation Model derived from the Shuttle Radar Topography Missions at a 90 m
resolution [48] was used.

2.5. Calibration of the Model

An accurate representation of the main hydrological processes and
characteristics of the research is a crucial precondition for a robust modeling
attribution. Therefore, the model was calibrated with a standard procedure for SWIM
and SWAT [49] via an automatic calibration using the PEST software package [50].
This is commonly applied, as for example done in the studies of Vetter et al. [38]
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on the rivers Rhine (Europe), Upper Niger (Africa), and Upper Yellow (Asia). The
calibration was done individually for the Sirba (station Garbe-Kourou), the Goroul
(station Alcongui) and the rest of the subcatchment between Diré and Niamey (station
Niamey) to take into account the distinctly different geographic attributes. During the
calibration, the LUCM was used in order to calibrate/validate the model with correct
land use for the respective period and region. The calibrated parameters/factors
are static and do not change within a subcatchment and over time. The focus of the
calibration and model set-up for all subbasins was to achieve adequate efficiency
for streamflow simulations on daily time steps, especially for high flows. Therefore,
the main parameters/factors for the calibration were related to groundwater, river
routing, saturated conductivity and potential evapotranspiration (Table 1). For the
Sirba and Goroul catchments, the parameters related to groundwater and the factors
for potential evapotranspiration and saturated conductivity showed the highest
sensitivity. Routing parameters were somewhat less sensitive. For the Niger basin
between Diré and Niamey without the subcatchments of Goroul and Sirba, the
sensitivity for the routing and the potential evapotranspiration was higher and
the sensitivity of other parameters lower. This is likely due to the fact that the
model is fed monitored data from the Diré gauging station (see Section 2.2). Prior
to the calibration, the available observed discharge data was checked visually and
calibration periods were selected where distinct high and distinct low annual peaks
are represented in order to cover a broad range of rainfall-runoff conditions. The
period was finally selected when a period of eight years with a low amount of missing
data was available (Goroul (Alcongui): 1963–1970, Sirba (Garbe-Kourou): 1986–1994,
Niger (Niamey): 1988–1995). The validation periods are before or after the calibration
period, depending on the availability of observations (Goroul (Alcongui): 1971–1978,
Sirba (Garbe-Kourou): 1978–1985, Niger (Niamey): 1996–2003). Since there are not
enough climatic observations available, reanalysis data is used to drive the model,
also during the calibration. The results of the calibration are shown in Table 2.
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Table 1. Calibrated parameters of the ecohydrological model SWIM (Soil and Water
Integrated Model) with a short description.

Calibrated Parameter/Factors Short Description

Groundwater related
parameters

Groundwater
recession

Rate at which groundwater flow is
returned to the stream.

Groundwater
delay

The time it takes for water to leave the
bottom of the root zone until it reaches
the shallow aquifer where it can
become groundwater flow (in days).

Baseflow factor

The baseflow factor is used to calculate
the return flow travel time. The return
flow travel time is then used to
calculate percolation in the soil from
layer to layer.

Correction factor for saturated conductivity The factor is applied for all soils

Correction factor for potential evapotranspiration The factor is applied for all subbasins
in the respective subbasin.

Routing coefficient

Routing coefficient to calculate the
storage time constant of the flow from
the initial estimation which is based on
channel length and celerity.

Table 2. Calibration and validation results of the eco-hydrological model SWIM in
Nash-Sutcliff efficiency (NSE) and percent bias (PBIAS) for three stations.

Gauging Stations Calibration Validation

NSE PBIAS NSE PBIAS

Alcongui (Goroul) 0.58 �0.4 0.55 �16.9
Garbe-Kourou (Sirba) 0.66 22.1 0.49 34.5

Niamey (Niger) 0.86 12.2 0.87 6.9

2.6. Sensitivity Analysis of the Effects of LULC on the Hydrological Regime

The representation of the LULC and their effect on the hydrological processes
are important for an understanding of the discharge changes. In Figure 7, the effects
of different land cover on the modelled hydrological regime are shown for the Sirba
and Goroul watersheds. The watersheds have been modelled with three set-ups,
with either crop, pasture or savannah vegetation covering the entire subcatchments.
The model is run for a period of 10 years (1985–1995). Regarding precipitation, the
10-year period was selected with a rather dry beginning and above-average wet
conditions at the end in order to allow for different rainfall-runoff conditions.

The subcatchments covered solely with crops show a strong increase in peak
discharges. In the wetter Goroul catchment, this holds true even for the dry years
at the beginning of the 10-year period. The results for crop cover correspond to the
changes as described in detail in Amogu et al. (2010) [22], Descroix et al. 2012 [3] and
Descroix et al. 2013 [4] for the research area. The LULC processes lead to a decrease in
infiltrability and more direct runoff and regeneration of groundwater. They attribute
the regeneration of the groundwater to the fast infiltration in the rivers, which carry
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more water due to the increase in runoff. This effects lead to a higher frequency of
flow changes and flashiness. For pasture, this process seems to be much weaker in
the modeling results.

These results reflect the sensitivity analysis of different studies of LULC in Africa,
using the same land class parameters of the SWAT model. Awotowi et al. (2014) [33]
show for West Africa that land use classes of SWAT are generally suitable for
West African conditions. They found similar effects of LULC on the hydrology
for the Volta basin, where cropland replaced savannah and grassland. Other studies
undertaken with SWAT in East Africa studying the effects of LULC focus more
on the transformation of forest to cropland [34,35,51]. Concerning the effect of the
transformation from savannah into pasture as taken place mainly in the Goroul
catchment, it was not possible to test whether the parameterization of the model
reflects the hydrological processes. There is no quantitative data or literature available
to the authors which could be used to verify the modelled effects. The potential
misparametrization of pasture is discussed in more detail in Sections 3.2 and 3.3.
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Figure 7. Comparison of discharges with four different land use coverages (100%
crop, 100% pasture, 100% Savanna and land use as observed) for the Sirba and
Goroul watersheds.

2.7. Statistical Methods

In order to make general trends of the time series more clearly visible, the local
regression fitting technique LOESS was used [52]. This is a nonparametric regression
method that combines multiple regression models in a k-nearest-neighbor-based
meta-model [53]. When plotted, it generates a smooth curve through a set of data
points. It is used to depict nonlinear trends in time series.
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Since the absolute values of discharge differ distinctively between the different
parts of the catchment, AMAX anomalies are used in order to make the results more
easily comparable. The time series of AMAX anomalies is given by the time series
of AMAX of the individual years divided by the mean AMAX of the entire AMAX
time series of 1950–2009, given as a percentage. The annual rainfall time series are
transformed to anomalies accordingly.

Linear trends in the observed and simulated AMAX time series are estimated
using the Theil-Sen estimator [54,55]. It estimates the slope of a trend and is widely
used, since it is insensitive to outliers. Since serial independence is a requirement
of the test, the data was checked for autocorrelations using the Durbin-Watson
statistic test [56,57]. It tests the null hypothesis that the residuals from an ordinary
least-squares regression are not autocorrelated against the alternative that the
residuals are autocorrelated. If an autocorrelation of the first order was found,
trend-free pre-whitening was applied according to the method proposed by Yue et al.
(2002) [58]. It is a procedure to remove serial correlation from time series, and hence
to eliminate the effect of serial correlation on the Theil-Sen estimator.

As a result of the gaps in the time series for the Red Flood (see Section 2.4.2),
it is not possible to generate a local regression curve and to identify the minimum
of the AMAX time series. The linear trends are therefore only calculated from 1984
to 2009 with five missing years (1986, 1987, 1993, 1995, 1996). This means that the
AMAX trends are calculated consistently for the simulations even with these gaps
and can therefore be included in the interpretation.

For the calibration and validation, the methods of Nash and Sutcliff (1970)
(NSE) [59], and percent bias (PBIAS) have been used. The NSE is calculated using
the formula.

NSE � 1
°n

i�1 pQobs � Qsimq
2

°n
i�1

�
Qobs � Qobs

�2

Values for the NSE range from 1 to negative 8 values. An NSE of 0 means
that the model is no better than using average annual discharge as a predictor. If
NSE = 1, it means that the model is perfectly aligned with the observations. The
PBIAS indicates the over- or underestimation of discharge during the calibration
or validation period as a percentage. For the evaluation of the NSE and PBIAS
the terminology of Moriasi et al. [60] is used (for NSE: very good: 0.75–1.0, good:
0.65–0.75, satisfactory: 0.5–0.65, unsatisfactory: <0.5; for PBIAS: very good: <|10|,
good: |10|–|15|, satisfactory: |15|–|25|, unsatisfactory: ¥|25|).

2.8. Hypothesis Testing Framework

In order to attribute the increase of discharge observed in the research area to
LULC and/or climatic changes, a simulation-based approach within a hypothesis
testing framework as proposed by Merz et al. [5] is applied. The framework consists
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of the evidence of consistency, the evidence of inconsistency, and the provision of
confidence level. In order to show the consistency or inconsistency, the observed
trend is compared to the change simulated by the hydrological model, either with
or without considering the potential driver LULC. The model which includes all
postulated drivers, as in our case both changes in LULC and climatic regime,
should be able to reproduce the observed trends and are therefore control runs.
The simulations without one of the postulated drivers, might result in no trends
or differing trends. This difference can then be used for the quantification of the
influence. In other words, if the model is capable of simulating the observed trend
without LULC, it would mean that LULC has no or little influence on the discharge
trend and vice versa (within the uncertainty limits of model runs).

In this study, the observed trend is an increase of flood peak magnitude since
the 1970s/1980s. Therefore, the AMAX is derived from the observed and simulated
daily time series of discharge. The AMAX time series have been transformed from
absolute values to anomalies (see Section 2.7) in order to be able to compare the
gradients amongst the subcatchments. The gradients of the trends are used as
measure for the comparison. Ideally, the second/control run including LULC shows
a similar gradient like the observed trend. The difference between the gradients of
the run without LULC and the observed then consequently indicates the share of the
climatic variability.

Annual rainfall is used as general indicator of the wetness trend in the
respective watershed. The rainfall trend mainly helps to illustrate the SP (see
Section 2.1.), and whether the simulations are able to reproduce the phenomenon
when including LULC.

3. Results and Discussion

3.1. Validation of the Model

To quantify the efficiency of the model, the NSE and PBIAS were used (see
Section 2.7). The model showed very high efficiency at the gauging station Niamey
for the validation period (NSE: 0.87/PBIAS: 6.9) (Figure 8). For the Goroul basin,
the results are satisfactory for the NSE (0.55) and slightly unsatisfactory for the
Sirba basin (0.49). For the PBIAS, only the validation of the station Alcongui shows
satisfactory efficiency (�16.9). At the station Garbe-Kourou, the PBIAS is over 25
and therefore unsatisfactory. The very good performance of the model for the station
Niger can be explained by the fact that monitored data was fed into the model at
the station Diré, while the reason for the weaker performance of the model in the
watersheds of the Goroul and Sirba Rivers after the intensive calibration efforts
is unclear. We assume that the climatic reanalysis data for these subcatchments
are at above-average deficiency and/or that the land use data for these regions
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are not accurate. In fact, some years with similar observed hydrographs, like 1974
and 1975 at the Goroul river, for example, are simulated once very accurately and
yet in the other year are deficient. An additional reason for the difficulties could
be that the discharge of rivers in dry environments is generally more sensitive to
climate input due to the low runoff-coefficients [37], which is especially the case
for the intermittent rivers Goroul and Sirba. Inaccurate climate forcing is therefore
more likely to affect the model performance in drier regions. The reasons, therefore,
are the proportionally higher losses in smaller streams through evapotranspiration,
transmission losses, etc. compared to large rivers. A certain decrease in rainfall thus
leads to a proportionally larger decrease in discharge in dry areas compared to wetter
areas [37]. Other explanations for the lower performance might be data quality of
the streamflow, the parametrization of the land use or other deficits in the model
structure, e.g., for the representation of the groundwater. These input data related
problems are taken into account in the discussion (see Sections 3.2 and 3.3).
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Figure 8. Validation and calibration of the SWIM model for the watersheds
of Alcongui, Garbe-Kourou and Niamey for eight-year periods using PGFv2
reanalysis climate forcing. For Niamey, the measured discharge at the Diré gauge is
additionally plotted, which is fed into the model.

Since in this study absolute numbers of discharge are not analyzed but only
anomalies, the NSE is more meaningful than the PBIAS. Therefore, the output
of the model is used in the study for the Niamey gauge but also for the smaller
subcatchments, with lower but still satisfying model efficiency, when looking at the
calibration and validation phases.
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3.2. Attribution of Trends in Annual Maximum Discharges

3.2.1. Simulation Results

The gradients of the trend lines for all AMAX anomaly time series are used as a
quantitative attribution measure as specified in Section 2.8. (see trend lines in the
lower part of Figure 9 and gradients in Table 3) All estimated observed and simulated
trends are positive and statistically significant (α = 0.05).
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Figure 9. Anomalies of annual maximum discharges for the gauging stations
Alcongui (Goroul River), Garbe-Kourou (Sirba River) and differentiated between
the Red and the Guinean Flood for Niamey (Niger River). On the top of each
region, rainfall anomalies over the respective catchment are plotted. A LOESS
curve with a minimum point is added as a dashed line and the Theil-Sen estimators
for the discharge trends are plotted as bold lines, beginning at the minimum of the
observed discharge points. Please note that, for the observed values of the Red
Flood at Niamey, the time series is incomplete (see Section 2.4.2). Therefore, the
LOESS curve is not plotted and the trends start at 1984 (see Section 2.6). For the
Guinean Flood at Niamey, all minima are on the same point and the circle is plotted
in black.

In the Sirba catchment, the simulation run including LULC reproduces the trend
of AMAX anomaly adequately (simwith LULC: 2.94, obs.: 2.42, Table 3), whereas the
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simulation run that assumed no LULC since 1950s does not reproduce the observed
trend of AMAX anomaly adequately (simwithout LULC: 1.05).

Table 3. Gradient of the trends of AMAX anomalies (see Figure 4) as estimated
with the Theil-Sen approach.

Gauging Stations Observed
Simulation w. LULC Simulation w/o LULC

Gradient % of Observed
Gradient Gradient % of Observed

Gradient

Sirba River (Garbe-Kourou) 2.42 2.94 121% 1.05 43%
Goroul River (Alcongui) 2.37 1.38 58% 1.29 54%

Niger River (Niamey, Red Flood) 0.87 0.63 72% 0.56 64%
Niger River (Niamey, Guinean Flood) 1.61 1.37 85% 1.36 84%

In contrast, for the Guinean flood of the Niger River at Niamey, the AMAX
anomaly gradients of both simulations are similar to the observed trends of the
AMAX anomaly (simwith LULC: 1.37, simwithout LULC: 1.36, obs: 1.61). For the so-called
Red Flood of the Niger River at Niamey, the simulation with LULC is closer to
the observed AMAX trend than the run without considering LULC (simwith LULC:
0.63, simwithout LULC: 0.56, obs.: 0.87), but both are not able to reproduce the
trend adequately.

In the Goroul catchment, the gradients of both simulation runs (simwith LULC:
1.38, simwithout LULC: 1.29, obs.: 2.37) significantly underestimate the observed
gradient of AMAX anomalies.

The Sahel Paradox (SP) of the Sirba catchment is distinct with an offset between
the minima of AMAX and annual rainfall of approximately 10 years. Both simulations
show this effect while the SP of the control run is more distinct, with an AMAX
minimum close to the observed AMAX minimum.

In the Goroul catchment the SP is very pronounced, too, with an offset of
approximately 14 years. Both simulations show the effect while they underestimate
the offset by approximately seven years. For the Red Flood at Niamey, it is not
possible to detect the magnitude of the SP shift of the observed AMAX due to the
missing LOESS curve and minimum (see Section 2.7). However, both simulations
show an offset of around five years, which is in accordance with the findings from
the Sirba River. For the Guinean Flood the effect of the SP does not occur and rainfall
and AMAX minima do not show the paradoxical offset.

3.2.2. Discussion of Simulation Results

The effects of LULC are most pronounced in the model runs for the Sirba
subcatchment. The main LULC in this watershed is a distinct increase in cropland
and a reduction of natural savannah (Figure 3). This leads to an increase of surface
flow and less evapotranspiration, both represented in the model parametrization.
Because the run without LULC generates a trend gradient of 43% of the gradient

22



of the observed trend, this share can be attributed to the climatic changes and,
consequently, the other half to the LULC.

The Guinean Flood is almost exclusively controlled by the hydrological setting
upstream of the Sahelian Niger. Since this study only simulates the basin downstream
of Diré, the LULC effects upstream are not simulated. If there were effects, they
are inherent in the observed discharge which was fed into the model at Diré. Still,
the absence of any LULC effect when flowing through the Sahelian part, as well as
the correlation between the rainfall and the AMAX trends, supports the finding of
Aich et al. [1]. They identified the climate as the main driver of the Guinean Flood.
The differences between the trend magnitudes of rain and AMAX can be explained
by the sensitivity of the Niger basin, which causes a higher increase in discharge
compared to the magnitude of rainfall [37].

For the Red Flood of the Niger River at Niamey, there is almost no difference in
the gradients of the simulations with and without LULC. The runs without LULC and
hence with only the climatic forcing causing the trend can explain 64% of the observed
AMAX anomaly trend. The modelled effect of LULC is small and reproduces 72%
of the observed trend. These results of the Red Flood correspond to the results of
the Goroul catchment, which is the beside the Sirba catchment the second major
tributary catchment generating the Red Flood (see Section 2.1). Therefore they are
discussed together.

In the Goroul catchment, the poor performance of the model runs with and
without LULC only allows a partial quantification of the relative effect of the drivers.
Following the simulation results without LULC, the climatic part of the simulations
explains 54% of the observed trend gradient. The cause for the remaining 46% is
unclear, since the runs with LULC do not reproduce the trend significantly better.
Therefore, it is not possible to give robust statements for the Goroul catchment and
for the Red Flood as to the influence of the assumed drivers and quantification
is a fortiori uncertain. The results might even indicate that there is an additional
driver forcing the AMAX trends besides climatic changes and LULC, which is not
represented in the model and has not been postulated. Another general point is the
quality of the observed discharge data and the reanalyzed climate data. Especially in
the Goroul catchment, the validation shows that some peaks are missed completely
by the model (e.g., Alcongui 1977), or that peaks which are modelled do not occur at
all in the discharge data (e.g., Alcongui 1963). This indicates the general deficit of
the employed observed reanalyzed data and needs to be taken into account for the
interpretation as well. However, a more probable explanation is the combination of
inadequate information on LULC and/or a deficient representation of LULC in the
model. The dominant change in the reanalysis data set of LULC in the watershed
is a transformation of savannah to pasture (Figure 2). These two land cover types
do not differ substantially in their modelled effects on the hydrological regime (see

23



Section 2.6, Figure 7). Therefore, the similar and poor results for the runs with and
without the LUCM are a logical consequence. The parameters for pasture of the
SWAT land class parameters are most likely optimized for pastures in the temperate
zone. The hydrological effects of pasture in the Sahel differ probably from these
temperate pastures. However, since no other data was available to the authors in
order to check or even change the effects and the related parameters of pasture
in the Sahel, this deficit could neither be verified nor corrected. We assume that
especially the infiltration capacities of Sahelian pastures are lower than of pastures in
the temperate zones, e.g., due to soil-crusting effects and less dense vegetation. An
additional source of uncertainty is the undifferentiated information on LULC with
regard to savannah. Descroix et al. (2012) [3] describe the LULC of this region with a
change from the original bushy and woody savannah to a degraded savannah (Tiger
Bush, see Section 2.1) and sandy slopes due to land clearing. These changes are not
represented in the LULC data (see Section 2.4.3).

The SP is a special aspect of the increase of flood magnitudes. Following our
results, the same statements and explanations, which can explain the increase in flood
magnitude, hold also for the SP. For all time series (except the ones from the Guinean
Flood of the Niger River at Niamey, where the SP did not occur), the SP phenomenon
could be reproduced without LULC, but to a lower degree than when accounting for
LULC. We assume that this effect is based on changes in the frequency of precipitation
in the climatic forcing. The findings of Panthou et al. [61,62] of increasing convective
precipitation supports this theory that heavy precipitation leads to an increase of the
run-off coefficient, and finally to an increase in discharge. This effect is also shown
by means of measurements in Amogu et al. [22]. Eventually, the combined actions of
LULC and changes in precipitation patterns seem responsible for the observed SP in
the 1970s/1980s.

Another finding is the non-stationary influence of climate. The model runs
without LULC, and hence with only climate as the driver show upward trends in
AMAX for both tributaries and the Red Flood of the Niger River at Niamey. These
increases are, however, stronger than the respective annual rainfall anomalies would
suggest. Therefore, we assume that changes in the rainfall patterns, most likely an
increase in the frequency of heavy precipitation, contribute to the trend. This is
supported by state-of-the-art analysis of climatic changes in the Sahel, for example
by Panthou et al. [61,62].

3.3. Discussion of the Methodological Framework Employed and Related Uncertainties

We acknowledge that simulation runs and the calibration procedure are affected
by a wide range of uncertainties regarding the processes in the model, their
parametrization and the driver data. Relevant processes like evapotranspiration
and surface runoff are not entirely physically based in the model but simplified and

24



calibrated with a factor or empirical (e.g., the factor for potential evapotranspiration
and the curve number approach). Therefore, the effects of LULC on these processes
could be represented inadequately. However, the SWIM model showed in this study,
like SWAT model in other LULC studies in the region [33], that the process-based
models are generally able to reproduce the effects of LULC.

The data on LULC as the key driver of the attribution study cannot be easily
improved regarding temporal and spatial resolution since no other data products
or observation on LULC are available for the region. There is only a qualitative
confirmation of the used LULC data by studies which are based on observations [3,22].
The global LULC data set seemed therefore partly reliable, but, for example
degradation of savannah (Tiger Bush, see Section 2.1), as reported in the studies are
not represented in such a detail. We therefore recommended for similar studies the
use of regional and more detailed data sets, if available.

Regarding the uncertainty coming from the parametrization, especially the
representation of land cover types in the model has to be adequately included
in terms of their hydrological attributes. The robustness of a simulation-based
attribution study is therefore not only dependent on the general validation results
of the model, but rather on the ability of the model to reflect well-known changes
of the postulated driver(s) adequately. Especially the parametrization of pasture in
the model is questionable, but could, due to the lack of related field data, not be
improved. A way to avoid this uncertainty might be the calibration of each of the
main changing land cover types separately by looking at small catchments which
are dominated by one of these land uses [63]. In doing so, the sensitivity of the
model against the impact of each change can be verified and tested whether the
representation is adequate or not. Unfortunately, discharge data for the validation
of the model performance on such homogeneous areas were not available for the
research area of this study.

Additional uncertainty is related to the general methodological framework. A
modeling attribution study only can provide robust results, if all potential drivers
of the observed change were adequately represented in the model. Two drivers,
LULC and climatic changes, which are mentioned by qualitative studies as potential
sources for the increasing flood trend [3,22] are tested in this study. However, we
cannot exclude the influence of a third or more drivers for the observed changes. For
example the effects of the extreme population growth in the region, might influence
the hydrological regime, possibly via sealing of soils near settlements. Still, the two
considered drivers LULC and climate are the only potential drivers in the current
literature of the Niger, which makes the assumption more reliable.

Also the assumption of linear trends in the AMAX anomaly time series
and accordingly in the LULC and climatic changes is probably not realistic.
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However, comparing non-linear trends would request an even higher level of data
quality/density, which is not available in the research area.

Another critical issue is model performance with respect to other important state
variables of the model like groundwater flows and evapotranspiration. In this study,
the performance of the model was only tested with regard to discharge, since no
quantitative data was available on groundwater dynamics. However, in the Sahelian
part of the Niger, groundwater is known to play a crucial role [64] and it cannot be
excluded that the model underestimates the effects of a potential relevant process
related to LULC.

However, keeping model uncertainty in mind—Even under conditions of
comparatively poor data quality and availability, the simulation-based approach
using a process-based based model, shed new light on attribution of increasing floods
in the Sahelian part of the Niger by developing some first quantitative measure of
comparing the linear trend estimates of AMAX anomalies. In addition, even without
adequately representing the LULC in the Goroul catchment and for the Red Flood at
the station Niamey, the method could show that at least climatic changes contribute
substantially to the flood increase in the region.

4. Conclusions

The research question, to which share LULC and/or climatic changes cause the
increase of flooding in the Sahelian part of the Niger basin, can only be answered
partly by this study. The most reliable conclusions can be drawn from the results
of the Sirba catchment, since the simulation including LULC is able to reproduce
the observed trend adequately. The influences of both drivers on the observed trend
of AMAX seem to be roughly equal with a share of 43% which can be—within the
known limitations—attributed to the climatic changes.

For the Goroul subcatchment and the Red Flood of the Niger River, the results
are in the same order of magnitude with shares of the climatic forcing of 54% (Goroul)
and 64% (Niamey Red Flood). Since the model was not able to reproduce the
influence of LULC adequately, the results for these two stations are uncertain and
only partly reliable. For Goroul and the Red Flood, we conclude that climatic changes
have A major influence on the observed trend of AMAX and LULC also contributes,
but to an unknown amount.

Using a process-based eco-hydrological model seems to be a valid method
for attributing an increase of flooding. Even though main processes related to
LULC, like e.g., evapotranspiration, are simplified and calibrated in the model or
empirical like the curve number approach for surface runoff, the effects of LULC
on the hydrology are assumed to be generally well represented since the modelled
effects reflect observed effects and other studies could show a general suitability of
process-based models for LULC studies. Still we see a general need for hydrological
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science to overcome the calibration of land use sensitive parameters in favor of
more physically-based models, especially for LULC studies. These efforts are,
however, still limited by data availability, computing power and partly also detailed
process understanding.

In regard of the specific methodology applied in this study, the gradient prooved
to be an uncomplicated and intuitive measure for comparing simulated and observed
trends and estimating the influence of different drivers. However, the demands
for a robust attribution on the model and data quality/density are high. Testing
the method in a data-richer environment, where especially more information on
LULC are available, would help to get a better understanding of its robustness
and reliability.

Regarding flood mitigation and adaptation strategies, the modeling framework
could be employed to assess different land management options. If the flood risk
is to a significant extent due to LULC (rather than due to a climatic change), it
means that it can also be counteracted. State-of-the-art options implemented locally
can reduce surface runoff, for example, by reforestation, smart planting techniques
which also reduce erosion, shifting cultivation etc., such as those published in the
World Overview of Conservation Approaches and Technologies (WOCAT) [65]
or weADAPT [66]. However, in the face of the existing flood risk in the region
and the return to wet conditions, mitigation is not enough. There is a strong
need for immediate adaptation measures and we argue for early-warning systems,
investments in flood protection infrastructure and flood-smart settlement policies
in the riverine nations. To ensure cost-efficient implementation, a simulation-based
approach can be further used to assess the relative merits of both mitigation and
adaptation measures [67].

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.
com/2073-4441/7/6/2796/s1.
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Combined Impacts of Medium Term
Socio-Economic Changes and Climate
Change on Water Resources in a Managed
Mediterranean Catchment
Anastassi Stefanova, Cornelia Hesse and Valentina Krysanova

Abstract: Climate projections agree on a dryer and warmer future for the
Mediterranean. Consequently, the region is likely to face serious problems regarding
water availability and quality in the future. We investigated potential climate
change impacts, alone (for three scenario periods) and in combination with four
socio-economic scenarios (for the near future) on water resources in a Mediterranean
catchment, whose economy relies on irrigated agriculture and tourism. For that,
the Soil and Water Integrated Model (SWIM) was applied to the drainage area of
the Mar Menor coastal lagoon, using a set of 15 climate scenarios and different
land use maps and management settings. We assessed the long-term average
seasonal and annual changes in generated runoff, groundwater recharge and actual
evapotranspiration in the catchment, as well as on water inflow and nutrients input
to the lagoon. The projected average annual changes in precipitation are small
for the first scenario period, and so are the simulated impacts on all investigated
components, on average. The negative trend of potential climate change impacts
on water resources (i.e., decrease in all analyzed components) becomes pronounced
in the second and third scenario periods. The applied socio-economic scenarios
intensify, reduce or even reverse the climate-induced impacts, depending on the
assumed land use and management changes.

Reprinted from Water. Cite as: Stefanova, A.; Hesse, C.; Krysanova, V. Combined
Impacts of Medium Term Socio-Economic Changes and Climate Change on Water
Resources in a Managed Mediterranean Catchment. Water 2015, 7, 1538–1567.

1. Introduction

The climate of the Mediterranean region is especially vulnerable to potential
changes in the global circulation processes [1]. It is therefore not surprisingly, that
Giorgi [2] identified the region of the Mediterranean as a primary climate change
“Hot-Spot” based on projections of Phase 3 of the Coupled Model Intercomparison
Project (CMIP3) for the late 21st century. More recently, Diffenbaugh and Giorgi [3]
confirmed this result using a similar but more comprehensive approach and
an ensemble of CMIP5 Representative Concentration Pathway (RCP) 8.5 and
RCP4.5 simulations.
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The agreement among climate models for the Mediterranean region is
considerably strong compared to other regions in the world [4] and so are the
trends for temperature and precipitation changes. Several studies state that the
Mediterranean region is very likely to become dryer and warmer in future, as global
warming continues (e.g., [5–9]). In consequence, the area is expected to face serious
problems, such as agricultural production losses, land degradation and habitat
losses [10]. Moreover, a decrease in water availability will in addition enhance the
competition for water between economic sectors and by that the vulnerability of the
Mediterranean countries to changes in climate [11].

Our study area, the catchment of the Mar Menor, a hyper saline lagoon in
southeast Spain, is one of the driest and hottest regions in Spain and on the
Iberian Peninsula [12]. The region is exposed to a severe water stress under the
current climate [13] and still, due to intensive irrigation, is one of Europe’s major
horticultural producers and exporters [14,15]. Apart from agriculture, mass tourism
along the shoreline of the lagoon is also highly important for the local economy.
The rapid development of both sectors during the last decades was possible due to
the Tagus-Segura Inter Basin Transfer (IBT) that has been delivering water from the
Tagus River to the Mar Menor catchment since 1978 [16].

Since then, the major watercourse in the catchment, the Albujon wadi, inputs
regularly and especially during the wet period high amounts of nutrients from the
adjustment agricultural fields to the lagoon [17]. Moreover, insufficiently treated
effluents coming mainly from the touristic areas and reaching a maximum during
the touristic peak in summer have been discharged into the same wadi over a long
period [18]. These inputs have resulted in a rapid increase of the pollution in the
lagoon [19–22], and need to be addressed urgently in order to prevent the ecosystem
from further degradation.

In addition to current anthropogenic pressures, climate change is expected
to pose further stress to the Mar Menor and its drainage area. An increase in sea
water temperature, for example, is very likely to lead to an intensification of the
eutrophication processes in the lagoon, and finally to a collapse of the water body [23].
Climate change will also affect the water resources in the donor basin of the IBT,
the Tagus River Basin. According to Killsby et al. [23] the discharge of the Tagus
River is likely to get reduced by almost a half (49%) until the end of the century,
due to climate change. Consequently, the water resources transferred to the Mar
Menor catchment could also decrease, which will certainly affect the agricultural
and touristic sectors, and by that also the water and nutrient inputs to the lagoon.
The natural, non-managed water resources in the catchment will be affected by
climate change too and will most probably further decline, as climate becomes dryer.
CMIP3 model simulations for the Mediterranean region project a long-term decrease
in precipitation of about 15% for the end of the century (2070–2099) and of 8% for
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the near future (2020–2049) compared to 1950–2000 [24]. Based on their results,
Mariotti et al. [24] expect a decrease in runoff and river discharge as well, which
would certainly reduce the water available for irrigation and other uses, as climate
change continues. A study on the impacts of climate change on water resources in
Spain in particular [25] identified the Segura region, in which the catchment of the
Albujon wadi is located, as highly critical regarding the hydrological implications
of future climate. More recently Mariotti et al. [26] investigated the long-term
climate changes in the Mediterranean region using the newly available CMIP5 model
simulations, and obtained similar results as in their previous study. The arid and
semi-arid regions in the Mediterranean are projected to become dryer, especially
during the wet season (December–February), whereas there is no significant decrease
in precipitation projected for the already dry summer (June–August) season [26].
Another study comparing the A1B emission scenario (balanced emphasis on all
energy sources) simulations of CMIP3 with the RCP4.5 and 8.5 simulations of CMIP5
for the Mediterranean region on the seasonal basis [27] also identified a consistency
between both types of scenarios. This indicates a robustness of future climate trends
simulated for the region [27], and thus a warmer and dryer future for the Mar Menor
catchment becomes even more plausible.

We therefore decided to assess the response of the Mar Menor catchment to
potential changes in climate because of its importance for the ecological status of the
lagoon and the region’s economy. Moreover, as the water resources in the catchment
are strongly human influenced, the vulnerability to climate change was studied in
combination with potential changes in land use and water management.

For that, we firstly quantified the total amount of water and nutrient inputs
to the Mar Menor using the eco-hydrological Soil and Water Integrated Model
(SWIM, [28]). The model was then driven by a set of 15 regional climate scenarios
from the ENSEMBLES project [29] for one reference and three future scenario periods,
of 30 years each. Next, four different socio-economic scenarios, including new
land use maps and water management settings were run in combination with the
15 climate scenarios for the near future scenario period.

The results of this study were used for further analysis. They were used as input
data to a specific lagoon model that can investigate the lagoons response to changes
in its drainage basin, and also as scientifically founded information for stakeholders
and policy makers and their future planning and decisions.

2. Case Study Area Description

The catchment of the Mar Menor is situated on the Mediterranean coast in
southeast Spain, in the region of Murcia. It covers an area of about 1380 km2 and
overlaps almost entirely with the basin of the Campo de Cartagena aquifer (Figure 1).
The Albujon wadi is the major watercourse in the catchment and drains, together with
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several smaller, so called ramblas (ephemeral water courses with uncontinuous flow),
into the Mar Menor. However, there are no gauging stations in the catchment, not
even on the Albujon wadi. The main soils are deep Cambisols with low permeability
(76%), and agricultural land occupies about 82% of the area.Water 2015, 7 1541 
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Figure 1. Geographical location of the Mar Menor catchment and major
characteristics of the case study area.

The drainage area has a gentle slope and elevations ranging from 1062 m.a.s.l
at the low mountainous range Sierra de Carrascoy in the West to �5 m.a.s.l. at
the Mediterranean coast in the East. The climate is semi-arid Mediterranean,
characterized by dry and hot summers and mild winters. The mean annual
temperature is about 18 �C, and the mean annual precipitation about 300 mm,
mostly occurring during short episodic storm events in autumn and spring. The
estimated potential evapotranspiration is about three times higher than the mean
annual precipitation and ranges between 800 mm�y�1 and 1200 mm�y�1 [30].

Since 1978, the catchment receives water for irrigation and public supply
through the Tagus Segura Inter Basin Transfer. The water is transported from the
Entrepenas and Buendia reservoirs in the Upper Tagus to the Talave reservoir in
the Segura catchment and then redistributed among different sectors and regions,
one of them being the Mar Menor catchment. The availability of additional water
in the catchment has led to drastic economic and environmental changes over the
last decades.

The so called Campo de Cartagena Irrigation District was established, and with
it the agricultural practices in the catchment have changed from dry crop farming to
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intensively irrigated and fertilized fruits and vegetables (mainly lettuce and melon).
This resulted in an increased nutrient input from the agricultural fields to water flows
and to serious pollution problems in the Mar Menor [17].

Moreover, the former overexploitation of groundwater resources decreased, and
surplus of irrigation water is infiltrating into the soil and recharging the aquifer.
This has led to a rise in the phreatic levels of the aquifer and in consequence to a
continuous flow of the Albujon wadi [22], which in addition also contributes to the
pollution of the lagoon.

In parallel to agriculture, tourism was also developing rapidly. The permanent
population in the catchment (about 10,000 inhabitants) rises by a factor of ten during
the touristic peak in summer. In consequence the sewage water release also drastically
increases. As a consequence, large amounts of untreated and insufficiently treated
waste water are discharged regularly into the Mar Menor, which has led to planktonic
changes [20] and the proliferation of jellyfish over the last decades [22]. Nowadays,
all of the treated effluent from one of the smaller treatment plants, Torre Pachecco,
and about half of the effluents (56%) from the enlarged and modernized major
treatment plant, Los Alcazares (in operation since 2008), is reused for irrigation. By
that, the nutrient input from point sources could be, at least partly, reduced.

3. Methods and Materials

3.1. The Eco-Hydrological Model SWIM

SWIM is a semi-distributed, process-based model simulating hydrological
processes, vegetation growth and nutrient cycling at the river basin scale. It is
driven by daily temperature (minimum, maximum and average), precipitation, solar
radiation and air humidity, and requires a subbasin map (could be derived from
a digital elevation model), a land cover map and a soil map with associated soil
profile characteristics as spatial input data. All relevant processes related to water,
plant and nutrient dynamics are calculated on the highest level of disaggregation,
the hydrotope level. Hydrotopes are units within one subbasin that have a unique
combination of land use and soil type. Next, the model outputs are aggregated at
the subbasin level, and the lateral flows of water and nutrients are routed via river
network to the outlet. A full description of the model structure and the simulated
processes is given in the SWIM manual [28].

Before being suitable for any kind of impact assessment, the model should be
set up for the specific area and calibrated and validated towards observed data.
For that, apart from the above-mentioned input data, additional information on
water and land management can be implemented, in order to better represent
the hydrological situation and nutrient cycling in the catchment. These data are
related to point sources of pollution (e.g., effluents), diffuse pollution (e.g., fertilizer
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rates, types and application dates), water abstraction (e.g., wells), water transfers,
agricultural practices (e.g., irrigation scheme) and others. For model calibration,
continuously long time series of measured daily river discharges and observed
nutrient concentrations or loads (in case water quality is also subject to further
assessment) are needed.

3.2. Model Setup, Calibration and Validation

The spatial and temporal input data used to set up the SWIM model for the
Mar Menor catchment are listed in Table 1. The catchment was discretized into 215
subbasins and 1068 hydrotopes. By intersecting the hydrotopes map with the shape
file of the Campo de Cartagena Irrigation Zone a total area of 500 km2 irrigated
agricultural hydrotopes was identified. These hydrotopes were assigned a constant
amount of water, added as daily precipitation during the irrigation period from
March to September.

The amount of irrigation water supplied to the Mar Menor catchment depends
on several factors and can vary from year to year [16]. According to the Irrigation
Agency of Campo de Cartagena (Comunidad de Regantes del Campo de Cartagena,
CRCC [16]) the Tagus-Segura Inter-Basin Transfer delivers on average about 122 hm3

of water per year to the Mar Menor catchment. Another 13.2 hm3 are reused effluents
from the Urban Waste Water Treatment Plants (UWWTPs), and about 4.2 hm3 are
diverted directly from the Segura basin. Desalination plants have the smallest share in
the total water used for irrigation (2.2 hm3) [16]. In addition to that, about 1300 ponds
with a total capacity of more than 21 hm3 [16] exist in the area, but there is no further
information about their operation.

Table 1. Overview of spatial and temporal input data used to set up the
SWIM model.

Type of Input Data Data and Source

Observed climate 5 stations (4 in the basin), period: 2000–2011, Source:
Sistema de Informacíon Agraria de Murcia

DEM 20 m � 20 m SRTM (Shuttle Radar Topography Mission),
Source: CGIAR Consortium for Spatial Information

Land use

CORINE Land Cover 2006 vector product, Version 13,
Source: European Environmental Agency main crops:
melons, lettuce, Source: [25] fertilization: 270 kg�N/ha ,
110 kg�P/ha, Source: University of Murcia

Soil map and soil parameterization
1 km � 1 km Raster map, Source: Harmonized World Soil
Database (HWSD) Soil parameters: HWSD and estimated
using the German soil mapping guidelines [31]

Therefore, as the actual amount of irrigation water used in the catchment every
year is uncertain, we decided to apply an average of 150 hm3 per year (as sum of all
sources plus half of the potential water stored in ponds) to the whole irrigated area,
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or in other words, of 1.51 mm per day to the irrigated hydrotopes. This value was
assumed constant in all simulations, including the socio-economic scenarios, and
only the size of the irrigated area was increased or decreased accordingly.

The effluents from the major UWWTP, collecting the sewages of Los Alcazares,
were implemented in three different ways. For the calibration and validation periods,
the average monthly values of discharged water, NO3-N, NH4-N and PO4-P loads
to the Albujon wadi, estimated from available data (provided by the University
of Murcia), were implemented as constant daily inputs. For the climate change
scenario runs, an average year using the available monthly data from the period after
construction of the new treatment plant was used. For the socio-economic scenarios,
we firstly estimated the share of sewage water from the permanent population and
of that from the touristic activities. Next, the assumed changes in population were
applied to one part of the effluent constantly over the whole year, while the assumed
changes in tourism were applied to the second part of the effluents during the
touristic peaks only.

Further water management practices, that are less important for the water flow
in the catchment, such as the reuse of water from the desalination plant or the
discharge of agricultural water surplus drainages into the Mar Menor, could not be
implemented, due to the lack of data.

After setup, the model should be calibrated towards discharge (Q) and nutrient
loads (NO3-N, NH4-N and PO4-P). For that, only data from a measuring campaign
performed between September 2002 and July 2006 with a total of 25 measurements
for the mouth of the Albujon wadi were available from the University of Murcia.
As this number was too little for a usual calibration based on performance
criteria (e.g., Nash-Sutcliffe efficiency or percent bias), we decided to compare
the model outputs with literature values. So, the simulated daily discharges
were averaged to biweekly means and compared to the fortnightly discharges
measured by Garcia-Pintado et al. [18] in the period between October 2002 and
February 2004 by graphical fitting. Furthermore, the simulated and estimated by
Garcia-Pintado et al. [18] average annual nitrate nitrogen, ammonium nitrogen and
phosphate phosphorus loads for the same period were also compared.

3.3. Estimation of Water Inflow and Nutrients Input to the Lagoon

Previous studies estimated the water and nutrient input to the Mar Menor
considering (a) the flow of the Albujon wadi and the Rambla de la Maraña, which is
artificially connected to it; and (b) the drainages from some channels/pipelines at
the mouth of the Albujon wadi (e.g., [17,18]). The above mentioned channels bring
agricultural water surplus to a desalination plant close to the mouth of the Albujon
wadi, which is then treated and reused for irrigation or in case the plant’s capacity
is reached, discharged directly into the lagoon (e.g., [17,18]). There is however, a
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number of small ramblas (ephemeral watercourses) with uncontinuous flows that
bring additional water and nutrients to the lagoon during storm events.

We included these ramblas and their catchments in our model setup by using the
same calibration parameters as for the Albujon wadi and simulated their discharges
and nutrient loads. By adding up all watercourses flowing into the Mar Menor, we
then estimated the average total annual inflow and nutrient inputs to the lagoon
from its drainage basin. A similar method has been also successfully applied to the
drainage areas of the Ria de Aveiro [32] and the Vistula Lagoon [33]. Furthermore, in
order to estimate the share of the infiltrated irrigation water on the total inflow an
additional model run without any irrigation of the agricultural land was done.

The above mentioned drainages of agricultural water surplus as well as
their partial reuse for irrigation after treatment in the desalination plant were not
considered in our simulations, as no information about the volumes or the operation
schemes of the plant were available.

3.4. Climate Change Scenarios

As the resolution of General Circulation Models (GCMs) is too coarse (¥100 km)
for regional studies, it is preferable to use climate scenarios from the Regional Climate
Models (RCMs) with a higher resolution for an adequate impact assessment [34].
Moreover, as climate projections (e.g., temperature and precipitation trends) of
different RCMs for the same region can vary significantly [35], a multi-model
approach using scenarios from several RCMs that allows estimating the range of
uncertainty is recommended [36].

The climate scenario data used in our study was obtained from the ENSEMBLES
project [34]. It consists of a set of 15 climate scenarios, each being the output of a
unique combination of different RCMs and GCMs (providing initial and boundary
conditions). All models in the ENSEMBLES project have been driven by the A1B
emission scenario, which can be described as moderate regarding future projections
of atmospheric CO2 concentrations. The resolution of the applied scenarios is 25 km,
and the available time frames are 1951–2098 or 1951–2100, depending on the scenario.
For consistency, the end year of all scenario time periods was set to the year 2098.

Before applying the climate scenarios in SWIM simulations for impact
assessment, we evaluated their ability in simulating the present climate as well
as their climate change signals, considering temperature and precipitation.

For the first task, we used the longest available time period (2000–2011) of daily
mean temperature and precipitation records from a station inside the catchment
(Balsapintada) to calculate the average monthly and average annual means and
compare these with the average climate scenario data of the nearest grid cell for the
same period (Figure 2).
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spring (e.g., s12). The smallest mean annual absolute error for precipitation between scenario data and 

station data was calculated for the s9 scenario (27%), and the biggest, reaching a bias of 211%, was 

found for the s14 scenario. 

The agreement between the modeled and the observed temperatures is clearly higher. Still, some 

scenarios underestimate average monthly temperatures throughout the whole year (e.g., s15), while 

others overestimate the annual dynamics (e.g., s4). The s10 scenario produces the smallest annual 

absolute error (0.5 °C) in this case and the s15 the biggest (1.5 °C). 

The climate change signals for temperature and precipitation were obtained for three chosen scenario 

periods (Section 3.6). We calculated the long-term average monthly and annual differences between 

each of the three future periods (p1, p2 and p3) and the reference period (p0). The results are shown in 
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The average annual precipitation in the Mar Menor catchment is projected to decrease by −1.6% in 

the first, −10.7% in the second, and −18.3% in the third scenario period. 

The calculated average monthly changes for p1 do not show any shifts in the seasonality of future 

precipitation. The projected changes range between −51% in March and 144% in May for different 

scenarios. In January, March–June, August, and October, about one half of the climate scenarios project 
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Figure 2. Evaluation of climate scenario data for the historical period by comparing
the modeled and observed station data in the catchment for the years 2000–2011:
Mean monthly absolute error between modeled and observed station data for
precipitation (a) and temperature (c); and average seasonal dynamics of modeled
and observed station data for precipitation (b) and temperature (d).

As visible in the graph, some scenarios reproduce well the annual dynamics of
precipitation (e.g., s7, s9, s10), while others clearly overestimate rainfall in autumn
(e.g., s6) or underestimate it in spring (e.g., s12). The smallest mean annual absolute
error for precipitation between scenario data and station data was calculated for
the s9 scenario (27%), and the biggest, reaching a bias of 211%, was found for the
s14 scenario.

The agreement between the modeled and the observed temperatures is
clearly higher. Still, some scenarios underestimate average monthly temperatures
throughout the whole year (e.g., s15), while others overestimate the annual dynamics
(e.g., s4). The s10 scenario produces the smallest annual absolute error (0.5 �C) in
this case and the s15 the biggest (1.5 �C).

The climate change signals for temperature and precipitation were obtained
for three chosen scenario periods (Section 3.6). We calculated the long-term average
monthly and annual differences between each of the three future periods (p1, p2 and
p3) and the reference period (p0). The results are shown in Figure 3.

The average annual precipitation in the Mar Menor catchment is projected
to decrease by �1.6% in the first, �10.7% in the second, and �18.3% in the third
scenario period.
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The calculated average monthly changes for p1 do not show any shifts in the
seasonality of future precipitation. The projected changes range between �51% in
March and 144% in May for different scenarios. In January, March–June, August,
and October, about one half of the climate scenarios project higher precipitation rates
compared to the reference period, while there is a negative trend for the remaining
months. The median projected changes for all months in p1 are in the range of �20%.
In the second and third scenario periods the decreasing trend becomes more clear,
and seasonal dependency of the projected changes can be observed. In p2, the mean
precipitation decreases during the wet period (between �10% and �30%), except for
January and slightly increases (about 10%) during the dry period in summer. In p3 it
decreases for all months (between�20% and�40%), except for February and August.
It is also visible from the graphs that the disagreement between scenarios decreases
from period p2 to period p3, as the ranges of future projections become smaller.
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Figure 3. Average monthly climate change signals for the three future scenario
periods (p1, p2 and p3) compared to the reference period (p0) for precipitation (a)
and temperature (b) shown as boxplots, where the whiskers represent the min/max
values, the boxes the 25th/75th percentiles and the thick lines the median values of
changes for 15 climate scenarios.

41



Regarding air temperature in the catchment, the climate scenarios project an
average annual increase of 0.88 �C in p1, 1.97 �C in p2 and 2.97 �C in p3. Some of the
climate scenarios (s9, s1 and s15) in p1 have negative signals in April and October
but still, in general, we can observe a clear increase in temperature among scenarios
in all months and periods. The increase is slightly higher (about 1 �C) during the
summer months, and unlike precipitation, the range of future projections (whiskers
in boxplots) increases with time and is the biggest for the last scenario period.

3.5. Socio-Economic Scenarios

The socio-economic scenarios used in this study are the product of a complex
multi-stage process, including discussions focus groups, citizen juries and scenario
workshops. Firstly, narrative storylines representing four different directions of
the economic and environmental development for the near future (around year
2030) in the catchment were developed. Their main aspects are shortly described in
the following.

The “business as usual” (BAU) scenario represents a possible future of the
catchment based on the continuation of current trends of the economic development.
In particular, this means a strong increase in tourism along with slight decrease in
the agricultural sector and their observed negative effects on the environment and
the lagoon (high nutrients input).

The “crisis” (CRI) scenario assumes a negative development of the local
economy (a decrease in tourism and a strong decrease of agricultural activities),
which leaves no space for environmental protection measures, and hence is likely to
lead to further environmental and ecological degradation.

The “managed horizons” (MH) scenario considers a possible future based on
economic growth (i.e., increase in touristic development and agricultural area) along
with an improvement of the environmental situation through the introduction of
appropriate measures (e.g., decrease of mineral fertilization).

And finally, the “set-aside” (SET) scenario describes a possible future of a
shrinking economy (i.e., a decrease in tourism and agriculture), which is meant to
improve the environmental situation in the catchment and the ecological status of
the lagoon.

A detailed description of the scenario development can be found in the Lagoons
deliverables [37,38]. The narrative storylines of each socio-economic scenario are
presented in Deliverable 4.2 [38].

For the purpose of modeling and the assessment of potential changes the
qualitative scenarios were translated into quantitative ones, using statistical data
from the Statistical Office of the European Communities (EUROSTAT) and expert
knowledge. The assumed relative changes were then transferred into new land use
maps and a modified set of SWIM input parameters (effluent characteristics and
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fertilizer amounts) for each scenario. The effluents from the UWWTP (discharge
and nutrient loads) were modified according to the assumed changes in permanent
population and touristic activities. The changes of SWIM input data for each scenario
are shown in Table 2.

Table 2. Assumed management related relative changes in population, tourism
and agricultural practices for the four socio-economic scenarios (BAU, CRI, MH
and SET).

Parameter BAU CRI MH SET

Population (%) 28 �20 10 �10
Tourism (%) 2 �10 4 �5

Min. fertilization (%) - �20 �15 �20
Org. fertilization (%) - �20 +15 +20

Irrigation (%) �22 �45 +5 �25

The new land use maps were created by implementing the assumed changes
in agricultural land and land cover type. For that, different criteria, such as the
soil quality (in terms of water holding capacity), distance to the lagoon/urban
areas/major irrigation channel, catchment morphology, rainfall distribution and
others were used. The assumed changes in irrigation were implemented through
changes in the size of the irrigated area, whereas the amount of irrigation water per
hectare remained constant. The implementation of the assumed changes for each
scenario is briefly described in the following. The reference land use map and the
four new land use maps are presented in Figure 4.

For the BAU scenario all irrigation units from the “Zona Regable Occidental”
and some irrigation units from the “Zona Regable Oriental” (located most far away
from the major supply channel) were excluded from the irrigated area. Besides,
14% of the agricultural land was converted to fallow. For that, areas outside the
new irrigation zone, having low precipitation rates and low quality soils (low water
holding capacity) were chosen.

In the CRI scenario, some more irrigation units from the “Zona Regable Oriental”
were excluded from the irrigated area, resulting in a narrow irrigation stripe along the
major supply channel. Agriculture land was reduced by 30% (converted to fallow),
using the same criteria as for the BAU scenario. In addition, forest was reduced by
20%. Deforestation was implemented preferably close to urban areas (which is still
mostly in the mountainous areas of the catchment) and on soils with lower water
holding capacity.

In the MH scenario the irrigated area was slightly extended. For that, land units
outside the reference irrigation zone and close to the major supply channel were
chosen. All of the abandoned land (fallow) and 5% of the land cover “heather” were
converted into new agricultural land. The conversion was made preferably within
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the new irrigation zone but also outside the zone on good quality soils (high water
holding capacity).Water 2015, 7 1548 

 

 

 

Figure 4. Land use maps for the reference (REF) and scenario (BAU, CRI, MH and SET) 
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Figure 4. Land use maps for the reference (REF) and scenario (BAU, CRI, MH and
SET) conditions for the Mar Menor catchment, as well as shares of land use classes
for the reference conditions and the four socio-economic scenarios.

In the SET scenario the irrigated area was reduced similarly as in the BAU
scenario (exclusion of irrigation units located most far away from the main supply
channel). The abandonment of agricultural land was on purpose and had an
intension to improve the environmental situation in the catchment. Therefore the
changes were implemented as close as possible to the lagoon, in order to create a
kind of buffer strip along the water body. Some less suitable agricultural units (with
lower water holding capacity) outside the irrigation zone were converted to fallow as
well as some areas at high elevations were even afforested. In total, the agricultural
area was reduced by 15%.

3.6. Approach for Impact Assessment

For climate change impact assessment, we ran the calibrated model with
each of the 15 ENSEMBLES scenarios for one reference (p0: 1971–2000) and three
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future (p1: 2011–2040, p2: 2041–2070 and p3: 2071–2098) scenario periods using
the reference model setup (reference land use map and reference management
settings). This approach has been already successfully used in Stefanova et al. [32]
and Hesse et al. [33] for climate change impact assessment in the catchments of the
Ria de Aveiro in Portugal [32] and the Vistula Lagoon in Poland and Kaliningrad [33].

Next, each of the four socio-economic model setups (four different land use
maps in combination with four different management settings) was run with the
ENSEMBLES climate data for the first scenario period (p1), assuming that the
socio-economic changes around the year 2030 correspond to climate in 2011–2040.
In total, the outputs of 120 SWIM simulations (15 climate scenarios � 4 periods
+ 15 climate scenarios � 1 period � 4 socio-economic scenarios) were used for
impact assessment.

The responses of water resources to climate change only, combined climate
and socio-economic changes and socio-economic changes only were estimated by
calculating differences in model outputs between periods and scenarios in the
following ways:

(a) Climate change impacts:

p1(reference), p2(reference), p3(reference) � p0(reference)

(b) Combined impacts:

p1(BAU), p1(CRI), p1(MH), p1(SET) � p0 (reference)

(c) Socio-economic impacts:

p1(BAU), p1(CRI), p1(MH), p1(SET) � p1 (reference)

We calculated the long-term mean annual and monthly relative changes in
average daily total water inflow (Q), nitrate nitrogen (NO3-N), ammonium nitrogen
(NH4-N) and phosphate phosphorus (PO4-P) input to the lagoon, as well as
differences in total annual and monthly groundwater recharge (GWR) and actual
evapotranspiration (ETa) in the catchment.

4. Results and Discussion

4.1. Model Performance

Despite all uncertainties related to measured data (see Section 3.2), the
simulation results for the Albujon wadi show a satisfactory model performance
(Figure 5). With regard to river discharge (Q) we can observe that SWIM is able
to reproduce adequately most of the winter peaks (e.g., November 2003 and April
2004) and summer low flows (e.g., Septempber 2002, May 2003 and August 2004)
obtained during the measuring campaign between September 2002 and July 2006.
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The maximum simulated daily discharge within this period reaches 2.74 m3/s,
whereas the average low flow lies between 0.12 m3/s and 0.15 m3/s.
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Figure 5. Comparison of simulated daily (red lines) and measured (dots)
river discharge (Q), nitrate nitrogen (NO3-N), ammonium nitrogen (NH4-N)
and phosphate phosphorus (PO4-P) loads for the catchment of the Albujon
wadi (including the diversion from Rambla de la Maraña) and the simulation
period 2002–2006.

The model also simulates sufficiently well the annual dynamics of nitrate
nitrogen (NO3-N), ammonium nitrogen (NH4-N) and phosphate phosphorus (PO4-P)
loads (Figure 5). The NO3-N loads to the Mar Menor are dominated by agricultural
activities. The peaks of both the simulated and the observed NO3-N loads in the
Albujon wadi occur during extreme precipitation events (storms), as a result of
increased surface and subsurface runoff from the agricultural fields. The relationship
between nitrogen enrichment and agriculture has been discussed in Lloret et al. [20]
and Salas et al. [39], and also demonstrated by means of sampling in various
studies on the Mar Menor and its catchment (e.g., [17,40]), and could also be nicely
reproduced by our model.

In contrast to that, the NH4-N and PO4-P loads originate mainly from point
source pollution (e.g., effluents from UWWTP) [19]. The simulated and observed
NH4-N and PO4-P loads reach their maxima during the touristic peak in summer,
when the population in the catchment increases by a factor of ten [17]. In most of
the winter months, the observed NH4-N and PO4-P loads are close to zero, which
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does not comply with the chemical composition of the released effluents from the
UWWTP (higher loads). The simulated winter loads correspond to the loads from
the UWWTP, and are by that a bit higher than the observed ones. It is very likely
that the actual released pollutants (ammonium and phosphate) are reduced through
in-stream processes and plant uptake (e.g., by reeds) on their way from the UWWTP
to the mouth of the Albujon wadi. In their study, for example, Álvarez-Rogel et al. [41]
show that the coastal marshes of the Mar Menor play an important role in reducing
phosphorus and nitrogen input to the lagoon. These processes are very complex
and, at the current stage they are not included in the model, as a result of which the
simulated nutrient loads at the mouth cannot be lower. On the other hand, skipping
this step from the nutrient cycling would usually produce overestimated summer
loads as well, which does not apply. The reasons for this discrepancy could be
unknown small additional point sources in the catchment or incorrect information
on the quality of the discharged effluents from the UWWTP.

The additional model validation using discharge data from
Garcia-Pintado et al. [18] also shows quite satisfactory results (Figure 6). In
the dry period, between June 2003 and September 2003 the model misses one small
observed peak, which is most likely due to incorrect data from the UWWTP or
the lack of information on other point sources in the catchment. Furthermore, the
simulated peaks in winter 2003/2004 are slightly higher than the observed ones. At
this point, it should be recalled that the curve adopted from Garcia-Pintado et al. [18]
is based on 36 measurements only, while the simulated biweekly flow dynamics
from SWIM are based on about 580 values. It is not unlikely that some of the actual
peaks or low flow values were not recorded during the measuring campaign. This
may, to some extent explain the discrepancies between both curves, which are in
general small.

Table 3 summarizes the average annual water inflow and nutrient (NO3-N,
NH4-N and PO4-P) loads to the lagoon as simulated by SWIM and estimated by
Garcia-Pintado et al. [18]. The projected total discharge of the Albujon wadi (5.51 hm3)
for this period is nearly equal to the one estimated by Garcia-Pintado et al. [18]
(5.46 hm3). At the same time it is considerably lower than the one estimated by
Velasco et al. [17] (20.14 hm3) for the same period, which based their estimates
on seven sporadic measurements only. This demonstrates nicely how uncertain
estimates could be due to rare measurements, and how important it is to use
sufficiently long and continuous time series for extrapolations of this type. The
simulated total NO3-N input to the lagoon is slightly higher than the one estimated
by Garcia-Pintado et al. [18], whereas the loads of the two point-sources dominated
nutrients (NH4-N and PO4-P) are very close to the observed ones.
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Figure 6. Comparison of simulated and estimated (Garcia-Pintado et al. [18])
biweekly discharge for the Albujon wadi catchment (including the diversion from
Rambla de la Maraña).

Table 3. Comparison of simulated and estimated (Garcia-Pintado et al. [18]) average
annual total inflow (Q) and nutrients (NO3-N, NH4-N and PO4-P) input from the
Albujon catchment (including the diversion from Rambla de la Maraña) to the
Mar Menor.

Variable G.-P. (2006) (October
2002–February 2004)

SWIM (October
2002–February 2004)

Q 5.46 5.51
NO3-N 112.84 * 153.84 *
NH4-N 29.4 31.55
PO4-P 2.57 2.54

Note: * (February 2003–February 2004).

4.2. Water Inflow and Nutrients Input to the Lagoon

The simulated total annual inflow to the Mar Menor for the period 2002–2011 is
about 8.7 hm3 (Table 4). The share of the effluent is about 35% and that of infiltrated
irrigation water about 8%. According to our calculations, less than 1% of the applied
water for irrigation reaches the Mar Menor, which implies that almost all of it is used
in plant transpiration, soil evaporation processes and groundwater recharge.
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Table 4. Values of long-term average annual (2002–2011) simulated water inflow
from the total drainage area of the Mar Menor and from the catchment of the
Albujon wadi to the lagoon, as well as of the amount of additional water added to
the whole system (effluent and irrigation water).

Unit (Hm3
� a�1) Mar Menor Drainage Area Albujon Wadi Catchment *

Q 8.7 5.2
Q without irrigation 8.0 5.0

Effluent 3.0 3.0
Irrigation water 151 63

Note: * including Rambla de la Maraña.

In the catchment of the Albujon wadi (including diverted water from Rambla
de la Marana) the share of natural flow is about 39% only. Almost 2/3 of the total
discharge at the mouth of the wadi consists of infiltrated irrigation water (4%) and
discharged effluents (60%).

The seasonal dynamics of the total water inflow to the Mar Menor (Figure 7)
follows the precipitation dynamics in the catchment. We can observe higher flows
during the wet period from September to April, reaching 0.4 m3� s�1 on average.
Since in our model setup irrigation is applied between March and September we can
also observe some peaks, but less pronounced in the flow dynamics of the infiltrated
irrigation water. In comparison, the effluent induced part to the total inflow is nearly
constant over the year. The small rise in April, followed by a continuous increase
until August represents the touristic activities and variations in water consumption
in the catchment.
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Figure 7. Long-term average (2002–2011) seasonal dynamics of total water inflow
to the Mar Menor.

The total average annual nutrient inputs to the Mar Menor are about 192 t
NO3-N, 25 t NH4-N and 2 t PO4-P. Almost all of the NH4-N and PO4-P loads reaching
the lagoon every year are coming from the released effluents. The point source
contribution to the total NO3-N input is about 14% only, whereas the diffuse sources
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from arable land account for about 72% of the total average annual NO3-N input to
the lagoon.

The simulated average annual groundwater recharge in the catchment is
about 97 mm�y�1. The mean evapotranspiration rate sums up to 412 mm�y�1

(potential evapotranspiration accounts for 882 mm� y�1). The surface and subsurface
flows (excluding UWWTP effluents) reaching the Mar Menor every year are about
4 mm� y�1 only. The mean recorded precipitation over the catchment for this period
(2002–2011) is about 336 mm�y�1.

4.3. Average Annual Impacts on Water Resources

The results of the impact assessment on the major water cycle components
in the catchment and the major nutrient inputs to the lagoon are presented firstly
for each parameter set for the climate change scenarios only, and for the combined
scenarios subsequently.

4.3.1. Changes in Major Water Cycle Components

(a) Climate change impacts

The simulated impacts of climate change on average daily discharge (Q), average
annual groundwater recharge (GWR) and average annual evapotranspiration
(ETa) in the catchment correspond well to the observed climate change signals
for precipitation.

The projections, driven by 15 climate scenarios show a moderate decrease
of long-term average daily discharge to the lagoon for all three scenario periods
compared to the reference period p0 (Figure 8). The disagreement among scenarios
is the biggest for the first scenario period p1 and decreases visibly towards the end of
the century. Moreover, the negative trend in daily discharge becomes more obvious
for the last scenario period p3. The simulated median annual changes in Q are �1.0%
for p1, �3.5% for p2 and �10.6% for p3.

Other studies on climate and land use change impacts on water resources in
Mediterranean catchments have come to similar results, although, in general, the
analyzed catchments were more natural and the effect of climate change was more
evident. For example, Morán-Tejeda et al. [41] constructed future climate scenario
data based on the information from three climate scenarios from the ENSEMBLES
project (corresponding to s1, s5 and s13 scenarios in this study) and applied these
to drive two different hydrological models, one of them being the SWAT model.
Their results showed on average a decrease in water yield of 9%–15% for the period
2021–2050. Another study, carried out by Molina-Navarro et al. [42] estimated an
average decrease in runoff of 22% for 2045–2064 using climate data based on the
A1B emission scenario and a set of regional climate projections provided by the
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Spanish meteorological service. D’Agostino et al. [43] used climate data based on
the temperature and precipitation changes projected by a single GCM for their case
study area and estimated as well an average decrease in streamflow of 16%–25% by
the year 2050.Water 2015, 7 1554 
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Figure 8. Long-term average annual changes in total inflow (Q) to the lagoon as well
as in groundwater recharge (GWR) and actual evapotranspiration (ETa) in the Mar
Menor catchment shown as boxplots. (a) Climate change impacts, showing results
for the three future scenario periods (p1, p2 and p3) compared to the reference
period (p0); (b) Combined, climate and socio-economic impacts showing results for
each of the four socio-economic scenarios (BAU, CRI, MH and SET) compared to
the reference conditions.

Similar as for Q, the average annual groundwater recharge in the Mar Menor
catchment is also projected to decrease in periods p2 and p3. However, although
GWR is strongly related to irrigation [28,44,45], it is still less influenced by water
management (irrigation + effluents), and, in comparison to Q, more sensitive to
climate change (variations in precipitation). The s1 scenario, for instance causes an
average annual increase of 167% in p2, while the s4 scenario leads to a decrease
of �78% in p3. Nevertheless, on average we can observe a decreasing trend in
groundwater recharge for the three scenario periods (�4.1% for p1, �21.2% for p2
and �38.8% for p3).

These results are again similar to the values on changes in groundwater recharge
reported in literature. Pulido-Velazquez et al. [46], for example, estimated an average
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decrease of 7% for 2010–2040, 16% for 2040–2070 and 30% for 2070–2100 compared
to 1961–1990 for a mesoscale catchment located just north (in the Jucar basin) of our
study area. D’Agostino et al. [43] projected a decrease of 21%–31% by the year 2050
for their case study area in Italy.

The average annual actual evapotranspiration in the catchment also follows the
precipitation trend of climate scenarios, although the relative changes for ETa are
clearly lower compared to that of the other two components Q and GWR. This is
mainly because actual evapotranspiration, on the one hand decreases with decreasing
water availability (less rainfall), but on the other hand increases with rising air
temperatures, as projected by all 15 climate scenarios, and for all three scenario
periods. According to our simulations ETa stays almost the same on average in
period p1 (�0.06%) and decreases slightly in the last two scenario periods (�3.2%
for p2 and �4.2% for p3). It should be also mentioned that the lower percentage
changes for ETa are partly explained by its high absolute average values compared
to Q and GWR.

(b) Combined scenario impacts

Depending on the assumed changes, the applied socio-economic scenarios
reduce or intensify the projected climate change impacts on Q, GWR and ETa for the
first scenario period (Figure 8b).

The average daily total discharge to the lagoon increases for the BAU (13.7%)
and MH (7.6%) scenarios and decreases for the CRI (�16.5%) and SET (�5.8%)
scenarios. The simulated changes are the result of changes in water management
mainly, and only to some extent of changes in the land use patterns. An increase
in population and tourism, as assumed for the two scenarios BAU and MH leads
to an increase in external water transfer for drinking water supply and to higher
effluent volumes released from the UWWTP to the Albujon wadi. The decreasing
population and touristic activities in the CRI and SET scenarios on the contrary lead
to a decrease of the released effluents and consequently to a decrease of the total
inflow to the lagoon. The reduction (BAU, CRI and SET) and increase (MH) of the
irrigation zone and the agricultural land have only a minor impact on Q.

In contrast to discharge, the combined impacts on groundwater recharge are
clearly influenced by changes in the land use patterns. In the CRI scenario, the
reduction of the irrigated area (�45%) as well as of the agricultural land (�30%)
lead, in combination with climate change, to an average decrease in GWR by about
10%. The projected average reductions of GWR in the BAU and SET scenarios are,
compared to that, relatively low (�1.6% and �0.7%). In the MH scenario, an increase
of irrigated and agricultural area by 5% each is assumed. This leads to an increase
of infiltrated irrigation water, and by that, to a slight intensification of the climate
induced average trend for GWR to 10.4% on average.
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The projected vague trend in actual evapotranspiration for p1 (�0.1% on
average) is intensified in the BAU (�4.7%), CRI (�9.2%) and SET (�5.3%) scenarios
and reversed in the MH scenario (1.1%). The reasons are similar, as for the observed
changes in groundwater recharge. The assumed decrease in agricultural land
reduces on average the transpiration rate of the vegetation in the catchment. In
addition, the decrease of the irrigated area reduces the amount of water available
for evapotranspiration. In the MH scenario, the assumed agricultural expansion
(increase of agricultural land and of irrigated land) has exactly the opposite effect.

The simulated average annual spatial changes in runoff (RUN), groundwater
recharge (GWR) and actual evapotranspiration (ETa) in the Mar Menor catchment
(Figure 9) can be easily related to the implemented scenario specific land use changes
(compare with Figure 2), especially to those concerning the Campo de Cartagena
irrigation zone.
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Figure 9. Maps of long-term average annual absolute spatial changes in
groundwater recharge (GWR) and actual evapotranspiration (ETa) in the Mar
Menor catchment showing the socio-economic impacts only as well as the combined
climate and socio-economic impacts for each of the four socio-economic scenarios
(BAU, CRI, MH and SET) compared to the reference conditions.

The obtained changes in average annual runoff are negligible, and range
between �2 and 1 mm. Therefore, maps showing these results were excluded
from further analysis and are not shown in this paper.
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In general, groundwater recharge and actual evapotranspiration decrease on
agricultural land that was excluded from the irrigation zone and increase on areas
that were included into the new irrigation zone. In addition, the conversion of
agricultural land into fallow leads to further reduction in GWR and at the same time
to an increase in ETa.

We can observe that under the BAU, CRI and SET scenarios groundwater
recharge decreases between �5 and �22 mm and actual evapotranspiration between
�150 and �297 mm on areas affected by land use changes. On areas that are
located outside the reference irrigation zone and which were converted to fallow
ETa increased between 5 and 25 mm. This is mainly because the vegetation cover
of fallow is permanent and the plant transpiration is on average higher than on
cultivated land. This also means that less water remains available for groundwater
recharge, which results in a reduced GWR compared to the reference conditions.
The decrease is further intensified through the absence of additional irrigation water
on areas that were excluded from the irrigation zone under the three scenarios.
The actual evapotranspiration on those areas is also reduced compared to the
reference conditions.

In the MH scenario the irrigation zone is extended, which leads to an increase in
both groundwater recharge (5–10 mm) and actual evapotranspiration (150–293 mm)
on the newly formed irrigated areas. The conversion of fallow and grassland into
agricultural land outside the reference irrigation zone leads to an increase in GWR
(2.5–16 mm) and a decrease in ETa (�5–25 mm).

In combination with climate, many of the observed negative changes in
groundwater recharge are intensified, as precipitation is projected to decrease slightly
(�1.6%) for the first scenario period. Moreover, an average decrease in GWR of
�0.25–5 mm can be observed over the catchment. The effect of climate change
on actual evapotranspiration is visible only on areas outside the irrigation zone.
In general, ETa decreases as precipitation decreases. This leads to an average
reduction in ETa of �5–25 mm on areas that were not affected by land use changes,
and an intensification of the trend on areas with a negative change under the
socio-economic scenarios. On the other hand, most of the land with a slight positive
trend under the socio-economic scenarios shows a negligible change of�5 mm under
the combined scenarios.

Unlike the climate change impacts, this part of our results practically cannot be
compared with other studies, as the applied socio-economic scenarios are unique and
were developed exclusively for the drainage area of the Mar Menor. Moreover, to our
knowledge, there are only few studies considering land use changes in combination
with climate change in the Mediterranean region (e.g., [41–43,46]), however in none
of these catchments, except for one, water management aspects were considered. Still,
some similarities to these studies can be found. In the Mancha Oriental Aquifer [46]
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for example, the assumed increase of irrigation area leads, similar as in the Mar Menor
catchment (MH scenario) to an increase in groundwater recharge. Nevertheless, the
authors conclude that climate change will put additional stress on the system in
future, although, currently (and similar as in the Mar Menor catchment) there is a
stabilization of the groundwater levels.

4.3.2. Changes in Major Nutrients Loads

(a) Climate change impacts

The nutrient input to the Mar Menor can be subdivided into two groups: the
input dominated by diffuse pollution (NO3-N), and the input dominated by point
source pollution (NH4-N and PO4-P). While diffuse pollution is highly sensitive to
changes in precipitation and runoff, point source pollution is influenced by water
management, and has no direct response to climate change. The results of the climate
change impact assessment on nitrate nitrogen, ammonium nitrogen and phosphate
phosphorus loads clearly reflect this behavior (Figure 10).
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Figure 10. Long-term average annual changes in nitrate nitrogen (NO3-N),
ammonium nitrogen (NH4-N) and phosphate phosphorus (PO4-P) loads to the
lagoon shown as boxplots. (a) Climate change impacts, showing results for the
three future scenario periods (p1, p2 and p3) compared to the reference period
(p0); (b) Combined, climate and socio-economic impacts showing results for each
of the four socio-economic scenarios (BAU, CRI, MH and SET) compared to the
reference conditions.
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The average daily NO3-N loads in the Mar Menor catchment are projected to
increase in the first period (22% for p1) and then to decrease in the two following
scenario periods (�27% for p2 and �36% for p3). For the period 2011–2040,
simulations driven by 10 out of 15 climate scenarios project a positive change,
although only eight climate scenarios have a positive precipitation signal for this
period. Moreover, the simulations driven by the s4 scenario produce an increase of
389%, which is much higher than the increase in simulated average daily discharge
(surface-, subsurface runoff and groundwater contribution) for this scenario (61%).
Peaks in nitrate load like this can occur, when some of the projected extreme
precipitation events take place exactly after fertilization, which causes higher nutrient
concentrations in the generated runoff. For the second and third scenario periods,
the agreement on future projections between climate scenarios is much higher and
the direction of the trend is much clearer, the simulated loads decrease.

In contrast to NO3-N, the range of projections for ammonium nitrogen and
phosphate phosphorus loads is rather small. The changes of average daily NH4-N
input to the lagoon are negligible (�0.9% for p1, �0.2% for p2 and �1.0% for p3)
and so are the simulated changes for daily PO4-P loads (�0.03% for p1, �0.3% for
p2 and �1.2% for p3). Besides the fact that both components originate mainly
from the effluents of the UWWTP, which is not directly influenced by climate
change, the positive ammonium and phosphate ions are absorbed by the negatively
charged soil particles, which protect them from being washed out during heavy
precipitation events.

(b) Combined scenario impacts

Similar, as for the major water flow components, the applied socio-economic
scenarios reduce or intensify the projected climate change impacts on NO3-N, NH4-N
and PO4-P loads to the lagoon and show similar uncertainty ranges as for the
climate change impacts for the first scenario period (Figure 10b). However, unlike
climate, the assumed socio-economic changes have a significant impact on both, the
nutrients input from diffuse pollution (e.g., through changes in fertilization) and the
input dominated by point source pollution (e.g., through changes of the effluents).
The nitrate nitrogen loads for instance are strongly influenced by changes related
to fertilization (amount of applied fertilizer and size of fertilized area), whereas
the ammonium nitrogen and phosphate phosphorus loads are affected mostly by
variations in the amount and chemical composition of the urban effluents.

In the case of nitrate nitrogen the BAU, CRI and SET scenarios reduce the
projected climate change impact on the total NO3-N input to the lagoon, while
the MH scenario intensifies the climate-induced change (50.1% on average). The
simulated average daily NO3-N load increases the least for the CRI scenario (5.3%),
in which the strongest decrease in agricultural land (�30%) and irrigated area (�45%)

56



as well as the highest reduction of applied mineral and organic fertilizers (by �20%
each) were assumed. The loads increase the most for the MH scenario (55.3%), as this
scenario assumes an increase in both, agricultural land (5%) and irrigated area (5%).
In the BAU and SET scenarios the NO3-N loads increase by 27.1% and 26.9%. The
agricultural land and irrigated area are reduced by a similar factor in both scenarios
(BAU:�14% and�22%; SET:�15% and�25%) and lead therefore to a similar change
in the total NO3-N input.

According to these results the conversion of agricultural land to fallow in close
proximity to the lagoon (SET scenario) does not have the desired effect of acting like
a buffer strip and reducing notably the amount of generated nutrient load from the
agricultural fields.

The simulated average daily ammonium nitrogen and phosphate phosphorus
inputs to the Mar Menor increase in the BAU and MH scenarios, and decrease in the
CRI and SET scenarios. These changes can be related to both, the assumed changes
in population and tourism and changes in the agricultural practices. As population
and tourism increase/decrease, the nutrients released with urban effluents into the
Albujon wadi also increase/decrease. In addition, the reduction of mineral and
organic fertilizers, as assumed for the CRI (only mineral), MH and SET scenarios
reduce to some extent the total NH4-N and PO4-P loads in the catchment.

We can observe a stronger increase of average daily NH4-N and PO4-P loads
in the BAU scenario (10.3% and 14.8%) compared to the MH (2.7% and 7.1%)
scenario, although the increase of point source pollution is higher in the MH scenario.
However, this increase is partly compensated by a decrease in mineral fertilization,
which has not been assumed in the BAU scenario. There is not much difference
between the simulated changes in NH4-N and PO4-P loads in the CRI (�13.1% and
�7.2%) and SET scenarios (�12.7% and �7.7%), which was to be expected, as these
two scenarios are very similar regarding the assumed changes.

4.4. Impacts on Seasonal Dynamics

The combined impacts on seasonal dynamics of total inflow (Q), groundwater
recharge (GWR), actual evapotranspiration (ETa) and nutrient loads (NO3-N, NH4-N
and PO4-P) are presented in Figure 11. The graphs show the long-term average (mean
of SWIM outputs driven by 15 climate scenarios) monthly combined (black lines) and
socio-economic (green lines) differences between each of the four socio-economic
scenarios and the reference scenario, as well as an outer uncertainty band (light grey),
defined by the maximum and minimum values of all model outputs and an inner
range (dark grey), representing the 25th and 75th percentiles of all results driven by
the 15 climate scenarios.
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Figure 11. Long-term average monthly impacts of combined climate and
socio-economic changes (black line) and of socio-economic changes only (green
dashed line) for each of the four socio-economic scenarios (BAU, CRI, MH and
SET) on water inflow (Q), groundwater recharge (GWR), actual evapotranspiration
(ETa), nitrate nitrogen (NO3-N), ammonium nitrogen (NH4-N) and phosphate
phosphorus (PO4-P) shown with uncertainty bands representing the minimum and
maximum values (light grey) as well as the 25th and 75th percentiles (dark grey) of
the results obtained from 15 climate scenarios.

On average, the combined impacts on total inflow to the lagoon show a moderate
variation throughout the year for all four scenarios. The uncertainty between
projections is very high during the wet periods in spring and autumn (e.g., between
�40% and 161% for the MH scenario in April), which reflects the disagreement
between the 15 climate scenarios on future precipitation trends. The inner uncertainty
band of model outputs (25th/75th percentiles) is considerably smaller and shows
nearly the same dynamics as the socio-economic impacts only. In all four scenarios,
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the agreement among projections is the strongest for the period between June and
August, when water flow in the catchment is mainly influenced by the inputs from the
UWWTP and the infiltrated irrigation water. The disagreement among scenarios is
higher during the wet periods, when the natural flow, which is influenced exclusively
by climate, has a large share in the total water inflow to the lagoon.

The impacts on groundwater recharge are shown in absolute values, as their
relative changes are too high in some months, due to small absolute values. Similar
as for Q, the uncertainty among projections is stronger for the wet periods and much
lower for the dry period. The seasonal dynamics of combined changes in GWR are
practically the same for all four scenarios, and the impacts of socio-economic changes
only are negligible.

The changes in seasonal dynamics of actual evapotranspiration are shown in
the third row (Figure 11). In the BAU, CRI and SET scenarios, the simulated changes
show on average a decrease between�16% (September, CRI) and�0.4% (April, BAU).
The decrease is the smallest in April and October, when some of the ENSEMBLES
scenarios show a strong increase in precipitation that in turn leads to an increase in
actual evapotranspiration. In the MH scenario, the applied changes in land use and
irrigation act in most months against the projected climate change trends for ETa
and the actual evapotranspiration increases between 1% and 7% in all months except
for January, February, May and December, when climate change has still a higher
impact. The uncertainty ranges do not show similar distinct peaks in wet periods as
observed for Q or GWR, due to a strong dependency of ETa on irrigation in addition
to climate.

The uncertainty of projected seasonal changes in total nitrate nitrogen (NO3-N)
inputs to the lagoon is among the highest from the analyzed components. The
maximum simulated monthly changes reach 987% in the CRI scenario and even
1550% in the MH scenario. This is the result of extreme precipitation events projected
especially by one of the climate scenarios (s5). During such events high amounts
of NO3-N are washed from the soils and transported via surface, subsurface and
groundwater flow to the streams flowing into the Mar Menor. In the CRI scenario, in
which the rate of applied mineral and organic fertilizers was reduced by 20%, the
simulated NO3-N peaks are is the smallest, whereas they are the highest in the BAU
and especially MH scenarios. The socio-economic impacts only correspond well to
the assumed changes in land use and agricultural practices, and are nearly constant
throughout the year.

The relative monthly changes in ammonium nitrogen (NH4-N) and phosphate
phosphorus (PO4-P) loads follow mainly the estimated relative changes in NH4-N
and PO4-P inputs from the urban effluents. Therefore, the uncertainty related to
climate change is relatively low compared to the other components and mainly
visible during the wet periods in autumn and spring, when, similar as for NO3-N,
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fertilizers surplus from the agricultural fields are washed to the lagoon. The seasonal
dynamics of the combined impacts on both components however are still quite
uncertain, as the annual distribution of the estimated effluent changes is based on
very simple assumptions.

5. Summary and Conclusions

We assessed the combined impacts of medium term socio-economic changes
and climate change on water resources in the Mar Menor catchment by applying
the eco-hydrological model SWIM driven by a set of 15 regional climate scenarios,
and in combination with a set of four different management settings and land use
maps. Our results show that potential socio-economic changes can further intensify
or reduce the climate induced impacts on total water inflow and nutrient input to
the lagoon, as well as on groundwater recharge and actual evapotranspiration in the
catchment in the near future (around the year 2030). This is due to the fact that the
Mar Menor catchment is highly human influenced through intensive irrigation and
mass tourism (significant point source pollution).

The climate change signals of the 15 applied climate scenarios suggest a warmer
and dryer future for the Mar Menor catchment, which in turn causes a decreasing
trend in all six analyzed components (Q, GWR, ETa, NO3-N, NH4-N and PO4-P)
by the end of the century. The projected changes in precipitation are quite mixed
for the first scenario period (2011–2040), and so are the simulated impacts on all
investigated components. Looking at outputs averaged over 15 scenarios, we can
see that NO3-N loads show some increase, and all other variables remain practically
unchanged. The projected negative trends of potential climate change impacts on
water resources become pronounced in the second (2041–2070) and third (2071–2098)
scenario periods, and also the uncertainty of the results increases with time. It is
worth mentioning that NH4-N and PO4-P loads in the Mar Menor catchment are less
vulnerable to changes in precipitation and show considerably lower climate change
impacts compared with the other components. The reason is that they are strongly
human influenced and depend mainly on changes in the released urban effluents. As
intense and strong precipitation events are likely to increase in future [6] the outputs
of model simulations driven by some of the 15 climate scenarios reach in these cases
(Q and NO3-N in p1, GWR in p2) extremely high maximum values. The combination
of climate change and socio-economic scenarios revealed that the two least desirable
scenarios for the near future from the economic point of view, the crisis and set-aside
scenarios, could be beneficial for the lagoon and its catchment from the ecological
point of view, whereas the opposite is the case for the business as usual and the
managed horizons scenarios.

The CRI and SET scenarios assume a strong reduction of the agricultural land,
along with a reduction of the applied fertilizers. These measures reduce drastically
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the nutrient load from diffuse sources, and by that the nitrate nitrogen input to the
Mar Menor. In addition, the assumed decrease in population and tourism reduces
the nutrient contribution from point sources (UWWTP) and decreases further the
nutrient loads to the lagoon.

Being concerned about the diffuse pollution only (NO3-N), the business as usual
scenario can be also awarded an environmental friendly scenario with a positive effect
on NO3-N input to the lagoon. However, the assumption of agricultural reduction in
the BAU scenario is accompanied by an assumed increase in tourism, which leads to
a significant increase in ammonium nitrogen and phosphate phosphorus loads.

The population and tourism changes in the managed-horizons scenario are less
dramatic regarding point source pollution (lower increase compared to BAU), but
instead rather problematic with regard to diffuse pollution. The MH scenario is the
only scenario assuming an intensification of the current agricultural practices, which
contributes significantly to a NO3-N enrichment in the catchment.

Apart from their impacts on nutrient loads, the socio-economic scenarios also
influence water inflow to the lagoon as well as groundwater recharge and actual
evapotranspiration in the catchment. It must be noted that the reduction of irrigation
and urban effluents in the CRI and SET scenarios, leads not only to a reduction of
diffuse and point source pollution but also to a decrease in average daily discharge
to the Mar Menor, which is not necessarily beneficial for the lagoon. A decrease in
water inflow can cause changes in the salinity level of the lagoon, which in turn may
lead to shifts in the lagoon’s biological community. Furthermore, the conversion of
agricultural land to a vegetation type with a higher annual transpiration rate (BAU,
CRI and SET scenarios) leads, on average, to lower groundwater recharge rates in
the catchment. This effect is enhanced when land is excluded from the irrigation
zone and might, on the long-term, lead to a problematic drop of the phreatic levels
in the catchment.

The results of this study have shown that certain measures can reduce the
negative impacts caused by climate change in the near future, while others are less
recommendable as they would intensify the existing problems in the catchment. It
should be kept in mind that the assumed future changes in water supply from the
Tagus-Segura IBT, which is one of the key factors regarding agricultural productivity
and touristic development in the region, are extremely uncertain. The amount of
water transferred to the catchment and the allocation of this water to the different
sectors (agriculture, domestic use, etc.) depends, of course, on future climatic
conditions but also, and very strongly on political decisions that are practically
impossible to predict. Therefore, and keeping in mind other sources of uncertainty
(e.g., one emission scenario only, static socio-economic scenarios, fixed management
and land use changes, etc.) our results should always be seen in the context of the
applied methodology in this study.
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The described model outputs of SWIM were used as input in a carry on
study [47], which first analyzed the physiochemical and biological changes in the
Mar Menor and then assessed their potential implications for the ecological status of
the lagoon and the ecosystem services it supports. Furthermore, they are used, in
combination with the results of other scientific disciplines (biology, sociology, legal
science and others), to develop a framework for an integrated management of the
lagoon under the context of climate change [48].

Although the results of this study have already found reasonable applications,
they can be improved and extended. For example, coastal marshes could be
implemented into the model, in order to investigate their effect on reducing the
nutrient input to the lagoon. Moreover, assumptions on the potential changes in
water supply from the Tagus-Segura IBT could be based on a hydrological impact
study on the capacities and future operations of relevant reservoirs in the Tagus River
Basin. This would allow implementing water management changes in a dynamic
way that is scientifically underpinned and linked directly to climate change. Besides,
a land use scenario assuming dry-crop farming instead of the intensively irrigated
horticulture, and an assessment of its implications for the catchment and the lagoon,
is recommended, as such scenario could be become unavoidable in case of a strong
decrease in the supplied water from the IBT.
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Short-Term Forecasting of Water Yield from
Forested Catchments after Bushfire: A Case
Study from Southeast Australia
Mana Gharun, Mohammad Azmi and Mark A. Adams

Abstract: Forested catchments in southeast Australia play an important role in
supplying water to major cities. Over the past decades, vegetation cover in this
area has been affected by major bushfires that in return influence water yield.
This study tests methods for forecasting water yield after bushfire, in a forested
catchment in southeast Australia. Precipitation and remotely sensed Normalized
Difference Vegetation Index (NDVI) were selected as the main predictor variables.
Cross-correlation results show that water yield with time lag equal to 1 can be used
as an additional predictor variable. Input variables and water yield observations
were set based on 16-day time series, from 20 January 2003 to 20 January 2012. Four
data-driven models namely Non-Linear Multivariate Regression (NLMR), K-Nearest
Neighbor (KNN), non-linear Autoregressive with External Input based Artificial
Neural Networks (NARX-ANN), and Symbolic Regression (SR) were employed for
this study. Results showed that NARX-ANN outperforms other models across all
goodness-of-fit criteria. The Nash-Sutcliffe efficiency (NSE) of 0.90 and correlation
coefficient of 0.96 at the training-validation stage, as well as NSE of 0.89 and
correlation coefficient of 0.95 at the testing stage, are indicative of potentials of
this model for capturing ecological dynamics in predicting catchment hydrology, at
an operational level.

Reprinted from Water. Cite as: Gharun, M.; Azmi, M.; Adams, M.A. Short-Term
Forecasting of Water Yield from Forested Catchments after Bushfire: A Case Study
from Southeast Australia. Water 2015, 7, 599–614.

1. Introduction

Forested catchments of southeast Australia supply most of the water for at
least 25% of Australia’s population, as well as for nationally significant industries
including agriculture [1,2]. Underlying interactions between soil-plant-atmosphere
make the relationship between rainfall and runoff non-linear and complex to model
in forested catchments. In addition, catchment vegetation cover is continuously
affected by activities such as logging, long-term land use and changes, and major
disturbances (e.g., bushfires) that in return influence the catchment water yield [3,4].
Bushfires affect catchment hydrology through changes in the structure and density
of the vegetation cover, leading to changes in evapotranspiration and water yield
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over the regeneration period that last sometimes for several decades. For example
a 5% change in forest evapotranspiration due to changes in the vegetation cover
affects mean water yield by 20% in southeast Australia [5]. In the state of Victoria,
the impact of the 1939 bushfires on water yield from mountain ash forests peaked
around 20 years after the fire following the relationship that exists between changes
in the leaf area index [6] and catchment water yield [3,6].

Climate and vegetation cover characteristics have commonly been used as
key predictors of post-fire runoff from forested catchments in Australia [3,7–10].
Previously, short-term estimation and forecast of catchment water yield were based
on a range of methods, from purely empirical simple models to highly sophisticated
distributed process-based models defined by partial differential equations (e.g., the
Systeme Hydrologique Europeen model [11] or the Macaque model [9]). Over the
past decades, data-driven models have become increasingly useful in hydrological
forecasting on the basis that they avoid having to address the problems of the spatial
and temporal variability, and the uncertainty of the inputs and the parameters, as
opposed to the physically-based models that require a wide range of catchment and
climate information [12–14].

The most commonly applied data-driven methods in short-term estimating
and forecasting of catchment water yield are the parametric regressions such as the
multivariate regressions [15–17], nonparametric regressions such as the K-nearest
neighbor method [18–20], symbolic regressions such as genetic programming [21–23], and
artificial intelligence based methods such as neural networks [24–26]. Hydrological
processes contain non-linearities that are commonly modeled with data-driven
techniques as an alternative to linear regression methods. Numerous studies have
compared data-driven techniques with regression models (linear or non-linear) and
have underlined the interest in using data-driven methods (see for example [27–29]).
In this study, we employ four data-driven techniques, namely Nonlinear Multivariate
Regression (NLMR), K-Nearest Neighbor (KNN), Nonlinear Autoregressive with
External Input based Artificial Neural Networks (NARX-ANN), and Symbolic
Regression (SR) to explore their potential for capturing ecological dynamics in
predicting catchment hydrology at an operational level.

2. Materials and Methods

2.1. Case Study and Data Sources

The Corin catchment is located in the Namadgi National Park and is part of
the Cotter river catchment in the Australian Capital Territory (ACT). The catchment
lies about 50 km west of Canberra, at the northern end of the Australian Alps
(35˝39'25" S, 148˝49'53" E), and encompasses an area of 148 km2 (Figure 1). The
catchment is covered by native eucalypt forests and soils of the area are derived from
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highly weathered Ordovician sediments and are acidic and duplex in structure [30].
The underlying rock types are granite, limestone and shale, and the topography is
mountainous (steep with rocky outcrops). Summers are characterized as warm and
often hot, with dry periods of between six and eight weeks. In winter (July), mean
daily maximum and minimum temperatures in sheltered locations (mid-slope) are
14 and ´1 ˝C respectively, while in summer (January) the respective temperatures
are 24 ˝C and 10 ˝C. Mean annual rainfall is approximately 1150 mm. Annual
evaporation and seepage losses from the catchment are estimated to be 630 mm
and stream discharge typically peaks between August and September and reaches a
minimum between March and May [31] (Figure 2).
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Identification and documentation of fires within the Australian Capital Territory
(ACT) date back to 1730. In the past 100 years, there has been major bushfires in the
catchment and surrounding areas in the summers of 1920, 1926, 1939, 1983 and 2003.
With the exception of the 1920 fire, all have followed severe droughts where rainfall
in the months preceding the fire was well below average [32]. Most recently, bushfire
in January 2003 affected nearly 100% of the catchment.

We used Normalized Difference Vegetation Index (NDVI) as a proxy for
vegetation cover [33]. Our time series data encompass a period between the latest
bushfire in the catchment of study (January 2003) and January 2012. Daily time
series of water yield and rainfall (verified for gaps and aggregated from hourly
measurements) were provided by Actew-AGL (the utility that supplies water to
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Canberra). Water yield was measured at a gauging station upstream of the Corin
reservoir, and rainfall was measured at a weather station in the middle of the
catchment (Figure 1). An annual hydrograph of the inflow to the Corin Dam and a
hyetograph at the Mount Ginini weather station (closest synoptic station to Corin
dam) are presented in Figure 2.
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Figure 2. Annual hydrograph at the inflow of the Corin dam provided by the
Bureau of Meteorology of Australia (a); and hyetograph at of the Mount Ginini
automatic weather station (b).

Time series of MODIS NDVI version 5 derived from red (0.62–0.67 µm) and
near-infrared (0.841–0.876 µm) reflectance data were extracted and used directly.
MODIS NDVI was selected because: (1) it provides an estimate of vegetation
ecological changes over time [34] and fire damage [35], and is directly related to leaf
area index (LAI) [36,37]; (2) remotely sensed NDVI is available at a higher spatial
resolution than LAI (250 m instead of 1 km); (3) there is less uncertainty associated
with estimation of NDVI by satellite data, compared to LAI of eucalypt forests in
Australia [38]. Data obtained from the MODIS-TERRA sensor (MOD13Q1 product
version 5) has a 250 m spatial resolution and is a composited output over 16 days.
Version-5 MODIS/Terra NDVI is validated over a widely distributed set of locations
and time periods [37]. We downloaded scene h30v12 of the product, from the NASA
Land Processes Distribution Active Archive Centre Data Pool. Using the MODIS
reprojection tool (Version 4.1; USGS Earth Resources Observation and Science Center,
Sioux Falls, SD, USA) NDVI scenes were cut to the study area and average values
for the catchment were used. Average NDVI for the catchment was used since
the catchment of study has a relatively homogenous forest cover in the sense that
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the native eucalypt forests that cover the catchment did not differ widely in their
canopy characteristics.

A short-term forecast (intra-month) of water yield is worthwhile information
for water allocation as well as water stress assessments, especially since immediate
bushfire impacts on water yield are relatively unknown. NDVI is only available
every 16 days, therefore water yield and precipitation variables were reformed to
16-day intervals by accumulating their daily values.

2.2. Standardization and Goodness of Fit Criteria

Data standardization adjusts all data so that they fall within a prescribed range
and have common basic statistical characteristics. The result of standardization
is a data space without the bias, which appears usually as a result of scale, and
consequently all input variables are treated equally. Given the natural range of the
dependent and independent variables being equal to or greater than 0, the most
simple and efficient method for standardizing variables was:

ystan “
y

Maxpyq
(1)

where ystan is the amount of variable y after standardization; and Max(y) is the
maximum value of y within the time series. Following goodness of fit criteria were
used for comparing the results of different data driven methods:

‚ Root Mean Square Error (RMSE)

RMSE “

d

n
ř

i
pobsi ´ f oriq

2

n
(2)

where obsi and fori are observed and forecasted value of the dependent variable at
time step i, respectively; and n is the total number of time steps.

‚ Volume Error (VE)

VE “

n
ř

i

ˇ

ˇ

ˇ

obsi´ f ori
obsi

ˇ

ˇ

ˇ

n
(3)

‚ Correlation (Corr)

Corr% “
Covpobs, f orq

σobs ˆ σest
(4)

where Covpobs, f orq is the covariance between observed and forecasted values; and
σobs and σest are standard deviation of observed and estimated values, respectively.
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‚ Nash-Sutcliffe Efficiency (NSE)

NSE is used to evaluate the estimative power of hydrological models [39]:

NSE “ 1´

n
ř

i“1
pobsi ´ f oriq

2

n
ř

i“1
pobsi ´ obsq

2 (5)

where obs is the average of observed values from i = 1:n. NSE can range from´8 to 1.
NSE = 1 corresponds to a perfect match of modeled discharge to the observed data.
NSE = 0 indicates that the model forecasts are as accurate as the mean of the observed
data, and NSE < 0 is an indication that observed mean is a better predictor than the
model or in other words, when the residual variance is larger than the data variance.

2.3. Data-Driven Methods

Data-driven methods that were applied in this study were:

‚ Non-Linear Multivariate Regression (NLMR)

NLMR estimates unknown coefficients of predictors based on a non-linear
optimization approach in the following form:

Min Z “ Zcalibration
Zvalidation

`
Zvalidation
Zcalibration

Ztcalibration “
m
ř

i“1

ˇ

ˇ

ˇ
Qobspiq ´Q f orpiq

ˇ

ˇ

ˇ

Zvalidation “
k
ř

i“m`1

ˇ

ˇ

ˇ
Qobspiq ´Q f orpiq

ˇ

ˇ

ˇ

Q f orpiq “

«

p
n
ř

j“1
cjx

bj
j q ` cn`1

ff

i
Q f or ě 0

(6)

where m is the number of samples used for calibration; k is the number of samples
used for both calibration and validation; Qobs(i) and Qfor(i) are observed and
forecasted water yields at time i; x1 to xn are n predictor variables; cj and bj are
coefficients of predictors and cn+1 is the constant of the model. Here we used “Lingo
optimization package” [40] to optimize the model for coefficients and constant values.

‚ K-Nearest Neighbor (K-NN)

The K-NN method develops a distribution function of estimated values using
a nonparametric kernel distribution function. The concept is based on observing
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estimator variable values at a given time and searching for similar conditions in
the past, within the time series. These similar conditions can be considered as
possible solutions depending on the degree of similarity between estimator variables
at current and past time points [18,20]. General algorithm for K-NN would be:

(1) setting a matrix with m columns (number of predictors) and n + 1 rows (length
of time series).

(2) last row of the above-mentioned matrix is assumed as a vector of predictors at
current time (xj,t j = 1:m).

(3) remaining rows are assumed as a matrix of predictors at historical time series
(xj,t-i j = 1:m i = 1:n).

(4) vector Q is defined with n rows of independent variable values from t ´ n to
t ´ 1.

(5) using a distance function, distances between xj,t and xj,(t-i) are calculated.

Distpt´ iq “ f pwj, xj,pt´iq, xjtq (7)

where wj are weights of predictor variables at the distance function. We
chose the Euclidean function as the distance function with equal weights to
predictor variables.

(6) distance vector (Dist) is sorted from minimum to maximum (SDist) and vector
Q is assorted based on SDist.

(7) best number of neighbors (k) are specified based on a variety of methods. Here
we have used the empirical equation K “

?
n in which n is the length of the time

series which is used as historical data for calibration and validation stages [41].
(8) a discrete Kernel function is used to give weights to k neighbors [42].

Speq “
1{SDistpt´ eq

k
ř

e“1
1{SDistpt´ eq

e “ 1...k (8)

(9) forecast value at current time is calculated as:

Forecast “ SˆQT (9)

where T is the transpose operation.

‚ Nonlinear Autoregressive with External Input Based Artificial Neural Networks
(NARX-ANN)

NARX-ANN is able to model nonlinear autoregressive time series and it is quite
appropriate to identify nonlinear dependencies among dependent and estimator
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variables [43,44]. This model is a recurrent dynamic network, with feedback
connections compassing several layers of the network. The defining equation for the
NARX-ANN model is [45]:

yptq “ f rypt´ 1q, ..., ypt´ dq, xpt´ 1q, ..., xpt´ dqs ` eptq (10)

where y(t) is dependent time series at time t; f is a set of nonlinear functions;
x is matrix of independent variables; e(t) is the white noise residuals; and d
is number of delays. NARX-ANN was coded and run in “MATLAB R2013a”
programming package.

‚ Symbolic Regression (SR)

SR searches the space of mathematical equations to find an equation, which
appropriately fits the data, by changing both the type of mathematical functions
as well as the value of the parameters. This process starts with choosing initial
expressions that randomly couple mathematical building blocks. Then, latter
equations are shaped by reincorporating previous equations and altering their
sub-expressions via an evolutionary algorithm similar to genetic programming;
and ultimately final mathematical equations are ranked using a ratio of accuracy and
equation complexity [46]. In this study we used “Eureqa Formulize” software [47]
to form SRs. Recently this software has been increasingly applied by researchers
in different environmental studies as a reliable tool for analyzing SR-based
issues [48–51].

3. Results and Discussion

Cross-correlation (based on Pearson Correlation) with 95% confidence interval
was undertaken on standardized time series to find the most appropriate time lags
(TL) between all independent and dependent variables. Results shows that TL = 1
has the highest correlations in all cases with the exception of zero. This means
for forecasting standardized water yield at time t + 1 by three methods of NLMR,
K-NN and SR, the values of standardized precipitation, standardized NDVI and
standardized water yield at time t should be used; however in NARX-ANN best TL
would be derived based on a trial-error process which will be explained.

At the next step, data were split into three blocks of (1) calibration including
70% of data; (2) validation including 15% of data; and (3) verification including 15%
of data. While data were randomly distributed into three blocks, we ensured that
each block included extreme events, in addition to more normal values. During
the calibration stage (also known as training) 70% of our total data is calibrated for
the model parameters. The model is then tested during the validation stage with
an unused 15% of the total data. This process is repeated until total error for the
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calibration/validation stages is minimum. Once the optimum model is selected, an
independent 15% of the data set that has not been used in the modeling process is
used to examine model’s accuracy. This is called the verification stage.

As for the K-NN method, best number of neighbors was 13 based on the
number of data, which were located in the calibration and validation blocks. The
NLMR model for short-term forecasting of water yield was derived as following
(all used variables in Equation (11) are standardized by Equation (1), and therefore
are dimensionless):

WYi “ p251.77ˆ Prec´4.7ˆE´0.005
i´1 q ` p´59.125ˆ NDVI´0.001

i´1 q ` p´485ˆWY0.00001
i´1 q ` 292.65 (11)

Based on the recommendations of previous studies [44,52], here in the
three-layer NARX-ANNs model, “Levenberg–Marquardt” algorithm function was
used as back-propagation calibration-validation algorithm, and “Tangent sigmoid”
function was applied for the hidden layer neurons, and finally “Linear Transfer”
function was employed in the output layer neuron. Further, a range of 1 to 5 for
number of delays as well as 1 to 20 for number of neurons in the hidden layer were
examined to reach the best neural network’s architecture. Considering the results
of the objective function of mean square error, the best number of neurons was
found to be 10; moreover, the best number of delays for precipitation and NDVI
(“inputDelays”) equals 1 and (“feedbackDelays”) equals 2 for the water yield.

As for SR, five main mathematical operators, exponential and trigonometry
functions were considered for building the mathematical blocks. Figure 3 shows
the mathematical solution’s accuracy vs. its complexity. Here we considered the
solution with a mean absolute error 0.08 and complexity of 33 as the optimum
point on the frontier. After this point by increasing the complexity the amount of
errors had ignorable discrepancies. The stability and maturity of final solutions
after 4.7 ˆ 107 generations were 0.77% and 98.6%, respectively. Ultimately based
on the optimum point, the proposed mathematical solution can be presented as
(all used variables in Equation (12) are standardized by Equation (1), and therefore
are dimensionless):

WYi= 0.64 + (22.72ˆWYi´1 ˆNDVI28.78
i´1 )´ (0.70ˆNDVI

(NDVIi´1 + 9.44ˆPreci´1ˆWY2
i´1 ´ WYi´1q

i´1 q (12)

where i is time step; WY is water yield; and Prec is precipitation.
Table 1 presents a sensitivity analysis over Equation (12). Here, sensitivity means

the relative impact that a predictor has on the target variable (streamflow). In Table 1
“%Positive” is the likelihood that increasing this variable will increase the target
variable; “Positive Magnitude” is when increase in this variable lead to increase in
the target variable, this is generally how big the positive impact is. “%Negative”
is the likelihood that increasing this variable will decrease the target variable, and
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finally “Negative Magnitude” is when increase in this variable leads to decrease in
the target variable and this is generally how big the negative impact is. According to
Table 1, the model is most sensitive to NDVI (sensitivity = 1.31) even more than to
precipitation (sensitivity = 0.08). Results show that at 31% of times, NDVI will have
positive impact with magnitude of 3.81, and at 55% of times, streamflow with time
lag 1 will have positive impact on forecasting streamflow with a magnitude of 0.7.
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Table 1. Sensitivity analysis of the optimum solution derived from SR.

Variable Sensitivity % Positive Positive
Magnitude % Negative Negative

Magnitude

NDVIi-1 1.31 31% 3.81 69% 0.21
WYi-1 0.70 55% 1.16 45% 0.14

Precii-1 0.08 99% 0.08 0% 0

Table 2 summarizes final results of the goodness of fit criteria for all models, at
three stages of Calibration-Validation, Verification, and the Entire Data. NARX-ANN
produced the best correlation coefficient (at the Calibration-Validation, 0.91) and
K-NN the worst (at the entire data, 0.63). Using the RMSE criterion, NARX-ANN
had the best performance at the Calibration-Validation stage (0.07) and K-NN had
the worst performance at the Verification stage (0.21). As for VE, SR performed the
best (Calibration-Validation stage, 1.09) and K-NN the worst (Verification stage, 3.57),
and finally considering the NSE criterion, NARX-ANN showed the best performance
(Verification stage, 0.80) and K-NN the worst performance (Verification stage, ´3.54).
In a pair-wise comparison between different methods, the ranking of performances
is: (1) NARX-ANN; (2) SR; (3) NLMR; and (4) K-NN.
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Table 2. Performance statistics for the tested data-driven methods.

Methods
Calibration-Validation (85% of

Data) Verification (15% of Data) Entire Data

Corr RMSE VE % NSE Corr RMSE VE % NSE Corr RMSE VE % NSE

K-NN 0.64 0.16 3.42 ´0.10 0.74 0.21 3.57 ´3.54 0.63 0.17 3.44 ´0.33
NLMR 0.79 0.10 1.51 0.60 0.78 0.20 1.50 0.40 0.76 0.12 1.51 0.55

NARX-ANN 0.91 0.07 1.20 0.80 0.90 0.11 1.50 0.80 0.90 0.08 1.24 0.80
SR 0.82 0.09 1.09 0.67 0.80 0.16 1.20 0.63 0.82 0.10 1.16 0.67

According to Figure 4, K-NN has overestimated the low streamflows, and
underestimated the high streamflow values while with NLMR (Figure 5) only
underestimation of high streamflow values is remarkable. NARX-ANN by far has
forecasted a wide range of streamflows much more accurately in comparison with
other three models (Figure 6). Finally, considering Figure 7 the forecast errors of
low, moderate and high streamflows at SR are rationally similar, and it is hard to
distinguish the advantages of this model in forecasting a specific range of streamflow
values. For comparison purposes we also parameterized a conventional linear
regression model of form y = a + bx1 + cx2 + dx3 and found its performance very poor
(Corr = 0.45) and the technique inappropriate compared to the data-driven models.
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An encouraging aspect of the NLMR and SR models was that they presented
mathematical equations to be used in short-term forecasting of water yield. Of these
two models, SR outperformed NLMR especially in extreme events. Obviously,
models presented here could further be improved by using longer periods of
continuous data in the analysis.

In case top priority is given to forecasting extreme events, the NARX-ANN
model can be improved by including new performance function networks [53], and
the SR model may be improved by dividing the data into extreme and normal groups
first, and then modeling each group separately, as proposed by Charhate et al. [54].
In this study, a 16-day interval was considered due to limited NDVI data availability.
In case NDVI values are available with a higher temporal resolution, a shorter
time interval (e.g., daily) might provide a more realistic short term forecast of the
stream flow, because flood events that occur during this time interval will not be
smoothed anymore, and because precipitation and discharge data generally have
more heterogeneity than NDVI values.

Concluding, this study shows that in this catchment in southeast Australia,
different data-driven models perform differently. The NARX-ANN model is superior
to the rest of the techniques and would be a suitable tool for catchment managers
and water utilities in the absence of extensive climate, soil and vegetation data.

4. Conclusions

Hydrological processes contain non-linearities that are commonly modeled
with data-driven techniques as an alternative to conventional regression and
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process-based methods. Nevertheless, the lumped data-driven models have
limitations in delivering hydrological insights. An underlying justification for the
variability in the fit metric values in this study could be the physical processes
that are under-presented with the current inputs. For example, hydrological
processes such as snowmelt at higher elevations within the catchment impact the
timing of the discharge and are inadequately presented via precipitation inputs.
When limited data is available, uncertainties associated with hydrological data
exert even larger limitations on the model (e.g., rainfall uncertainties driven by
spatial scale or discharge uncertainties dominated by flow condition and gauging
method [55]). While a varied mix of data-driven techniques have emerged for
modeling hydrological time series, limitations to the mechanistic and physical
rationale that can be afforded to the internal structure and behaviors of such models
still need to be considered.
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Comparison of Water Flows in Four
European Lagoon Catchments under a Set of
Future Climate Scenarios
Cornelia Hesse, Anastassi Stefanova and Valentina Krysanova

Abstract: Climate change is supposed to remarkably affect the water resources of
coastal lagoons as they are highly vulnerable to changes occurring at their catchment
and/or ocean or sea boundaries. Probable impacts of projected climate changes on
catchment hydrology and freshwater input were assessed using the eco-hydrological
model SWIM (Soil and Water Integrated Model) for the drainage areas of four
European lagoons: Ria de Aveiro (Portugal), Mar Menor (Spain), Tyligulskyi Liman
(Ukraine) and Vistula Lagoon (Poland/Russia) under a set of 15 climate scenarios
covering the time period until the year 2100. Climate change signals for all
regions show continuously increasing trends in temperature, but various trends
in precipitation. Precipitation is projected to decrease in two catchments on the
Iberian Peninsula and increase in the Baltic region catchment, and does not show
a clear trend in the catchment located near the Black Sea. The average projected
changes in freshwater inputs reflect these changes in climate conditions, but often
show variability between the scenarios, in future periods, and within the catchments.
According to the individual degrees of water management influences in the four
drainage basins, the climate sensitivity of river inflows is differently pronounced
in each.

Reprinted from Water. Cite as: Hesse, C.; Stefanova, A.; Krysanova, V. Comparison
of Water Flows in Four European Lagoon Catchments under a Set of Future
Climate Scenarios. Water 2015, 7, 716–746.

1. Introduction

Positive trends in temperature and diverse changes in precipitation, affecting
water balance components and regional water resources, have been observed
worldwide over the past decades [1–5]. The observed annual average temperature
increase across European land areas is higher than the global scale average [6]
and amounts to 0.9 ˝C for 1901 to 2005, with some variability between regions
and seasons [7]. The greatest warming over the past 30 years was detected over
Scandinavia, especially in winter, whereas the Iberian Peninsula warmed mostly in
summer [8]. It is very likely that the temperature increase since the mid of the 20th
century is due to the increase in greenhouse gas concentrations in the atmosphere
resulting from anthropogenic activities, and it is expected that the climate warming
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will continue [1,2]. Observed precipitation changes during the last decades show
higher temporal and spatial variability compared to the changes of temperature.
Annual precipitation has generally increased in Northern Europe and decreased
in most parts of Southern Europe [6]. The effects of altered climate conditions on
diverse ecosystemic and social functions can already be detected, such as a longer
plant-growing season, changes in species distribution and biodiversity, retreating of
glaciers, and humans suffering from heat waves (e.g., [9–12]).

According to Alcamo et al. [7], potential warming in Europe could reach values
from +1 to +6 ˝C by the end of this century. The trends may noticeably vary in
different European regions. Not only are changing temperatures expected in the
future, but also shifting rainfall patterns and altered river runoff, less snow cover in
extent and duration, rising sea levels, and continuously melting glaciers. Projections
indicate a general increase in annual precipitation varying between +10% and +20%
in Northern Europe and a decrease between ´5% to ´20% in Southern Europe
and the Mediterranean region [6]. All these changes can have various effects on
water resources and affect ecology and society as well as the ecosystem services of
different regions.

Expected climate changes are also supposed to impact the coastal lagoon
ecosystems in Europe. Changes at its ocean and/or catchment boundary conditions
may cause changes in the lagoon’s ecological status and in its ability to serve as a
recreation area, living environment and source of livelihood. The potential impacts
could differ considerably at regional and local scales, and have to be studied in
order to help people prepare and improve the adaptive capacity of particular lagoon
ecosystems [13,14]. Many authors emphasize the importance of developing adequate
lagoon management plans and implementing proactive adaptation measures [15,16].

Climate impact studies for lagoons and coastal areas worldwide most often
deal with the direct impacts of climate change on their water bodies and ecosystems
(e.g., [17–19]). But the indirect impacts should not be forgotten as climate change
can also cause variations in river runoff and freshwater inflow from the drainage
areas to the lagoons (e.g., [20–22]). This certainly may affect the lagoon’s condition
by, for example, shifting its salinity, biodiversity or eutrophication status. Climate
change impact assessment allows us to use models to study possible changes in river
discharge under different climate conditions.

A common approach for hydrological impact studies at the catchment scale
is to use climate parameters provided by climate models as input for calibrated
and validated hydrological models [23]. As global climate models (GCM) have
resolutions too coarse for regional eco-hydrological studies, downscaling is usually
needed to get more reliable input data for the hydrological models. It is normally
provided either by Regional Climate Models (RCM) driven by GCMs or by using
statistical downscaling methods. Using climate scenarios from several driving RCMs
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(multi-model approach) is preferable in comparison to applying just one climate model
as a driver to investigate the range of uncertainty for impact projections [24–27]. Such
an approach is also applied in this study.

The main objective of the study was to perform a climate impact assessment
for water flows in the catchment areas of four European lagoons—Ria de Aveiro
(Portugal), Mar Menor (Spain), Tyligulskyi Liman (Ukraine) and Vistula Lagoon
(Poland/Russia)—until the end of the 21st century. For that purpose, the
eco-hydrological model SWIM (Soil and Water Integrated Model, [28]) was applied,
and a set of 15 climate scenarios from the ENSEMBLES project [29] served as drivers.

The explicit research questions concerning model applications in the case study
areas in this publication are as follows:

‚ Is the SWIM model able to sufficiently simulate the hydrology of the four chosen
multi-river European lagoon catchments?

‚ What future climate changes can be expected in the four selected
lagoon catchments?

‚ How are the river discharge and catchment runoff impacted by possible changed
climate conditions?

‚ Is there a spatial heterogeneity of impacts between the catchments in Europe or
within single catchments?

‚ Which climate parameter is most important in terms of influencing future
river runoff?

‚ What suggestions can be made for the management of the four lagoon
catchments, and what are the implications of this work for other lagoons and
coastal systems?

The outputs of the SWIM catchment model driven by climate scenarios could
also be used as inputs for lagoon models to simulate the responses of water bodies
to altered freshwater inputs from the catchments resulting from changed climate
conditions, as was done in a subsequent separate climate impact assessment.

Our catchment-to-coast modelling is the first step in an overall catchment-lagoon
impact assessment study supporting the development of a pan-European strategy
plan for coastal areas under a changing climate. The study is done within the
European FP7 project LAGOONS. The results would enable a better understanding
of potential future developments in lagoon catchments, and contribute to creating
appropriate adaptation strategies for these regions in view of climate change.

2. Description of the Case Study Areas

Climate and land use change impact assessments were conducted for the
catchments of four lagoons located in different regions of Europe and connected to
four different seas:
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(1) The Ria de Aveiro is located in Portugal and connected to the Atlantic Ocean.
It has a catchment of about 3560 km2 mainly drained by the Vouga River. The
catchment is influenced by a humid and temperate climate, and largely covered
by forest.

(2) The Mar Menor is located in Spain close to the Mediterranean Sea with a
catchment of about 1380 km2. Although the catchment is characterized by hot
and dry summers, it is intensively used for irrigated agriculture. The largest
river Albujon Wadi often dries up and is not a permanent stream.

(3) The Tyligulskyi Liman can be found in the Ukraine near the Black Sea with a
catchment of about 5240 km2. It is mainly drained by the Tyligul River and
characterized by a warm temperate to continental climate. Due to very fertile
soils in this region the catchment is mainly used for agriculture.

(4) The transboundary catchment of the Vistula Lagoon is located in Poland and
Russia connected to the Baltic Sea. It covers an area of about 20.730 km2 drained
by several main rivers in a marine temperate climate. The drainage area is
mainly used for agriculture with relatively numerous forested areas.

The locations of the four case study areas (CSA) within Europe as well as the
digital elevation models (DEM) for the lagoon catchments can be found in Figure 1.
Some catchment characteristics are listed in Table 1.

The four CSAs investigated in this study are subject to different degrees of
human water management impacts on the natural river flow in the catchments. The
water management measures in the Aveiro and Vistula Lagoon catchments are not
substantial compared to two other cases studies. In relation to the total volume of
freshwater inflow to the lagoons, the managed water flows amount to 2.3% in the Ria
de Aveiro (abstraction and discharge for public water supply) and 8.5% in the Vistula
Lagoon catchment (water transfer from the Vistula River). Additionally, 40% of the
Pregolya River discharge does not reach the Vistula Lagoon directly but is instead
transferred to another catchment beforehand. However, the management measures
are more extensive in the other two cases. In the Mar Menor catchment, the total
water inflow to the lagoon is influenced by water transfer from the Tagus catchment
(used for irrigation) and the UWTP (urban water treatment plant) effluents (i.e., 51%
of the total discharge to the lagoon is related to management). The river discharge in
the Tyligulskyi Liman catchment is highly influenced by the construction of ponds
within the whole river network and by irretrievable water use (as a result, only 49%
of the discharge reaches the lagoon). Therefore, even smaller absolute volumes of
water transfer or abstraction can cause a high management degree in catchments
with naturally low water discharges, as in the Mar Menor and Tyligulskyi Liman
drainage basins, characterized by dry climate conditions.
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Figure 1. Location of the four case study areas (CSAs) within Europe (a) as well
as the Digital Elevation Models (DEM), locations of lagoons, and main inflowing
rivers per CSA (b–e).

Table 1. Characteristics of the four case study areas investigated in the study.

Parameter Unit Ria de Aveiro Mar Menor Tyligulskyi Liman Vistula Lagoon

Lagoon area km2 75 135 160 322

Catchment area km2 3,556 1,380 5,240 20,730

Country(ies) - Portugal Spain Ukraine Poland/Russia

Sea - Atlantic Ocean Mediterranean Black Sea Baltic Sea

Total freshwater inflow km3¨year´1 2.14 0.009 0.023 3.69

Main inflowing rivers - Vouga Albujon Tyligul

Pregolya

Pasleka

Elblag

Number of analysed
inflowing rivers - 10 7 6 12

Number of infl. rivers with
avail. gauge data - 1 0 1 5

Av. altitude (range) m a.s.l. 363 (´10–1,105) 100 (´5–1,061) 102 (´6–254) 82 (´27–308)

Av. temperature ˝C 14 25 9.7 7.7

Av. precipitation (range) mm¨year´1 1,100
(600–2,100) 337 (300–370) 515 (470–570) 750 (670–860)

Major land uses

Agriculture % 29 82 80 67

Forest % 56 1 4 25
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3. Material and Methods

3.1. Soil and Water Integrated Model (SWIM)

The eco-hydrological model SWIM [28] was used for climate impact assessment
in the four European lagoons. This process-based semi-distributed model was
developed based on the models SWAT (Soil Water Assessment Tool) [30] and
MATSALU [31] for river basins at the regional scale (200 up to 500,000 km2). The
hydrological, nutrient, sediment and vegetation processes are simulated with a
daily time step at the hydrotope level. Hydrotopes are sets of the smallest spatial
units in SWIM, and are defined as areas within one subbasin with unique land
use class and soil type. It is assumed that such units behave similarly regarding
water flows, nutrient cycling and vegetation growth (principle of similarity). After
process calculation for hydrotopes, the components and flows are aggregated at the
subbasin level, and then the lateral flows are routed to the basin’s outlet (and enter
the specific lagoon).

Soil hydrological processes in SWIM are based on the water balance equation,
and consider surface, subsurface and groundwater flows as well as percolation
and recharge of the aquifers. Surface flow is calculated by a non-linear function
of precipitation and a retention coefficient which depends on land use, soil type,
management, and the actual soil water content. Subsurface flow and percolation are
calculated simultaneously, separately for each soil layer: subsurface flow occurs if
percolation exceeds field capacity in a layer. The number of soil layers (up to ten
can be considered) is defined depending on available soil parameterization for the
catchments. Percolation from the bottom soil layer leads to a recharge of the shallow
aquifer, from where water can rise again to the soil profile through capillaries, flow
laterally to the river network, or percolate to a deep aquifer. From the deep aquifer
water cannot rise up again.

Snow processes are simulated using the method of Gelfan et al. [32] as described
in Huang [33]. Snow melting is calculated with a degree-day-factor. Water outflow
from the snowpack depends on snow depth, content of ice and liquid water, and snow
density. The processes of refreezing and snow metamorphism are also considered.

In the original SWIM model potential evapotranspiration is generally calculated
based on solar radiation, daily mean temperature and elevation using the method of
Priestley and Taylor [34]. However, in the case of the Tyligulskyi Liman catchment
the Turc–Ivanov equation [35,36] was used to better reproduce observed values in
this catchment. The actual evaporation/transpiration is calculated separately for
soils and plants as functions of potential evapotranspiration and the leaf area index
(LAI), while soil evaporation is reduced when its accumulated amount exceeds 6 mm.
The limited soil water content leads to decreased plant transpiration [28].
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Climate as well as land use and management practices are important external
drivers for the processes represented in the model. The main external climatic
drivers are precipitation and snow fall together with temperature and solar radiation
influencing snow melt processes and the evapotranspiration potential of the
vegetation and the landscape. Climate parameters are assumed to be homogeneous
at the subbasin level. Measured (for model calibration) or projected (for impact
assessment) climate data are interpolated to the subbasin centroids by using an
inverse weighted distance method.

Due to its spatial resolution as well as climate and land use considered as
boundary conditions, the SWIM model allows the analysis of impacts of climate
and land use changes on the major model outputs. It is therefore a suitable tool for
climate change impact assessments as planned in this study.

SWIM has been successfully applied in several catchments of different sizes
firstly in Germany and later in other river basins in Europe, Africa, Asia and South
America. It is still being developed further in accordance with the particular research
needs or specific case characteristics. An overview of the main applications and
implementations can be found in Krysanova et al. [37].

3.2. Input Data, Model Setup and Calibration Strategies

The SWIM model was applied to each of the four case study areas individually.
The model setup for the drainage basins of the lagoons was a challenging task, as they
mostly consist of several inflowing rivers and streams, with often no available data
on water flows and discharges. A non-trivial modelling strategy was necessary
to combine several river catchments within one SWIM modelling project for a
specific lagoon.

The modelled river discharge could only partly be properly calibrated and
validated at one or several gauges in four individual applications, and the
sub-catchments of smaller rivers/streams flowing to the lagoons had to be modelled
in an ungauged mode. Therefore, calibration and validation were performed for
the largest river catchments within the lagoon drainage basins: two in the case of
the Vistula Lagoon, and one in each of the three other cases. After that, SWIM
was applied for the entire lagoon drainage areas transferring the same calibrated
parameters to the ungauged parts, assuming similar geophysical and hydrological
conditions in adjacent river catchments but under consideration of catchment-specific
characteristics and management settings.

For model setup and hydrological calibration the SWIM model needs spatial
data, time series and water management information as input. The spatial data
include maps depicting DEM, land use classes and soil type distribution, as well
as subbasin structure. The required time series for model setup especially include
daily climate data (minimum, maximum and average temperature, precipitation,
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air humidity and solar radiation). Necessary management data for hydrological
modelling include information on water abstraction, water transfer from and to
adjacent catchments, major crops with their planting and harvesting dates, as well as
irrigation practices on agricultural fields.

Furthermore, river discharge data at gauging stations are needed for model
calibration and validation. In three of four catchments, discharge data from several
gauges provided an opportunity for a multi-site calibration, which is more reliable in
general and especially important in multi-river drainage basins as in our case.

Table 2 presents an overview of datasets used for SWIM application in the
drainage basins of the four lagoons. Most of the data are case specific. In all four
case study areas some data were missing, or data coverage in time and/or space was
problematic. Therefore, in all four cases the model calibration was a very complicated
task. The heterogeneity of spatial input data and inconsistent or missing time series
of climate and water discharge required interpolation and empirical methods for
data estimation.

The model setup and calibration strategies are described in more detail in
LAGOONS (2013) as well as the Ria de Aveiro case study area in Stefanova et al. [38]
and the Vistula Lagoon case study area in Hesse et al. [39].

During the calibration process, the model results were evaluated in regard to
the ability of SWIM to adequately simulate observed water discharges in the lagoon
catchments using two criteria of fit: Nash and Sutcliffe efficiency (NSE) and deviation
in water balance (DB). The equations to calculate NSE and DB can be found in
Hesse et al. [40].

The non-dimensional NSE [41] criterion describes the squared differences
between the observed and the simulated values and is based on the dispersion
of values around the line of equal values. The NSE can vary from minus infinity
to 1 and should be as near as possible to 1. In hydrological modelling, NSE values
above 0.5 are considered as corresponding to satisfactory, and above 0.65 as to good
modelling results for a monthly time step [42].
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The DB criterion corresponds to the percent bias (PBIAS), but with the opposite
algebraic sign, and shows the long-term percental difference of the observed values
against the simulated ones. For best model results, DB should be as near as possible
to 0. In hydrological model applications with a monthly time step, DB/PBIAS below
˘25% is considered satisfactory, and DB/PBIAS lower than ˘10% shows very good
model results [42].

For an objective appraisal of the model results achieved in this study, it should
be kept in mind that some criteria of fit presented here were calculated with the daily
values, where good performance rates are generally more difficult to obtain than for
simulations with the monthly time step.

3.3. Climate Scenario Description and Application

Climate impact assessment in the four lagoon catchments was performed by
using a set of climate scenario data provided by the ENSEMBLES project [29]. In
this project, a set of RCMs was run using the boundary conditions simulated by
different GCMs. All scenarios were driven by the A1B emission scenario, which
is an intermediate one concerning projections for increasing atmospheric CO2
concentrations. For the study presented here, only scenarios with the finer spatial
resolution of 25 km and a simulation period until the end of the century (mainly
until 2098) were selected from the ENSEMBLES climate scenario collection, resulting
in a set of 15 different climate scenarios, later referred to as S1 to S15 (Table 3). Such a
multi-model approach delivers several projections for the future climate, which have
a higher reliability on average than each single scenario with its general uncertainty.

Table 3. Global (GCM) and Regional Climate Model (RCM) combinations and
responsible institutes for the 15 ENSEMBLES climate scenarios (S1-S15) used for
impact assessment in the case study areas.

Scenario GCM RCM Institute Country

S1 HadCM3Q3 RCA3 Swedish Meteorological and Hydrological Institute (SMHI) Sweden
S2 HadCM3Q0 HadRM3Q0 Hadley Center for Climate Predictions and Research (HC) Great Britain
S3 HadCM3Q3 HadRM3Q3 Hadley Center for Climate Predictions and Research (HC) Great Britain
S4 HadCM3Q16 HadRM3Q16 Hadley Center for Climate Predictions and Research (HC) Great Britain
S5 HadCM3Q16 RCA3 Community Climate Change Consortium for Ireland (4CI) Northern Ireland
S6 HadCM3Q0 CLM Swiss Federal Institute of Technology Zurich (ETHZ) Switzerland
S7 ECHAM5-r3 RACMO2 Royal Netherlands Meteorological Institute (KNMI) The Netherlands
S8 BCM RCA3 Swedish Meteorological and Hydrological Institute (SMHI) Sweden
S9 ECHAM5-r3 RCA3 Swedish Meteorological and Hydrological Institute (SMHI) Sweden
S10 ECHAM5-r3 REMO Max Planck Institute for Meteorology (MPI) Germany
S11 ARPEGE ALADIN RM5.1 National Center for Meteorological Research (CNRM) France
S12 ARPEGE HIRHAM5 Danish Meteorological Institute (DMI) Denmark
S13 ECHAM5-r3 HIRHAM5 Danish Meteorological Institute (DMI) Denmark
S14 BCM HIRHAM5 Danish Meteorological Institute (DMI) Denmark
S15 ECHAM5-r3 RegCM3 International Center for Theoretical Physics (ICTP) Italy

As it is a common method in climate impact research to use 30-year-periods [54],
scenarios S1 to S15 were divided into the reference period 1971–2000 (p0) and
three scenario periods: near future 2011–2040 (p1), intermediate future 2041–2070
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(p2), and far future 2071–2098 (p3) for climate impact assessment. They were
analysed in advance by comparing the long-term monthly and annual averages of
temperature and precipitation and calculating the according climate change signals
per future period compared to the reference period of the same scenario (see results
in Section 4.2).

The 15 climate scenarios were applied to the calibrated and validated SWIM
for the four lagoon drainage basins under investigation. The climate parameters
minimum, maximum and average temperature, precipitation, air humidity and solar
radiation provided by the 15 individual scenarios were interpolated from the RCM
grid points located within or at a maximum distance of 10 km around the catchments
to the centroids of the subbasins in every case study area and then used to drive
the SWIM model. The basin-specific land use and management input data of the
reference period remained unchanged for the future periods in order to evaluate
impacts of climate change only.

The climate impacts on runoff in the catchments were analysed considering
(1) the long-term average daily, monthly and annual total water inflows to the
lagoons; (2) the long-term average annual discharges of the main rivers per CSA;
and (3) the long-term average runoff on a map with a hydrotope resolution, and
all three analyses averaged over 30 years and 15 scenarios. The results of the three
future scenario periods were always compared to the outputs simulated by SWIM
under reference conditions driven by the same climate dataset (S1–S15), and not by
observed climate. To get an impression of the uncertainty ranges of future projections,
different percentiles as well as minimum and maximum values of the scenario results
were also analyzed.

4. Results

This section summarizes the results of the study and describes model calibration
and validation, presents the climate change signals and impacts on total water inflow
to the lagoons and on inflows of separate rivers in the drainage areas with uncertainty
estimates. The results section also deals with the impacts on spatial patterns of runoff
in the catchment, and concludes with the general climate sensitivity of the total
freshwater inflow to the four lagoons under study.

4.1. Model Calibration and Validation in the Four Case Study Areas

A detailed hydrological calibration and validation was performed for three
gauges in the Ria de Aveiro catchment, for one gauge in the Mar Menor catchment
(using an estimated hydrograph), for two gauges in the Tyligulskyi Liman catchment,
and for two gauges in the Vistula Lagoon catchment. Figure 2 shows the observed
and simulated long-term average daily and monthly discharges for the most
downstream gauging stations of the largest rivers entering each of the four lagoons.
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In addition, all available discharge data for smaller rivers within the entire lagoon
catchments were used for a spatial validation of the calibration parameter set. All
analysed gauges are listed in Table 4 together with the criteria of fit achieved there.
If available, daily discharge data were used for evaluating model performance, but
in some cases only biweekly or monthly values could be compared. The calibration
and validation results are presented in more detail in a separate report [55].Water 2015, 7 727 

 

 

 

Figure 2. Comparison of the long-term average daily and monthly observed and simulated 

discharges (Q) at selected river gauges in the case study areas. Due to missing daily observed 

data in the Mar Menor case, the long-term average daily discharge could not be calculated. 

Table 4. Criteria of fit achieved at all gauges with available water discharge data applying 

basin-wide calibration parameter sets in the lagoon case study areas. 

Catchment River Gauge Period NSE DB (%) 

Ria de Aveiro 
Águeda Ponte Águeda 2002–2005 0.79 +5.6 
Cértima Ponte Requeixo 2002–2005 0.72 −19.1 
Vouga Ribeirada 2002–2005 0.7 −0.04 

Mar Menor Albujon outlet 8/2002–2/2004 * 0.44 −19 

Tyligulskyi Liman Tyligul 
Berezovka 1998–2007 ° 0.36 +1.5 

Novoukrainka 
1984–1988 ° −0.09 −0.1 
1984–1988 # 0.86 −0.4 

Vistula Lagoon 

Angrapa Berestvo 1995–2000 0.63 −23.6 
Bauda Nowe Sadulki 2009 0.55 −6.8 
Dzierzgon Bagart 2009 0.34 −7.4 
Lava Rodniki 1995–2000 0.70 −7.3 
Mamonovka Mamonovo 2008–2009 ° 0.62 −29.6 

Pasleka 
Lozy 2007–2009 0.66 12.9 
Nowa Pasleka 1998–2000 ° 0.72 −9.2 

Pissa Zeleny Bor 1995–2000 0.73 0.4 
Pregolya Gvardeysk 1983–1996 0.70 0.6 
Waska Paslek 2009 0.48 −9.8 

Notes: * biweekly values.° average monthly values.# long-term average monthly values. 

Figure 2. Comparison of the long-term average daily and monthly observed and
simulated discharges (Q) at selected river gauges in the case study areas. Due to
missing daily observed data in the Mar Menor case, the long-term average daily
discharge could not be calculated.

In the Ria de Aveiro case, hydrological calibration was performed using data
from three discharge gauges located within the Vouga catchment, the largest and most
important river flowing to the lagoon, one on the main river, and two on tributaries.
The observed daily discharges in the Vouga basin were estimated using water levels
and unique flow curve equations for each gauge. Since the equations are valid only
within certain ranges, some recorded values of very low and very high water levels
could not be transformed into daily discharges, which contributed to uncertainty
of model calibration in this CSA. The calibration was additionally complicated by
human interventions and seasonal damming of water on one tributary, which masks
the natural hydrograph. Another large uncertainty is related to missing or incomplete
precipitation data in the catchment. Nevertheless, despite all uncertainties in input
data, the hydrological calibration of the model was quite successful, reaching NSE

97



values above 0.7 and a relative deviation in water balance of ´0.04% at the most
downstream gauge Ribeirada (Table 4). The long-term average dynamic of water
discharge at this gauge is also reproduced quite well for the calibration period
2002–2005 (Figure 2).

Table 4. Criteria of fit achieved at all gauges with available water discharge data
applying basin-wide calibration parameter sets in the lagoon case study areas.

Catchment River Gauge Period NSE DB (%)

Ria de Aveiro
Águeda Ponte Águeda 2002–2005 0.79 +5.6
Cértima Ponte Requeixo 2002–2005 0.72 ´19.1
Vouga Ribeirada 2002–2005 0.7 ´0.04

Mar Menor Albujon outlet 8/2002–2/2004 * 0.44 ´19

Tyligulskyi
Liman

Tyligul
Berezovka 1998–2007 ˝ 0.36 +1.5

Novoukrainka
1984–1988 ˝ ´0.09 ´0.1
1984–1988 # 0.86 ´0.4

Vistula Lagoon

Angrapa Berestvo 1995–2000 0.63 ´23.6
Bauda Nowe Sadulki 2009 0.55 ´6.8
Dzierzgon Bagart 2009 0.34 ´7.4
Lava Rodniki 1995–2000 0.70 ´7.3
Mamonovka Mamonovo 2008–2009 ˝ 0.62 ´29.6

Pasleka
Lozy 2007–2009 0.66 12.9
Nowa Pasleka 1998–2000 ˝ 0.72 ´9.2

Pissa Zeleny Bor 1995–2000 0.73 0.4
Pregolya Gvardeysk 1983–1996 0.70 0.6
Waska Paslek 2009 0.48 ´9.8

Notes: * biweekly values.˝ average monthly values.# long-term average monthly values.

In the Mar Menor catchment, hydrological calibration could not be performed
as usual, as there were no observed time series of river discharge available. The
calibration was undertaken using biweekly estimated data mainly for 2003 derived
from Garcia-Pintado et al. (2007). An additional difficulty was that data on important
water contribution to the Albujon Wadi from an urban water treatment plant (UWTP)
were not available for 2003, and had to be estimated from the following years.
The hydrological cycle in the catchment is additionally influenced by irrigation
needs of highly water demanding crops, which are fulfilled by water transfer from
adjacent catchments. The calibration results for the period 8/2002–2/2004 using
the fortnightly estimated discharge are presented in Figure 2. The simulated curve
shows acceptable results. In August 2003 the simulated discharge is missing one
peak, which probably has its origin in the discharge coming from the UWTP since
almost no rainfall was recorded for this month. Nevertheless, the average simulated
discharge for 2003 is 0.20 m3¨ s´1, which is very close to the 0.24 m3¨ s´1 estimated
by Garcia-Pintado et al. [45].

For the Tyligulskyi Liman catchment data from two gauges located at the
Tyligul River, Novoukrainka and Berezovka, were used for hydrological calibration.
The calibration was hampered by totally missing data on observed precipitation
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within the catchment, and poor correlation between observed discharge and
precipitation from stations around the catchment. In addition, river discharge is
highly influenced by numerous ponds in almost all reaches of the river network,
and the high evaporation potential in this region often causing interruption of
discharge in summer. The observed discharge could only be reproduced by the
model after implementing ponds in the rivers using empirical data. Looking at
the long-term average daily and monthly discharges of the Tyligul River (Figure 2)
one can see that the model results with NSE of 0.86 and DB of 0.2% are acceptable,
and match the average discharge dynamics quite well. However, the comparison
of monthly averaged values for two stations (Table 4) shows that the discrepancies
between the simulated and observed discharges are still high. The results are better
for long-term average discharges, and the achieved DB values indicate that the
simulated total water amount coming with the Tyligul River to the lagoon matches
the observed values (Table 4). An acceptable balance could also be seen by comparing
the simulated outputs with average discharge values from literature for four rivers
flowing to the Tyligulskyi Liman as well as for the total inflow to the lagoon [55].

Hydrological calibration of the Vistula Lagoon catchment was a challenging task
as well, mainly due to the heterogeneity of spatial input data in this transboundary
catchment, and inconsistent time series of observed climate and discharge data
with many gaps. The two largest sub-catchments Pregolya (86 m3¨ s´1 on average)
and Pasleka (14 m3¨ s´1 on average), draining 82% of the total drainage area,
were calibrated first, and then the calibrated parameters were used for the whole
catchment. The observed and simulated average daily and monthly discharges of
the Pregolya are depicted in Figure 2 and show good model performance. Most
of the intermediate gauges in the catchment also show satisfactory or good NSE
values (Table 4) driven by WFDEI climate data [43], except of the two small rivers
Dzierzgon and Waska. These two rivers are located in the lowland area close to the
former mouth of the Vistula River, which drains directly into the Baltic Sea now due
to hydraulic engineering and rechanneling. The deviation in balance shows good
to very good model results in the majority of cases, except two rivers (Angrapa and
Mamonovka) with larger discrepancies (Table 4). As the last step in hydrological
calibration and spatial validation, average annual data on inflowing water to the
lagoon found in literature were compared with the corresponding simulated values
at the outlets of the twelve most important rivers entering the Vistula Lagoon [39,55].
In general the results show a good comparison.

4.2. Climate Change Signals

Climate change signals were calculated as differences in long-term average
(30 years) air temperature, precipitation and solar radiation between three future
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periods p1, p2 and p3 and the reference period p0 averaged over the whole case
study areas, separately and averaged over 15 climate scenarios (Table 5).

Table 5. Annual climate change signals of the three future periods p1, p2, and p3
related to the reference period p0 for the parameters air temperature, precipitation
and solar radiation averaged over 15 selected ENSEMBLES climate scenarios per
lagoon catchment.

Catchment
Temperature (˝C) Precipitation (%) Radiation (%)

p1 p2 p3 p1 p2 p3 p1 p2 p3

Ria de
Aveiro +1.03 +2.1 +3.1 ´5.6 ´7.5 ´15.6 +2.2 +3.3 +3.9

Mar
Menor +0.9 +2.0 +3.0 ´1.6 ´10.7 ´18.3 +0.03 +0.2 ´0.3

Tyligulskyi
Liman +1.2 +2.4 +3.5 ´3.3 +0.8 ´4.1 +0.6 ´0.1 ´0.4

Vistula
Lagoon +1.1 +2.2 +3.1 +4.3 +10.5 +9.7 ´0.8 ´3.2 ´4.3

The average climate change signals for air temperature show a continuous
increase from period p1 to period p3 and are similar for all four case study areas.
They amount to 1.06 ˝C for the period p1, 2.18 ˝C for p2 and 3.18 ˝C for p3 on
average. For the Tyligulskyi Liman catchment the simulated raise in temperature is
higher than for the other three catchments.

Regarding expected changes in precipitation, the change signals are more
diverse among the catchments. Until the end of the 21st century, an increasing trend
in precipitation is projected for the Vistula Lagoon catchment, while decreasing
trends are projected for the Ria de Aveiro and Mar Menor catchments. The strongest
relative decrease is simulated for the Mar Menor catchment. For the Tyligulskyi
Liman catchment, only very small changes in precipitation are projected on average.

The average change signals for solar radiation show a continuous increasing
trend for the Ria de Aveiro catchment, and a decreasing trend for the Vistula Lagoon.
Average percental changes in projected solar radiation for the other two catchments
are only minor.

However, if single scenarios are analysed, a wide range of possible climate
change signals can be seen in the four case study areas (Figure 3). The cases
with small changes and without clear trend direction, e.g., for precipitation in the
Tyligulskyi Liman catchment or for solar radiation in the Mar Menor and Tyligulskyi
Liman catchments, are visible. It can be observed that the projected changes in solar
radiation show the opposite change direction than precipitation in the Ria de Aveiro
and Vistula Lagoon catchments. Less precipitation means less cloudiness and higher
radiation, and vice versa. This connection is less distinct for the other two catchments,
which can be probably explained by the influence of some outlying scenarios.
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Figure 3. Ranges of climate change signals for 15 ENSEMBLES scenarios calculated
as differences in the long-term average annual air temperature (T), precipitation (P)
and solar radiation (R) between three future periods (p1, p2, p3) and the reference
period (p0). The box plots visualize min/max (error bars), 25/75-percentiles (grey
boxes), median (line) and average (dots) values.

In all cases the uncertainty between the 15 ENSEMBLES climate scenarios rises
with time, from period p1 to p3. The wide ranges between the minimum and
maximum changes are mostly due to outlying scenarios, but the 25/75-percentile
boxes cover similar ranges in all three future periods in most cases.

4.3. Impacts of Climate Change on Total Water Discharge to the Lagoons

Figure 4 shows the climate change impacts on total freshwater inputs coming
from the catchments to the four lagoons (sum of all inflowing rivers): the long-term
average daily dynamics for period p3 (a), the mean monthly differences in total water
inflow between periods p3 and p0 (b), and long-term average annual changes for
all three future periods compared to the reference period (c). The black line means
the average of 15 future scenario simulations, whereas the red line symbolizes the
average of 15 simulations driven by climate model data for the reference period p0.
The graphs include uncertainty bounds and ranges estimated based on all results
driven by 15 climate scenarios and shown by grey shading or, respectively, error bars.
The outer light grey uncertainty band is defined by the minimum and maximum
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outputs, and the dark grey inner band means the 25/75-percentiles of all results. The
latter includes 50% of all simulation results around the average and means the range
in which freshwater input can be expected in future with a high probability. The
results of the future periods were compared with results of the reference period of
the same scenario to calculate average monthly and long-term average changes.

Following the precipitation change signal, the simulated long-term average
water discharge in the Ria de Aveiro show a moderate decrease in the 1st and 2nd
future periods (´5% to ´7%), which becomes higher by the end of the century (about
´15% on average) (Figure 4, right). Although the decreasing trend is clear on average,
there are some scenarios showing a slight increase in the first two scenario periods.
The ranges between the 25/75-percentile values (meaning the level of uncertainty for
the most probable scenarios) are increasing with time from period p1 to period p3.
The projected river discharge to the lagoon in period p3 has a higher uncertainty in
the winter months than in the summer season (Figure 4, left). A decrease in average
water discharges can be detected during the whole year, while the absolute reduction
in spring and autumn is stronger than in summer. Almost all scenarios show the
negative trend.

The average climate impacts on freshwater inflow to the Mar Menor are similar
to those of Aveiro, as the precipitation change signals have similar trends in these two
regions. The results show a moderate decrease of the long-term average discharge to
the lagoon by about 10% on average by the end of the century (Figure 4c). For the 1st
future period the scenarios do not agree on a common trend and only a negligible
decrease on average can be stated. The negative trend becomes more distinct but
with a higher uncertainty towards the end of the century. Seasonal changes in water
inflow to the Mar Menor show a decrease only in October-December, when generally
the highest discharges can be observed (Figure 4b). The absolute uncertainty ranges
are quite moderate, as usually water inflow to the lagoon is very low.

The total river discharge to the Tyligulskyi Liman is expected to decline in
the scenario period p1, and increase in the two last periods p2 and p3 on average
(Figure 4c). These changes do not follow the mean precipitation change signal of the
last future period (Figure 3), and can probably be explained by the influence of a
decreased solar radiation, which reduces evaporation and by that affects the total
discharge. Besides, water inflow to the Tyligulskyi Liman is strongly influenced by
water management (ponds), which was considered unchanged in the future in order
to investigate “pure” impact of changing climate. The influence of the implemented
ponds on the modelled river discharges could interfere with the impacts of a changing
climate, and small climate induced changes could be masked. So, only in times when
the available water volume exceeds the total effective pond volume in the catchment
and evaporation effect on water cycle is low can changes in discharge be observed
in future. Looking at the differences in seasonal dynamics of total water inflow
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to the Liman (Figure 4b), changes can be recognized in winter (an increase) and
spring time (a decrease), when warmer winter temperatures influence snowfall and
snowmelt processes, which lead to higher winter discharge and earlier and lower
snowmelt peak.
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Figure 4. Climate change impacts on total freshwater inflow to the four lagoons
with uncertainty ranges simulated by SWIM driven by 15 ENSEMBLES scenarios.
(a): Long-term average daily dynamics in period p3 (black) with uncertainty ranges
(grey) compared to that in the reference period (red); (b): Differences in long-term
monthly dynamics between periods p3 and p0 (black) with uncertainty ranges
(grey) and zero line (red); (c): Spread of 15 long-term average annual changes for
three future periods compared to the reference period of the same scenario. Each
box plot visualizes the min/max, 25/75-percentiles, median (line) and average (dot)
of 15 average changes. The dynamics for Tyligulskyi Liman are shown without the
outlying scenario S8.
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The results of climate impact assessment on total inflow to the Vistula Lagoon
show a notable increase of 7%, 21% and 18% on average in the three scenario periods
due to higher precipitation (Figure 4c). The minimum and maximum ranges projected
by SWIM driven by the 15 ENSEMBLES scenarios increase in time from period p1 to
p3. The 25/75-percentile ranges (grey boxes) are quite narrow for all three periods,
and are located above the zero line. Therefore, an overall increase in future water
discharge as simulated by SWIM driven by 15 climate scenarios is quite certain. It
can be seen in Figure 4b that positive absolute changes in river discharge are largest
in winter and lower in summer. The only negative change in average discharge can
be seen in April, probably due to increasing average temperatures causing a totally
missing snow melt peak.

4.4. Impacts of Climate Change on Water Discharge of Single Rivers

Considering the spatial heterogeneity in the four lagoon catchments, it could
be assumed that the different rivers and streams entering the lagoons may show
different reactions to climate change, depending on the shares of specific land use
classes and soil types within their catchments. Therefore, an analysis of climate
change impacts was also done for discharges of the individual rivers flowing to the
four lagoons. The same as before, percental changes were calculated by comparing
the average discharge in the future period with the corresponding value simulated
for the reference period of the same scenario. Some selected results comparing the
intermediate period p2 with the reference period p0 are shown in Figure 5. This
period was chosen, as the expectable future direction of changes should already be
clearly visible, but the uncertainty ranges are quite moderate. The box plots show
the average and median changes in discharge per river catchment together with their
min/max-intervals and the 25/75-percentiles.

In Figure 5 it is evident that the region-specific average trends in total river
discharge per CSAs presented in Figure 4 can be detected for the single rivers as
well. For the Ria de Aveiro catchment, the majority of 15 climate scenarios project
decreasing river discharges in period p2 for all rivers. The decreasing trend is less
obvious for the Mar Menor rivers. Mostly an increasing trend with a high uncertainty
originating in 15 climate scenarios can be seen for the Tyligulskyi Liman catchment.
A distinct increasing trend projected by approximately 90% of the applied climate
scenarios is obvious for all rivers flowing to the Vistula Lagoon.

However, some outliers still exist, for example the catchments with the smallest
relative changes, e.g., the Albujon Wadi in the Mar Menor catchment, or the Nogat
and Szkarpawa Rivers in the Vistula Lagoon catchment, resulting mainly from the
water management measures. The effluents from an UWTP (Albujon Wadi) and water
transfer from adjacent catchments via the small rivers (Vistula River) implemented
in the model mask the climate change impacts in these cases, and result in only small
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relative changes with narrower uncertainty ranges. The wider uncertainty ranges
can be detected in catchments with low or even no flow in drier summer months
(e.g., in the smaller Mar Menor or Tyligulskyi Liman tributaries). Here, the relatively
high percental changes mean only very low absolute differences in discharge values.
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Figure 5. Percental changes in long-term average annual discharge of the main
tributaries entering the four lagoons under study comparing the intermediate
future period p2 (2041–2070) and the reference period p0 (1971–2000). The box plots
visualize min/max, 25/75-percentiles, median (line) and average (dots) values
based on simulated results driven by 15 ENSEMBLES scenarios.

The river-specific analysis of the scenario results shows that the differences
in climate impacts on simulated water discharge between the rivers of one
catchment can be mostly attributed to the degree of water management within
the sub-catchments and less to climate variability or variability in land use and
soil distribution. Water management makes the share of natural flow in the rivers
considerably smaller and can mask the “pure” climate change impact. But temporally
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undifferentiated management measures (e.g., water transfer from other catchments,
irrigation or waste water outflow from UWTP), which have to be implemented in
the model using imprecise information, contribute to the general uncertainty of
impact assessment. Additionally, the spatial variability within one (outlying) climate
projection or between different climate scenarios can highly influence average results
(e.g., for the Tyligulskyi Liman CSA). However, averaging the model outputs driven
by a set of scenarios diminishes the influence of a single scenario, and provides more
reliable results.

4.5. Impacts of Climate Change on Spatial Patterns of Runoff

Climate change impacts on water flows were additionally analysed in the
four lagoon catchments on the hydrotope level to get an impression on the spatial
distribution of changes within the catchments. Figure 6 shows the average differences
in surface and subsurface runoff between the three future periods and the reference
period. For the maps, the annual runoff values per hydrotope were averaged over
30-year-periods for every scenario and over 15 scenarios and then used for calculating
and mapping the differences in runoff between periods.
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Figure 6. Spatial patterns of average annual changes in runoff (surface and
subsurface flow) in the lagoon catchments under study simulated under the set
of 15 ENSEMBLES climate change scenarios (average of 15 mean runoff maps for
future periods p1, p2, p3 are compared to those of the reference period p0).
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The largest average annual decrease in runoff in the Ria de Aveiro catchment
is evident for period p3, especially in the eastern part of the catchment with higher
elevation. In some areas the average reduction in runoff reaches ´250 mm¨ year´1.
However, during the 2nd future period, some areas (agricultural land) show a little
increase (6 mm¨ year´1) due to lower evapotranspiration by affected crops leading
to a slightly higher runoff. Besides the land use types, the runoff generation also
depends on soil characteristics such as porosity and field capacity. Therefore, different
soil types and land use classes can be clearly identified in the runoff maps.

As precipitation and water availability are generally low in the Mar Menor
catchment, the average absolute changes in annual runoff are almost not visible in
the near future period p1 (< ˘1 mm¨ year´1), and show differences not larger than
´10 mm¨ year´1 in the periods p2 and p3. There are almost no changes visible in the
driest western part of the catchment. The highest decrease in runoff can be observed
in settlements, which had the highest runoff rates during the reference period, and
thus a decrease in precipitation could result in runoff reduction.

Due to the fact that no continuous precipitation trend could be recognized in
future in the Tyligulskyi Liman catchment, the spatial patterns of changes in runoff
in the three scenario periods are quite diverse. The changes in surface and subsurface
runoff more or less reflect the precipitation change signals of the future periods
(Figure 3), and show decreasing runoff in the 1st and 3rd periods but practically
unchanged or slightly increasing runoff in the 2nd period. They are also influenced
by soil type and land use class distributions. The highest decreasing trend in runoff
can be observed on areas covered by permanent vegetation (grassland) due to higher
evapotranspiration values in these hydrotopes under warmer climate. The simulated
decrease is highest in the currently drier south-eastern part of the catchment. It
can be concluded that the increase in average discharge (sum of surface, subsurface
and groundwater flow) to the Tyligulskyi Liman simulated for the 3rd future period
(Figure 4) is probably caused by higher groundwater flow (which is not included in
the maps) due to less evapotranspiration with decreased solar radiation.

Looking at the spatial distribution of changes in surface and subsurface runoff
in the Vistula Lagoon catchment, the highest average increase is evident in period
p2, and the heterogeneity of changes is highest in period p3. The simulated changes
in runoff follow the changes in precipitation patterns, but are also influenced by soil
characteristics and land use. The runoff increase is lower, or it is even decreasing,
on highly permeable soil types, where additional precipitation may contribute to
groundwater recharge instead. In general, the simulated changes in runoff are more
diverse in the southern Polish part of the catchment, resulting from a soil map with
better resolution used for this part of the catchment.
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4.6. Climate Sensitivity of Freshwater Inflow to the Lagoons

In addition to the analysis of changes in the long-term average outputs under
climate scenarios, the sensitivity of discharge to main climate parameters was
analyzed. For that, the relative changes of the annual total water inflow for each
future year of the time period 2011–2098 compared to the mean of the reference
period 1971–2000 of the same scenario (∆Q) were plotted against the corresponding
relative changes in precipitation (∆P) or absolute changes in temperature (∆T) and
radiation (∆R). The latter were estimated the same: as the annual average climate
parameters in the time period 2011–2098 related to the means in the reference period
1971–2000 of the same scenario (Figure 7).

Figure 7 illustrates the sensitivity of the total lagoon freshwater inflow (Q) to
changes in climate parameters in the four lagoon catchments. The fitted regression
curves are plotted as black lines together with their coefficient of determination (R2)
to illustrate the correlation between the simulated discharge and climate parameters.Water 2015, 7 737 
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Figure 7. Climate sensitivity of the total freshwater inflow to the four lagoons for
15 ENSEMBLES climate scenarios: change of modelled annual discharge (∆Q) per
change of annual sum of precipitation (∆P), average annual temperature (∆T), and
average annual solar radiation (∆R) for the single years 2011–2098 compared to the
mean of the reference period 1971–2000 for the same scenario.
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It is evident from Figure 7 that the freshwater inflow is most sensitive to changes
in precipitation than to changes in temperature or solar radiation. The highest
correlation between Q and P can be seen for the Ria de Aveiro catchment, followed
by the Vistula Lagoon, Mar Menor and Tyligulskyi Liman catchments. The degree
of correlation is higher in catchments without extensive water management measures
(Ria de Aveiro, Vistula Lagoon) and decreases with increasing human impacts on
river discharge (Mar Menor, Tyligulskyi Liman).

According to the assumed regression lines, positive or negative changes in
precipitation by 25% result in different relative changes in total freshwater inflows to
the coastal water bodies. The discharge changes per catchment are listed in Table 6.
In general, precipitation changes do not cause linear changes in river discharges.
Rather, they can be potentiated, especially for catchments with very low natural river
discharges and partially dry river beds (Mar Menor, Tyligulskyi Liman). In these
catchments, a high number of years can be even detected, where the reduction of
precipitation up to 50% causes a full absence of river discharges (´100%). It can
be concluded from these experiments that especially water limited ecosystems are
highly vulnerable to changing climate conditions.

Table 6. Response of annual modelled discharge to changes in annual sum of
precipitation by ˘ 25%.

Change in Precipitation +25% ´25%

Resulting change in
discharge

Ria de Aveiro +30% ´25%
Mar Menor +50% ´62%

Tyligulskyi Liman +61% ´41%
Vistula Lagoon +42% ´34%

The coefficients of determination are very low for the relations between
discharge and temperature or solar radiation in all catchments (Figure 7). Although
higher temperatures and/or radiation should cause an increase in potential
evapotranspiration in the catchments and by that influence water inflows, such
behaviour is not indicated in the graphs. The largest R2 can be seen for the
∆Q/∆R-ratio in the Tyligulskyi Liman catchment, where decreased solar radiation
can affect the resulting water discharge in some years and even mask the average
precipitation trend, as already mentioned above in Section 4.3.

5. Discussion

The results of climate change impact assessments for the four European lagoon
catchments are in line with the projections described in the literature regarding
expected climate change signals and their impacts in Europe. An overall trend
in increasing precipitation (especially in winter) for Northern Europe, as well as
decreasing precipitation (especially in summer) in the South is mentioned in several
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publications [4,6,7], and it was also detected in this study. Due to the fact that water
limited ecosystems are highly vulnerable to changing climate conditions [56], the
robust climate change signals produced by a range of global and regional models
suggest that the Mediterranean region and the lagoons located there might be
especially vulnerable to climate change [57,58].

The resulting changes in streamflow consequently show an increasing trend
in the Northern European Baltic region [59,60], and a decreasing trend around
the Mediterranean Sea and on the Iberian Peninsula [61,62]. Comparing with our
results on impacts on the water availability in the four lagoon catchments under
investigation, the same pattern could be found. Though expected changes in climate
can be seen as more beneficial for the Vistula Lagoon catchment, one should not
forget about water-related extreme events like floods and drought, which were not
explored in this study.

Giorgi and Lionello [57] investigated climate change projections especially
for the Mediterranean region. They detected an overall precipitation decrease in
this area, but with an inter-seasonal spatial variability due to a shifting transition
area between positive (in Northern Europe) and negative (in Southern Europe)
precipitation change signals, which moves southward in winter. This could explain
the high diversity in precipitation change signals between the 15 ENSEMBLES
scenarios for the Tyligulskyi Liman CSA located exactly in this transition zone.

In general, climate change impact assessment performed for the Tyligulskyi
Liman catchment reveals the limitations and constraints of the multi-model method
for climate impact assessments. If climate input is highly uncertain (as in our
case), the eco-hydrological catchment model driven by a set of climate scenarios,
showing different directions of change in precipitation and radiation, generates quite
heterogeneous model results with high uncertainty ranges, and a clear conclusion
for future development is difficult to produce. In addition, as the modelled
discharge is highly influenced by anthropogenic water management measures in this
region, the ecosystem responses due to “pure” climate change are hardly detectable.
Nevertheless, the scenario assessments undertaken in this study helped to identify
the direction of potential changes in water quantity in the four lagoon catchments
and delivered a first impression about a possible future also for the Tyligulskyi
Liman catchment.

However, it cannot be assumed that the results of climate change impact
assessment for the four lagoon catchments provide universally valid and strict
results, and that impacts projected for a certain scenario (or average projections) will
be realised in future. It is common knowledge that even multi-model climate change
impact assessments come with some uncertainty [6,63], which should be kept in
mind when the results are analysed and interpreted. The uncertainties are mainly
related to (A) the ability of climate and eco-hydrological models to represent the
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interrelated processes in the atmosphere and in a landscape (so-called structural and
parametrization uncertainties); (B) the reliability of climate scenarios applied for the
impact assessment; and (C) data availability and quality for (eco-)hydrological model
setup and calibration. These uncertainties are shortly discussed below.

(A) Models are always simplifications of reality and are characterised by some level
of abstraction. Hydrological processes taking place in atmosphere, soils, water
bodies and vegetation, as well as interrelations between them, are represented in
models with a certain degree of accuracy. This is due to a restricted memory of
computers and computation time, as well as due to a limited human knowledge
and understanding of processes. Comparing simulated and observed climate
data, several studies show the restricted ability of current climate models to
satisfactorily reproduce the real local measurements [64,65]. Similar constraints
can be found in the hydrological and eco-hydrological models as well. The
SWIM model, for example, as a semi-distributed model simulating processes at
a hydrotope-level resolution, tries to cover the heterogeneity within a catchment
to a certain extent, but is not able to deliver locally exact projections.

(B) A further major uncertainty is connected to climate scenarios applied for impact
assessments. Different models come along with different scenarios, and nobody
knows the most probable future climate development in a region, as it is
influenced by several unpredictable factors. A common method to overcome
this problem is to use different scenarios from GCMs and/or RCMs in order to
verify most probable projections and investigate ranges of uncertainty. Such
method is preferable in comparison with a single climate scenario approach as
recommend by many authors [24–27]. But this procedure still has limitations,
and the uncertainty remains high, especially in case of a distinct diversity
in climate projections, as detected for the Tyligulskyi Liman catchment in
our study.

(C) A hydrological or eco-hydrological model used for an impact assessment should
be calibrated and validated in advance. For that, appropriate homogeneous and
complete spatial datasets (DEM, land use and soil maps) and time series (daily
climate parameters and observed discharge) are necessary for a successful
model setup. However, in our case in all four study areas some data were
missing, or data coverage in time and/or space was problematic. Therefore, in
all four CSAs, the model calibration was a very complicated task (as described
in Sections 3.2 and 4.1), and the model outputs incorporate a certain degree
of uncertainty.

Climate scenarios are often customized by applying at least one bias correction
method in climate change impact assessment. The bias correction is aimed in
avoiding unrealistic simulations of runoff by adjusting the climate scenario data
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in such a way that they better represent the observed climate. It is still argued
whether the application of bias corrected climate scenarios provides better and more
reliable results for hydrological impact analyses, especially when relative changes
and a detection of trends in runoff are more of interest than the absolute values.
While Teutschbein and Seibert [23] recommend the application of bias correction,
Ehret et al. [66] state that the bias correction as it is currently used is “not a valid
procedure” due to a general lack of the physical justification of corrections, and often
missing, incomplete or deficient observed data. In our study it was decided we
would not use bias correction, and we would compare simulations driven by 15
RCMs between periods.

6. Summary and Conclusions

The climate change impact assessments for the Ria de Aveiro, Mar Menor,
Tyligulskyi Liman and Vistula Lagoon drainage basins were performed by applying
a common technique for hydrological impact studies at the catchment scale using
a set of 15 climate scenarios provided by the ENSEMBLES project to drive the
eco-hydrological model SWIM. Despite some difficulties and uncertainties in model
setup and calibration, satisfactory to good model results were achieved, delivering
a sound basis for impact assessment. The scenarios covered three future 30-year
periods until the end of the 21st century.

The analysis of the 15 scenarios indicates a continuously increasing trend in
temperature for all four catchments under investigation. However, precipitation
change signals are more diverse between the catchments as well as among the
15 scenarios within one catchment. The highest diversity could be seen for the
Tyligulskyi Liman catchment, with only a small change in precipitation on average.
A quite consistent increasing trend in precipitation was projected for the Vistula
Lagoon catchment, while decreasing trends were projected for the Ria de Aveiro
and Mar Menor catchments. The simulated river discharge more or less follows
this precipitation pattern and is less sensitive to changes in air temperature or solar
radiation. The sensitivity of river discharge to precipitation is more obvious in
catchments less influenced by human water management.

The river discharge and flood risk will probably increase in the Vistula Lagoon
catchment. In the South-European lagoon catchments, the water managers and
stakeholders have to be ready for decreased water availability in the future, and
adaptation measures should focus mainly on water-saving technologies. This is
particularly important for the very dry Mar Menor catchment with its intensive
irrigated agriculture and additional huge water demand in the tourist season. Water
availability and freshwater inflow to the lagoon seem to be problematic in the
Tyligulskyi Liman area as well. Water flows there are additionally hampered by
numerous ponds in the river reaches. Pond management should definitely be
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adapted to climate change to allow some freshwater inflow to the Liman and prevent
its salinization. More consistent and reliable climate scenarios would be desirable for
this region in order to reduce uncertainty of projections.

Due to the quite high diversity of climate change impacts detected in the four
lagoon catchments under study, it is a challenging task to list valid implications
for other coastal areas or lagoon systems in Europe or even worldwide. A variety
of lagoons, even in a similar geographical region like the Mediterranean, have
a high hydrodynamic and/or saline variability, depending on their morphology
and the location and number of river inflows and sea-water inlets influencing the
water renewal time [67,68]. Therefore lagoons react differently to climate change
with a trend to homogenize hydrodynamic and saline characteristics and to lose
hydrodiversity, mainly due to increased inflow of sea water following the sea level
rise [17,58]. As northern European lagoons are generally more influenced by river
discharge due to the wet climate and the significantly higher runoff coefficients
compared to the southern Mediterranean coastal areas [67], climate changes in the
lagoon catchments and the resulting changes in river discharge will probably have
greater effects on such lagoons fed by permanently flowing rivers than on lagoons
located in dry climate.

The results provide some useful insights into possible future water availability
and development of freshwater input to the lagoons under study. The model outputs
were delivered to the lagoon modellers for evaluating resulting climate change
impacts on the lagoon ecosystems. According to the obtained results, impacts are
expected to be less pronounced in the near future but would increase in the middle
of the century. Consequently, the implementation of adequate adaptation measures
in the medium-term is recommended.

However, climate change is not the only factor to have remarkable effects on
water resources in the study areas; human societies are important co-designers of the
future conditions in these vulnerable coastal areas, too. It cannot be expected that
future development will take place without any changes in human behaviour, land
use pattern or economic conditions. Therefore, a subsequent combined assessment
taking into account possible future climate and socio-economic changes is strongly
recommended. This would help to better identify probable future risks and threats,
and to virtually test possible adaptation measures as efforts to cope with probable
future climate conditions and their impacts.
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A Structurally Simplified Hybrid Model of
Genetic Algorithm and Support Vector
Machine for Prediction of Chlorophyll
a in Reservoirs
Jieqiong Su, Xuan Wang, Shouyan Zhao, Bin Chen, Chunhui Li and
Zhifeng Yang

Abstract: With decreasing water availability as a result of climate change and human
activities, analysis of the influential factors and variation trends of chlorophyll a
has become important to prevent reservoir eutrophication and ensure water supply
safety. In this paper, a structurally simplified hybrid model of the genetic algorithm
(GA) and the support vector machine (SVM) was developed for the prediction of
monthly concentration of chlorophyll a in the Miyun Reservoir of northern China
over the period from 2000 to 2010. Based on the influence factor analysis, the four
most relevant influence factors of chlorophyll a (i.e., total phosphorus, total nitrogen,
permanganate index, and reservoir storage) were extracted using the method of
feature selection with the GA, which simplified the model structure, making it more
practical and efficient for environmental management. The results showed that the
developed simplified GA-SVM model could solve nonlinear problems of complex
system, and was suitable for the simulation and prediction of chlorophyll a with
better performance in accuracy and efficiency in the Miyun Reservoir.

Reprinted from Water. Cite as: Su, J.; Wang, X.; Zhao, S.; Chen, B.; Li, C.; Yang, Z.
A Structurally Simplified Hybrid Model of Genetic Algorithm and Support Vector
Machine for Prediction of Chlorophyll a in Reservoirs. Water 2015, 7, 1610–1627.

1. Introduction

Water conflicts are key issues for sustainable water resources management.
Under the dual effects of climate change and human activities, many water bodies
are polluted to varying degrees, further exacerbating water conflicts [1,2]. Ecosystem
studies such as water enhancement, water quality risk assessment, and early
warnings have drawn much attention across the world [3]. As important engineering
measures are developed to guarantee water supply, irrigation, electricity, and
other functions, reservoirs can help solve these issues through the redistribution
of runoff in both time and space; therefore, they are widely used throughout the
world. Although water demands of each production department (e.g., industrial
department, agricultural department, and so on) correspond to different water quality
requirements, water quality always needs to be up to its appropriate standard in
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different water usage [4]. Accordingly, it is important to forecast water quality
accurately, which could provide a scientific decision basis for reservoir management.

Chlorophyll a is an important component of algae organisms, and its
concentration in water bodies is closely related to the type and the quantity of
algae [5]. Therefore, as an important symbol of phytoplankton stock, concentration
of chlorophyll a can reflect water nutritional status, making chlorophyll a one
of the indicators in controlling the eutrophication of lakes and reservoirs. The
minimum threshold concentration of chlorophyll a for eutrophic lakes identified by
the Organization for Economic Cooperation and Development (OECD) is 0.008 mg/L.
Consequently, there is a need to control the concentration of chlorophyll a in water to
prevent potential eutrophication. For this reason, accurate prediction of chlorophyll
a is a worldwide concern.

The generation mechanism of chlorophyll a in water is accordingly complex,
which is closely related to ecological, environmental, and societal activities. Therefore,
the elements involved in the prediction for chlorophyll a in water are complex
accordingly. In the existing literature, prediction models for chlorophyll a mainly
included two categories: statistical regression models [6] and mechanism models [7].
Statistical regression models were established with the applications of statistical
correlation analysis theory and methods. This means that the sample size had a
major influence on prediction accuracy. Moreover, these models usually applied a
linear relationship to simplify complex problems, leading to unsatisfactory prediction
results under the situation when the limiting factors of chlorophyll a changed.
Mechanism models mainly included the nutrient model, phytoplankton model, and
ecological dynamic models such as CE-QUAL-ICM, WASP, CAEDYM, AQUATOX,
and ECOPATH [8–10]. Based on the principle of hydrodynamics and ecosystem
dynamics, these models comprehensively considered the interaction mechanisms
among indicators of water resources system and ecosystem, and then predicted
the future development of the system accurately. However, these models also had
a high demand for data quantity, which was inconvenient for model calibration
and verification, leading to a decline in reliability and applicability. Furthermore,
due to uncertainty factors such as the concentration of phosphorus input from
non-point source pollution, the prediction of chlorophyll a based on deterministic
differential equations was not reasonable [11]. For this reason, the uncertainty of
input parameters and the nonlinearity of the system required further consideration
when constructing models.

To improve the accuracy and efficiency of nonlinear system simulations,
intelligent algorithms have been applied in recent years [12]. Widely used intelligent
algorithms include the artificial neural network (ANN), the genetic algorithm
(GA), the particle swarm algorithm, the wavelet theory, and the projection pursuit
algorithm, etc.; these intelligent algorithms overcome the uncertainty to a certain
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extent with high simulation precision. In recent years, the support vector machine
(SVM) algorithm, which is a new type of machine learning tool based on statistical
learning theory, has drawn more attention [13]. This intelligent algorithm can solve
nonlinear system problems and has reasonable generalization ability when using
small samples, ameliorating the weaknesses of the above intelligent algorithms, e.g.,
large sample size requirements and being susceptible to underfitting and overfitting
the data for the ANN. The SVM has demonstrated promise for applied studies of
water environments, especially for the prediction of hydrologic factors, such as
wave height [14], inflow [15], and water levels [16]. Previous studies of chlorophyll
a based on the SVM algorithm often focused on the retrieval of chlorophyll a
in water [17], although very few results of chlorophyll a prediction have been
reported [18]. Furthermore, chlorophyll a is affected by many factors, and irrelevant
and redundant information is often hidden in the time series of high dimensional
feature vectors, leading to structurally complex models and a decrease of analysis
precision and application efficiency of the SVM model when using conventional
modeling processes [19]. To simplify the model structure and avoid the interference
of redundant information in chlorophyll a forecasts, it is desirable to obtain more
accurate and reliable prediction results by using SVM models with the most relevant
influence factors as input vectors and simple structures. Feature selection is an
important approach for getting structurally simplified model by removing those
redundant parameters. Cho et al. [20] used principal component analysis (PCA) to
extract variables for the prediction model of chlorophyll a. Compared to conventional
parameter extraction approaches such as PCA, the GA has a distinct advantage in fast
random search. Thus, the SVM model can be expected to get satisfactory prediction
results through combing the GA to extract feature variables and simplify the model
structure in such complex water bodies as reservoirs, whose water quality variations
likely result from a combination of multiple factors. However, the GA-SVM hybrid
model needs to be further developed for nonlinear water resources system.

This study developed a hybrid model of GA and SVM algorithms to predict
chlorophyll a in the Miyun Reservoir of northern China. Based on the feature
selection with the GA, we extracted appropriate input vectors, so that the redundant
information was effectively eliminated with the simplified model structure. This
model could analyze water quality and its change trend with reliable results, and
was of great practical significance in preventing water pollution accidents.

2. Study Area and Data Description

The Miyun Reservoir is located in the Miyun County of Beijing City. Built in 1960,
it is the largest reservoir and is a unique surface source of drinking water in Beijing
City (Figure 1). In addition to functioning as a water supply, the Miyun Reservoir
also provides irrigation, flood control, power generation, aquaculture, tourism, and
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other comprehensive benefits. The Miyun Reservoir’s surface area is 183.6 km2,
its maximum depth is 153.93 m, and the maximum volume of reservoir storage is
3.349 ˆ 1010 m3. Monitoring data shows that in recent years, the total phosphorus
concentration in the reservoir fluctuated between 0.010 and 0.025 mg/L, which means
the nutrition status of the water is at a mesotrophication to oligotrophication level.
The total nitrogen concentration ranges between 0.62 and 1.43 mg/L, indicating that
the nutrition status is at a mild or moderate eutrophication level. Planktonic algae
have rich diversities, and the dominant population in various periods is different in
the Miyun Reservoir. As for cyanobacterium, from 2001 to 2003 it was the dominant
algae from September to October [21]; from 2008 to 2010, it was the dominant algae
from June to September [22,23]. Considering the current water quality situation, we
should take effective measures to alleviate adverse influences resulting from climate
change and human activities on the reservoir.
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Figure 1. The Miyun Reservoir in northern China.

In this paper, the Baihe Key Dam in the Miyun Reservoir is taken as the research
area. Data for the model establishment and calibration are from the monitored data,
including water quality indicators (i.e., chlorophyll a in water, total nitrogen, total
phosphorus, permanganate index, and dissolved oxygen), hydrological indicators
(i.e., water temperature, pH, transparency, flow, reservoir storage, inflow, outflow,
and water level), and meteorological indicators (i.e., precipitation and temperature).
The monthly data from 2000 to 2010 were obtained from the Miyun Reservoir
Management Office. Because the Miyun Reservoir is frozen for the period from
December to March, the prediction of chlorophyll a focused on the period from April
to November in each year, and other indicators in the SVM model corresponded to

122



these months. The average monthly variations of parts of these indicators are shown
in Figure 2.
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Figure 2. Water environmental situation in Miyun Reservoir: (a) Concentration of
chlorophyll a; (b) TP concentration; (c) TN concentration; (d) CODMn concentration;
(e) reservoir storage; and (f) water level.

3. Methods

Originally proposed in 1985 by Cortes and Vapnik, the SVM algorithm was
widely used to solve highly nonlinear classification and regression problems with
good generalizability [24]. The SVM algorithm can be easily applied to other machine
learning problems such as function fitting. It is based on the VC dimension theory
and the structure risk minimum principle of the statistical learning theory. By
seeking the best compromise among the complexities in the model with a limited
sample (i.e., learning accuracy of particular training samples) and learning ability
(i.e., learning ability to identify random sample), the SVM algorithm can achieve
the best generalization ability. There are many meteorological and hydrological
parameters that influence chlorophyll a. To avoid blindness in selecting the input
vector during the process of chlorophyll a prediction, this study firstly took feature
selection to determine the best input vectors of prediction model with the GA, and
then constructed the SVM model with a simplified model structure to achieve the
purpose of improving prediction accuracy.
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3.1. The Flow Chart for Developing a Simplified Structural GA-SVM Hybrid Model

The penalty factor and kernel function parameters of the SVM model may
directly influence simulation results. This study developed a SVM model by using
the GA to optimize the input parameters in the SVM model and extract feature
parameters with the aim of simplifying the model structure. The flow chart of the
simplified structural SVM model based on the GA is shown in Figure 3. After data
pre-treatment, the input and output vectors were determined, and the sample set
was divided into a training data set and a testing data set. The GA was applied
to optimizing the parameters of the SVM model and extracting input vectors. The
SVM model was trained and calibrated with optimal parameters, then used to
predict chlorophyll a in the water. This study applies the LIBSVM software package
developed by Lin Chih-Jen et al., of Taiwan University to run the program on the
MATLAB platform [25].
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model for chlorophyll a prediction.
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3.2. Construction of Chlorophyll a Prediction Model Based on the SVM Algorithm

This paper applied the principle of the SVM algorithm to establish a prediction
model for chlorophyll a in the Miyun Reservoir. The basic principle of the SVM
algorithm was to first select a nonlinear mapping algorithm as a kernel function,
through which the input vectors were mapped into a high dimensional feature space,
and in this space simpler linear regressions can replace complex nonlinear regressions
of the original input space [26]. Then an optimal decision function was produced
in the feature space to realize the nonlinear decision function of the original input
space, and finally the linear learning method can be applied to solve the classification
and regression problems in the input space. This process can be expressed as:

y “ f px, wq “ w ‚∅ pxq ` b, (1)

where y is the output, yPR; x is the input vector, xPRn; w is the matrix of the
regression weight vector; ∅ is a non-linear function by which x is mapped into
a high dimensional feature space; b is a bias; and b and w can be obtained with
Equation (3). In the mapping process, a kernel function k p˚, ˚q can be constructed
by k px, x1 q “ p∅ pxq ‚∅ px1 qq. Therefore, we only need to replace the x or xi of the
original space with ∅ pxq or ∅ pxiq, while it is not necessary to know the explicit
expression of nonlinear mapping ∅. In this study, we selected radial basis function
(RBF) as the kernel function:

K px, xiq “ exp
´

´γ‖ x´ xi ‖2
¯

, (2)

where xi is the input vector, xPRn; and γ is the parameter of the RBF kernel function.
In Equation (1), the concentration of chlorophyll a in reservoir water was selected

as y in the SVM model, whereas other water quality factors, hydrological factors,
and meteorological factors were selected as x in the SVM model. In this way, the
concentration of chlorophyll a was predicted based on the other factors. To solve
Equation (1), the following regularized risk function (i.e., Equation (3)) was used.
These constraints ensured the regression errors of the samples being within the area
that was delineated by the error tolerance and the slack variables. Equation (3) can
be solved with the Lagrange technique.

Minimize
1
2
‖ w ‖2 `C

N
ÿ

n“1

pξn ` ξ˚
nq

subject to
$

’

&

’

%

yi ´WT∅ pXiq ´ b ď ε` ξi

WT∅ pXiq ` b´ yi ď ε` ξ
˚
i

ξi, ξ˚
i ě 0

,

/

.

/

-

i “ 1, 2, . . . , N, (3)
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where C is a penalty parameter that determines the penalty degree for the sample
classification errors in the optimization problem; N is the number of the samples
of txn, ynu

N
n“1; ξn and ξ˚

n are slack variables that penalize training errors by the loss
function over the error tolerance (ε); ξn represents the upper training errors subject
to ε; ξ˚

n represents the lower training errors subject to ε; ξn and ξ˚
n can be calculated

with Equation (3); and was normally set to 0.001.
Overall, the chlorophyll a simulation with the SVM model depended on

the ability to learn the nonlinear causality between the historical data of the
concentration of chlorophyll a and its influencing factors (i.e., other water quality
factors, hydrological factors, and meteorological factors). The modeling process for
the SVM model was introduced below.

Step 1. Determine chlorophyll a as the output value of the prediction model,
with the other indicators as input values:

ρChla “ F pS, WI , WO, L, TP, TN, CODMn, DO, TW , pH, SD, TA, Pq , (4)

where S is reservoir storage, WI is inflow, W0 is outflow, L is water level, TP is the
concentration of total phosphorus in water, TN is total nitrogen in water, CODMn is
permanganate index in water, DO is the dissolved oxygen concentration in water,
TW is water temperature, pH is hydrogenion concentration of water, SD is water
transparency, TA is temperature, and P is precipitation.

Step 2. Before establishing the SVM model, to extract useful information in
the original data and determine the most reasonable and relevant input vectors of
the prediction model, this study applied data normalization, wavelet denoising,
and feature selection for the data pre-treatment in the MATLAB software. To test
the prediction ability of the SVM model, the sample set was divided into separate
training and testing sets. Data between 2000 and 2004 were used as the training
set, and those between 2005 and 2010 as the testing set. Thus, the testing set data
were independent and not used to train the model. In the parameter optimization,
the initial conditions of the GA were set: the biggest evolution generation was 100,
the largest population was 20, the gap of genetic algorithm was 0.9, and the k-fold
cross-validation number was 5.

Step 3. To determine the effect of each input indicator to the prediction model,
we carried out sensitivity analysis of the chlorophyll a prediction model. The analysis
method was to change a particular input variable (increase or decrease by 10%)
while the other input variables remained fixed and then applied the established SVM
model to re-predict; the variable of the sensitivity model was obtained by calculating
the relative changes in chlorophyll a with the output value.

Step 4. To eliminate the irrelevant and redundant information hidden in the
time series of high dimensional feature vectors, and reveal the more representative
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features that influenced the concentration of chlorophyll a in the Miyun Reservoir,
we applied feature selection to the input vectors of the SVM model for chlorophyll a
simulation by using the GA. Subsequently, we established the hybrid SVM model
using the extracted feature vectors and improved prediction accuracy, generalization
ability, and efficiency.

3.3. Feature Selection and Parameter Optimization Based on Genetic
Algorithm Optimization

The feature means each attribute of the data set. Too many features will increase
the complexity of the work, while the accuracy of data mining may not be improved.
To pick out the most representative and effective feature vectors of the chlorophyll
a prediction model, we used the GA for feature selection. In addition, considering
that the SVM model did not provide a method for selecting the parameter in the
RBF kernel function and the penalty parameter (C), we used the GA for optimizing
these two parameters in the SVM model. The principle of the GA is based on a
specific operation for the structure of objectives, according to a predefined criteria
function, to improve the new population by comparing it with the original one. In
the process of generation, proper coding was used and the operator was applied to
imitate the path of natural selection. Reproduction, crossover, and mutation were
taken to operators in the current population [27]. Procedures of feature selection and
parameter optimization with applications of the GA were as follows.

Step 1. Chromosome encoding. In the selection and optimization process, the
iterations were set to zero. Chromosomes were encoded with binary coding. Each
operator was composed of N codes, where N is the number of characteristic vectors
or SVM parameters that need to be optimized. When a number in the operator was 1,
it represented the characteristic vector and the parameter was selected; otherwise it
was not selected, and the initial population was generated randomly.

Step 2. Evaluation of the fitness function value. Determine the square of the
root mean square error in the training phase as the objective function for the fitness
value. Then, calculate the fitness function value of the current generation. Choose
a certain adaptation level, retaining the individuals whose fitness function value is
greater than the adaptation level; these individuals compose the next generation.

Step 3. Selection, crossover and mutation of operators. Apply genetic operation
of selection, crossover, and mutation to individuals in the group; the next generation
was produced after the genetic optimization.

Step 4. Termination judgment. If the iteration number was greater than the set
value, or the accuracy of the fitness function value reached the expected value, then
terminate the iteration [28]. The extracted features and the optimal model parameters
were then determined.
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3.4. Model Calibration

In order to analyze the performance of the model, four indicators—The absolute
error (AE), relative error (RE), root mean square error (RMSE), and square of
correlation coefficient (R2)—Were selected to evaluate the fit and prediction effect of
the model. AE represented the deviation between monitoring and prediction values,
and RE was the ratio of AE and monitoring values, reflecting the objective accuracy
of measurement results. RMSE reflected the performance of the prediction model,
i.e., generally, the smaller the RMSE the better the performance. R2 represented the
degree of linear relevance among the variables, i.e., the closer R2 was to 1 the higher
the relevance. The expressions of these four indicators were as follows:

AE “ |yi ´ ŷi| (5)

RE “
AE
yi
ˆ 100% (6)

RMSE “

g

f

f

e

1
n

n
ÿ

i“1

pyi ´ ŷiq
2 (7)

R2 “ 1´
řn

i“1 pyi ´ ŷiq
2

řn
i“1 pyi ´ yq2

(8)

where yi is the real value of the data set, ŷi is prediction value, y is the average of the
original data, and n is the amount of data for the testing set.

4. Results and Discussion

4.1. Wavelet Denoising

The results of applying the wavelet denoising method to the original data of
chlorophyll a are shown in Figure 4. The upper and lower figures represented the
time series data before and after the denoising, respectively. It was clear to see that
after wavelet decomposition and reconstruction the low frequency characteristics of
the original data were preserved, while eliminating the high frequency data. After
this process, the abrupt change points of the time series data were smoothed, and the
main information regarding the concentration of chlorophyll a was well preserved.
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Figure 4. Comparisons of before and after the wavelet denoising.

The noise of the original data about chlorophyll a was mainly caused by the
errors in sampling and deviations in experiments due to unsuitable experimental
conditions and improper operation caused by human errors. The wavelet denoising
was realized through multi-scale decomposition of sequence data and reconstruction.
The original signal was decomposed into a series of low frequency and high frequency
components by using the wavelet decomposition, and the noise of chlorophyll a’s
raw data was concentrated in the high frequency components. The high frequency
components were processed with threshold, and the low frequency components
were reconstructed to obtain the smooth data series. Because the low frequency
components could preserve the details of the original data, excessive deviations can
be avoided in data applications. Therefore, it was reasonable and concise to use the
time series data of chlorophyll a after the wavelet denoising as input variables of the
SVM model, without the loss of important information.

4.2. Results of Sensitivity Analysis and Feature Selection

The use of the GA aimed to automate and enhance SVM designing process.
The results of parameter optimization indicated that the optimal penalty factor
C was 1.0737, and the optimal parameter γ in RBF kernel function was 1.0005.
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The final SVM model was established based on these results. Figure 5 shows
sensitivity analysis results for input vectors of the SVM model. It can be seen
that when the values of eight parameters (i.e., rainfall, water level, inflow, pH, water
temperature, permanganate index, total nitrogen, and total phosphorus) increased
by 10%, the sensitivity degree was greater than zero, which meant the prediction
of chlorophyll a showed a positive correlation. Alternatively, when the values of
the other five parameters (i.e., temperature, outflow, reservoir storage, dissolved
oxygen, and transparency) increased by 10%, the sensitivity degree was less than zero,
which meant the prediction of chlorophyll a showed a negative correlation. These
correlations coincided with the mechanism of action for hydrology and water quality.
Compared with other feature vectors, the prediction model for chlorophyll a in the
Miyun Reservoir water had greater sensitivity to dissolved oxygen, transparency,
permanganate index, pH, temperature, total nitrogen, and total phosphorus. It
should be noted that the variations of transparency and dissolved oxygen were the
results of the change in chlorophyll a.
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Figure 5. Sensitivity analysis for input vectors of the SVM model.

Four parameters, i.e., total phosphorus, total nitrogen, permanganate index,
and reservoir storage, were extracted through feature selection. The results of the
feature selection were consistent with those of the sensitivity analysis. Compared
with other studies, although the influence factors of chlorophyll a were different for
various research objects, two factors including the concentration of TN and TP were
always main factors. For example, Canfield [29] applied statistical analysis to pick
out the total phosphorus concentration and the total nitrogen concentration as the
explanatory variables in their developed prediction model of chlorophyll a.

With these four parameters as the input vectors, the simplified SVM model was
constructed. Figure 6a shows the results of the model training process. It can be seen
that the simulation values are perfectly consistent with the monitored values, with
the exception of a bias in the extreme points. Accordingly, the RMSE was only 0.00017,
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and the R2 was 97.33%. After the SVM prediction model was trained, chlorophyll
a in the Miyun Reservoir was predicted for the period between 2005 and 2010. In
Figure 6b, we can see that from 2005 to 2009, the simulation effect was passable.
However, in 2010 the simulation effect was not satisfactory. Calculations showed
that the RMSE of the testing set was 0.000641 and the R2 was 81.97%. From 2005 to
2009, the RMSE was 0.0004 and the R2 was 85.96%; however, in 2010, the RMSE was
0.0013 and the R2 was only 79.00%. This was primarily related to the fluctuations
and periodicity of the monitored data. For the training data set, from 2000 to 2004,
the concentration of chlorophyll a generally showed a peak in the middle of the year,
but there was no obvious periodic trend for the concentration of chlorophyll a in
the testing data set. In addition, in 2010 the concentration of chlorophyll a in the
Miyun Reservoir was relatively higher compared with previous years. During April
and for the period from August to November, the concentration of chlorophyll a
was anomalously high, exceeding 0.004 mg/L, whereas in the training data set, the
concentration of chlorophyll a had never achieved this level. Therefore, the SVM
model was sensitive to the data. To explore which indicators were most relevant to
chlorophyll a, sensitivity analysis for each input vector of the model was conducted.
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4.3. Relative Errors of the SVM Model

Figure 7 shows the relative errors in each testing year of the SVM prediction
model. Overall, the relative error between 2005 and 2009 was smaller than that in
2010. This indicated that the model had improved prediction accuracy during the
early part of the testing data. This result was related to the variations in the testing
data. The first five years of the testing data were consistent with the training data
with regard to the amplitude, cycle, and peak values. However, data in the last year
did not exhibit regularity, as evidenced by the notable fluctuations in each month.
Given the obvious fluctuation in the overall trend, the average relative error of the
prediction in 2010 was the largest.
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To analyze the errors of chlorophyll a prediction in different months, the monthly
average relative error of the SVM model was compared between April and November
(Figure 8). Prediction results showed that the average relative errors from April
to November were 29.10%, 15.90%, 35.84%, 14.64%, 27.53%, 19.41%, 19.15%, and
22.24%, respectively. It can be seen that in these six years, the biggest relative error
occurred in June, followed by April, August, November, September, October, May,
and July. Differences among these months may be due to the precipitation during
summer. Inflow to the reservoir increased with rainfall, augmenting the frequency
of soil and water erosion and leading to more nutrients being deposited into the
reservoir. It required a significant amount of time for these nutrients to be used by
the microorganisms in the water. Considering the cumulative effect, in autumn the
concentration of chlorophyll a fluctuated markedly. Therefore, due to the synergy of
rainfall and inflow, as well as the cumulative effect of the nutrients, the prediction
error of chlorophyll a in summer and autumn was larger.
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Number of input vectors 4 13 
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4.4. Comparisons of Model with Feature Selection and Model without Feature Selection

To determine the effect of feature selection on the model, we also established
a prediction model without feature selection. Table 1 shows the comparisons of
model structure and prediction results between these two models. With feature
selection, the input vectors were simplified from 13 to 4, and the extracted features
were consistent with the sensitivity analysis. For the prediction results, in the training
process, the mean AE, mean RE and R2 of the model with feature selection were
slightly larger, and the RMSE was slightly smaller; in the testing process, the mean
AE, mean RE, and RMSE of the model with feature selection were smaller, and the
R2 was significantly higher than that of model without feature selection.

Table 1. Comparisons of model with feature selection and model without
feature selection.

Description Model with Feature Selection Model without Feature Selection

Number of input vectors 4 13

Input vectors TP, TN, CODMn, S TP, TN, CODMn, S, WI, W0, L, DO, TW,
pH, SD, TA, P

Training process

Mean AE 0.00014244 0.00013824
Mean RE 12.35% 10.64%

RMSE 0.00017 0.00018
R2 97.33% 97.19%

Testing process

Mean AE 0.00045199 0.00057325
Mean RE 22.98% 26.16%

RMSE 0. 000641 0.000836
R2 81.97% 69.36%

Notes: S is reservoir storage; WI is inflow; WO is outflow; L is water level; TP is the
concentration of total phosphorus in water; TN is total nitrogen in water; CODMn is
permanganate index in water; DO is the dissolved oxygen concentration in water; TW is
water temperature; pH is hydrogenion concentration of water; SD is water transparency;
TA is the temperature; and P is precipitation.
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It can be seen that feature selection picked out the representative and effective
feature vectors from the original features that were more related with the chlorophyll
a, so the dimensions of feature space were reduced. When the redundant or irrelevant
information was deleted and the data set was simplified, the model was more concise
and understandable [30]. Though the simulation accuracy in the training process
was similar or even smaller than that prior to feature selection, relevant input vectors
and reasonable model structure led to better prediction results in the testing process.
As a whole, the SVM model with feature selection showed better performance both
in model structure and prediction effect, and this indicated the model with feature
selection had great potential in prediction ability, which had close relation with the
internal structure of the model. In brief, feature selection with the GA in this study
played important roles in three specific aspects. Firstly, it determined the feature
vectors that were most relevant to chlorophyll a concentration. Their information was
preserved accordingly in the simplified model, leading to the accuracy improvement
with the decreased amount of calculation. It was a rather feasible way to improve
calculation efficiency, especially for large-scale computing with multiple parameters.
Secondly, it reduced the dimensions of the input vectors to avoid dimension disaster
(i.e., with the increase of the input vectors’ dimensions, the complexity of the
calculation would greatly increase), while revealing the representative factors that
influenced the chlorophyll a in the Miyun Reservoir. Thirdly, it was easy to combine
with other algorithms (e.g., SVM) to improve the generalization ability of the SVM
prediction model, reflecting good convergence and robustness.

Besides feature selection, the proposed SVM model showed good performance
mainly due to the proper initial settings of parameters, which would affect the
computational complexity and convergence rate directly. Although the GA used
in the prediction model effectively avoided falling into a local optimal solution
and producing a low convergence speed, the initial values of the GA’s parameters
were determined through the trial method in this study. Recent research mainly
used two advanced approaches to optimize the initial settings for the GA’s
parameters: one approach was to optimize the initial population’s characteristics
and quantity by combining other approaches, such as the heuristic algorithm [31];
another approach was to improve the crossover and mutation rates with adaptive
GA [32], such as clustering-based adaptive GA [33]. In future research, the
determination of reasonable initial values of the GA’s parameters would combine
with these approaches.

5. Conclusions

A GA-based SVM model for predicting the monthly concentration of chlorophyll
a of the Miyun Reservoir was constructed. We firstly carried out a sensitivity analysis
of the prediction model, and identified that the concentration of chlorophyll a had
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great sensitivity to seven input indicators. With the GA being used for the removal of
redundant features and the feature selection of input vectors, the four most relevant
influence factors of chlorophyll a (i.e., total phosphorus, total nitrogen, permanganate
index, and reservoir storage) were screened as new input vectors, which were
consistent with the results of the sensitivity analysis. With these new input vectors,
the prediction model had simpler structure and better prediction accuracy than the
model without the feature selection. Due to the stronger correlation of the input
vector structure, the simplified GA-SVM model showed improved calibration and
prediction ability. This proved that the SVM prediction model was sensitive to
the structure of the input variables. In brief, this study proposed an intelligent
algorithm for predicting the concentration of chlorophyll a of the reservoir water,
which provided an effective tool for the management of reservoirs, especially for an
early warning of eutrophication. Besides, this model could solve practical problems
with different nutritional load conditions, and its applications can be extended to
other reservoirs. In future research, the interaction mechanism of influence factors
should be further considered to optimize the parameters used in the developed
hybrid model of GA-SVM algorithm to get more reliable results for the prediction
of chlorophyll a, and empirical models will be explored to get better application
performance in chlorophyll a prediction.
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Experimenting with Coupled
Hydro-Ecological Models to Explore
Measure Plans and Water Quality Goals in a
Semi-Enclosed Swedish Bay
Berit Arheimer, Johanna Nilsson and Göran Lindström

Abstract: Measure plans are currently being developed for the Water Framework
Directive (WFD) by European water authorities. In Sweden, such plans include
measures for good ecological status in the coastal ecosystem. However, the effect
of suggested measures is not yet known. We therefore experimented with different
nutrient reduction measures on land and in the sea, using a model system of two
coupled dynamic models for a semi-enclosed bay and its catchment. The science
question was whether it is worthwhile to implement measures in the local catchment
area to reach local environmental goals, or if the status of the Bay is more governed
by the water exchange with the Sea. The results indicate that by combining several
measures in the catchment, the nutrient load can be reduced by 15%–20%. To reach
the same effect on nutrient concentrations in the Bay, the concentrations of the sea
must be reduced by 80%. Hence, in this case, local measures have a stronger impact
on coastal water quality. The experiment also show that the present targets for
good ecological status set up by the Swedish water authorities may be unrealistic
for this Bay. Finally, we discuss when and how to use hydro-ecological models for
societal needs.

Reprinted from Water. Cite as: Arheimer, B.; Nilsson, J.; Lindström, G. Experimenting
with Coupled Hydro-Ecological Models to Explore Measure Plans and Water Quality
Goals in a Semi-Enclosed Swedish Bay. Water 2015, 7, 3906–3924.

1. Introduction

Water pollution is widespread and at the same time highly complex, as it
originates from the interaction between natural processes and human activities.
Many cause–effect relationships are affecting the water simultaneously, with various
extensions in time and space e.g., [1–3]. Soluble chemical components are being
caught and carried by water, an aggressive liquid on continuous move, following
shallow, intermediate or deep pathways from the land surface to the sea. Nutrients
and oxygen are the best-documented water quality determinants e.g., [4,5], with
major impacts downstream and on the coast [6–8]. During the last decades, this
evidence base from monitoring has supported the development of a large flora of
dynamic models that numerically describe the coupling between water and nutrients
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during the movement through the landscape. The models include interactions with
sources and sinks, both within single catchments e.g., [9] and across continents
in multi-basins e.g., [10]. Such models are normally developed by scientists but
when used in practical applications, together with stakeholders, they may serve
as platforms for communication and bridge the gap between science and practice
e.g., [11–13].

The problems with water pollution have led to great efforts worldwide to
detect deterioration and to achieve more sustainable, holistic and integrated water
management. In Europe, the Water Framework Directive (WFD, 2000/60/EC) for
integrated river basin management was adopted in year 2000 [14]. The environmental
objectives are the core of this directive and the definition of “good ecological status”
is essential. Each member state decides how to implement the WFD and in Sweden
five water districts are responsible for the characterization of ecological status, setting
up objectives for each water body, providing management and measure plans, and
the implementation and continuous monitoring. In 2008, the European Union also
adopted the Marine Strategy Framework Directive (MSFD, 2008/56/EC) which, just
as the WFD, applies an adaptive management approach in a six years cycle. The
MFSD addresses four marine regions surrounding Europe, where Sweden is part of
the Baltic Sea region and the North-East Atlantic Ocean.

The Baltic Sea is one of the largest brackish water systems in the world and it
is enclosed except from the narrow connection with the North-east Atlantic Ocean
at the Danish straights and Öresund. The drainage basin is home to 85 million
people and the sea suffers from pressures like eutrophication, overfishing, industrial
waste, and heavy traffic by ships. International agreements, also addressing nutrient
load reductions from each country surrounding the sea, have been made within the
Helsinki Commission (HELCOM) Baltic Sea Action Plan, BSAP [15–17]. The BSAP is
a substantial part of the implementation of the MSFD in the region, although local
marine targets have been suggested as well [18]. The coastal zone along the Baltic
Sea is highly affected by the increased load of nutrients, and just as for the sea as a
whole, the problems are especially severe in semi-enclosed basins, where the water
exchange is reduced. Such coasts are more affected by riverine nutrient loads from
land and suffer from eutrophication and oxygen depletion. Hence, the ecological
status in the coastal zone is affected by decisions taken both with reference to the
WFD and the MSFD.

In the present study, we coupled a hydrological and an oceanographic model
to simulate the effects of suggested measures and management plans from the
two different directives for a semi-enclosed Bay in South-Eastern Sweden, called
Slätbaken Bay (Figure 1). The catchment model Hydrological Predictions for the
Environment, HYPE [19], which calculates water and nutrients on a daily time-step,
was used to estimate effects of land-based measures. The effects in the bay itself
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were estimated using the Coastal Zone Model, CZM [20], which is an oceanographic
ecosystem model with nine biogeochemical variables calculated with a ten minutes
time-step. The hypothesis is that measures both in the coastal drainage basin and in
the Baltic Proper will affect the nutrient status of the Bay, as it is semi-enclosed.
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Figure 1. The Baltic Sea catchment area and the location of the semi-enclosed
Slätbaken Bay (a), catchment and land cover of the major river, and monitoring
sites (b).

An experiment was set up to quantify the effects from various combat measures
in relation to the environmental targets set up by the water authorities for Slätbaken
Bay. Local land-based measures in the catchment were compared with remote
measures for the total sea, to evaluate the influence of the two different EU directives
on this specific coastal environment. The aim was to explore whether it is worthwhile
to implement measures in the local catchment area to reach local environmental
targets, or if the status of the Bay is more governed by the water exchange with the
Sea. The paper thus shows how coupled hydro-ecological models can assist water
authorities in practical water management issues.

2. Materials and Methods

2.1. The Study Site and Environmental Quality Targets

This study explores different ways to improve the nutrient status in Slätbaken
Bay (Figure 1). The bay has an area of 15.5 km2, is of fjord-like character and further
enclosed by the St. Anna archipelago, which is part of the Baltic Proper. The major
river inflow to the bay is the Söderköpingsån River, which has a catchment area of
880 km2, where 9% are lakes, 64% forests, 26% agricultural land and 1% urban areas.
About 16,000 inhabitants live permanently in the catchment area and, in addition,
there are 900 summer cottages.
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In accordance with the WFD, the local water authorities have defined targets
for good environmental status in Slätbaken Bay. These are winter concentrations of
total nitrogen (N) < 29 µmolN/L and phosphorus (P) < 0.61 µmolP/L. Targets for
summer concentrations are <30 µmolN/L and <0.46 µmolP/L.

The MSFD, on the other hand, prescribes reductions, relative to current
conditions, in summer concentrations of ´3% for N and ´27% for P for the Baltic
Proper as a whole, according to the BSAP [15]. The status of the Slätbaken Bay is
thus affected by implementation of both EU directives.

2.2. Catchment Modelling with HYPE

The HYPE model [19] is a process-based hydrological model that simulates the
flow and turnover of water and nutrients in the soil, rivers and lakes. Catchments are
divided into subcatchments, which are further divided into hydrological response
units, i.e., combinations of soil type and land use. Agricultural land is further divided
into main crop types. The soil profile is normally divided into three layers. The
turn-over and flow of water, N and P is simulated daily for each computational
element. The model simulates concentrations of inorganic and organic N, as well as
dissolved and particulate P. The HYPE model code is continuously developed and
released in new versions at http://hype.sourceforge.net/. For this study, the version
HYPE3.5.3 was used.

For Sweden, the HYPE model is set up according to the resolution decided by
the water authorities to support the WFD work across the whole country e.g., [21,22].
This set-up is called S-HYPE and the latest version can be found for inspection and be
downloaded at http://vattenwebb.smhi.se/. The national model system covers more
than 450,000 km2 and produces daily values of nutrient concentration and water
discharge in 37,000 catchments since 1961. The latest version has an average Nash
and Sutcliffe [23] Efficiency (NSE) for water discharge of 0.7 and an average relative
error of 5%, including both regulated and unregulated rivers with catchments from 1
to 50,000 km2 and various land-uses across the country. The modelled long-term flow
weighted concentrations of nutrients generally fall within ˘10% for N and ˘20% for
P compared to observations (http://vattenwebb.smhi.se/).

For this study, the requested input data [22] such as land cover, topography, soil
types, emissions, and forcing data (precipitation and temperature) were obtained
from the S-HYPE version 2010. The Söderköpingsån River catchment was then
divided into 43 subcatchments and calibrated separately for this experiment. In
addition to the river, calculations of water and nutrient inflow from adjacent
coastal land near the Bay were included in the simulation. Observations of N- and
P-concentrations were available at 4 sites and water discharge at 3 sites (Figure 2).
The model was calibrated simultaneously for all observation sites in the specific
catchment, using a step-wise iterative procedure [22]. The parameters in the model
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are linked to soil type and land use; hence the set of parameters for a subcatchment
is determined by the distribution of these characteristics.

2.3. Coastal Zone Modelling with CZM

The Coastal Zone Model (CZM) [20] is a coupled one-dimensional
hydrodynamic and biogeochemical model where the hydrodynamic part is based
on the Program for Boundary Layers in the Environment, PROBE model [24].
PROBE is a general equation solver including, among other things, heat exchange,
a two-equation turbulence model and a parameterization of deep sea mixing. The
water exchange in the model is driven by baroclinic pressure gradients, i.e., density
differences. The model has been set up for the whole Baltic Sea divided into thirteen
subbasins in an application called PROBE-Baltic [25], for examining salinity and
temperature variations.

The CZM also solves for nine biogeochemical variables described within the
Swedish Coastal and Ocean Biogeochemical model, SCOBI model [26]. The variables
solved for are nitrate, ammonium, phosphate, oxygen, phytoplankton, zooplankton,
detritus and benthic detritus as N and as P. For every time step of 10 min, the
CZM generates vertical profiles of both the hydrodynamic and the biogeochemical
variables. Every subbasin is considered as horizontally homogenous and thus the
horizontal resolution is determined by the division into subbasins. The vertical
resolution is 0.5 m in the upper 4 m, then 1 m down to 70 m and then sparser [20].
The model is applied along the whole Swedish coast in approximately 630 subbasins,
with water exchange between neighboring subbasins.

The CZM for Slätbaken Bay comprises 12 coupled basins and 15 sounds
(represented by double-headed arrows in Figure 2). The Slätbaken Bay has a
maximum depth of 47 m and a water exchange time of about 6 months, while the
basin Trännofjärden, which is less enclosed, has an exchange time of only 20–30 days.
The mean surface salinity in the bay is 4 practical salinity units (psu) compared to
the Baltic Proper which has a mean surface salinity of 6–8 psu and a bottom salinity
of 11–13 psu.

The CZM is coupled to S-HYPE so that is receives input of freshwater and
nutrients generated from land to each grid connected to the shoreline. The daily
values from HYPE are linearly interpolated to fit with the higher temporal resolution
of CZM. In addition, the CZM receives input regarding the state of the Baltic Proper,
which is calculated with a data-assimilated version of the PROBE-Baltic model [25].
The boundary conditions from land and the Baltic Proper are then combined with
meteorological forcing (temperature, wind velocity, cloud cover, relative humidity
and precipitation) at every third hour to drive the CZM model.
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Figure 2. The CZM set-up in the St Anna archipelago, showing the Slätbaken Bay
and the water exchange with surrounding basins and eventually the Baltic Proper.

The CZM has been calibrated against available oceanographical data in the
area, received from the SHARK database http://vattenwebb.smhi.se/, which is
the national host of marine environmental monitoring data. The calibration was
mostly done by studying the correlation between observed and simulated salinity,
temperature and oxygen conditions since these reflect if the transports and mixing in
the model are described correctly.

2.4. Model Experiment

After the calibration, the models were run for the time period 2000–2009 with
consideration to various measures for nutrient reduction. The models were then
used as laboratories, experimenting by changing model input while keeping all other
variables constant. The model response was explored by changing one factor at a
time and then with combined factors. In all, 10 different scenarios of land-based
reduction measures were simulated. The measures were suggested by the local water
authorities at the County Board as means to fulfil the environmental status targets of
the Slätbaken Bay. Remedial measures to reduce nutrient emissions were addressing
several societal sectors (Table 1).
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Table 1. Scenarios of reduced nutrient contribution from land-based sources and
sea concentrations, respectively, which were used in the experiment on effects on
water quality in the Skälderviken Bay.

Societal Sector Scenario No. Description

Waste Water
Treatment Plants

(WWTP)

1 Removal of N by 80% and maximum
concentration of P by 0.2 mg/L

2 Removal of N by 80% and maximum
concentration of P by 0.1 mg/L

3 Complete removal of the two largest WWTP by using a
pipe to a nearby town with discharge to another bay

Rural households
4 200 rural households connected to WWTP
5 All present (1882) rural households connected to WWTP

Wetlands
6 56 constructed wetlands of 1 ha each
7 56 constructed wetlands of 0.5 ha each

Agriculture 8 Protection zones along the river wherever possible
9 Reduced total load from arable land by 10% P and 20% N

Combined measures 10
Combination of the most efficient land-based measures in

(i.e., scenario No: 3 + 5 + 6 + 8 + 9) and the BSAP targets for
the Baltic Proper (´3% N and ´27% P).

International
agreements on

measures for the
Baltic Proper

11 Reduction in sea boundary conditions by ´10% of N and P
12 Reduction in sea boundary conditions by ´20% of N and P
13 Reduction in sea boundary conditions by ´40% of N and P
14 Reduction in sea boundary conditions by ´80% of N and P

A combined scenario was tried, using the most efficient land-based measures
for each sector, i.e., complete removal of waste water treatment plants (WWTP),
connection of all rural households, 56 wetlands of 1 ha each, reduced load from
agriculture, and BSAP [15] target levels for the Baltic Proper. The latter corresponds
to reduced concentrations in the sea boundary conditions by ´3% N and ´27% P,
respectively. Finally, the impact from only reducing concentrations in the boundary
conditions of the sea was tested by reductions of concentrations in the Baltic Proper
(i.e., scenario 11–14).

3. Results and Discussion

The modelled spatial pattern of nutrient concentrations in surface water clearly
reflects the influence of land cover in the catchment and dilution by sea water in
the Archipelago (Figure 3). River water from forested areas show much lower
concentrations than the agricultural rivers (cf. Figure 1) and the influence of lakes as
nutrient traps is significant. The more dark green areas are all found down-stream
of lakes, which illustrates the low travel-times and rapid transport from land to
sea from these areas. The semi-enclosed Slätbaken Bay is greatly affected by the
inflow from the Söderköpingsån River, showing much higher concentrations than
the nearby more open coastal basins to the right in each figure.
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Figure 3. Spatial distribution of modelled surface-water concentrations of total
N (a) and Total P (b) in the Söderköpingsån catchment, the Slätbaken Bay and St.
Anna Archipelago (average values for all depths are shown).

The coupled models thus clearly illustrates going from low concentrations in the
head waters to higher concentration in agricultural and more populated lowlands,
leading to high coastal concentrations, which are being rapidly decreased with
distance from the shore towards the sea.

3.1. Model Performance

The model performance of water discharge in the three sites, using the HYPE
model, gave an average NSE of 0.72 (best = 0.83 and poorest = 0.62). Model results
for river flow and nutrient concentrations showed similar level of agreement with
observations during the calibration and validation periods (Table 2). Although the
same set of parameters was used in the whole catchment, the model captured the
very different characteristics between the small agricultural catchment (Ryttarbacken)
and the larger catchment close to the outlet with a high lake percentage (Figure 4).
At all sites, however, the model underestimated the highest peaks. The simulations
for N agreed better with the observations than those for P. The model underestimates
the highest P peaks implying that the description of processes concerning P needs
to be improved. To address these problems, the HYPE model has been further
developed and the next model version includes a new process description of organic
nutrient turnover, which results in particulate P also in soil water. This will give P
concentrations of particulate P that are more in agreement with observations.
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Table 2. HYPE model performance in the Söderköpingsån catchment
(cc = correlation coefficient, re = relative error; all in %). Cal. = calibration period:
2000–2009 and Val. = validation period: 1990–1999.

Variable, Station cc, Cal. re, Cal. cc, Val. re, Val.

Q, Hälla 85 8 90 10
Q, Ryttarbacken 83 ´8 79 ´9
Q, Söderköping 91 ´1 86 ´10

Mean, Q 86 0 85 ´3

N, outlet Byngaren 46 ´6 48 ´15
N, outlet Strolången 62 ´1 56 ´2

N, inlet Hällerstadsjön 45 ´8 56 5
N, Söderköping 59 12 51 0

Mean, N 53 ´1 53 ´3

P, outlet Byngaren 25 14 20 ´15
P, outlet Strolången 32 9 31 ´1

P, inlet Hällerstadsjön 65 ´16 53 ´4
P, Söderköping 37 9 40 10

Mean, P 40 4 36 ´2
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Figure 4. Daily averages of HYPE simulations vs. monthly averages of observations for 

water discharge, total N and P concentrations for Ryttarbacken, a small subcatchment 
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the months January to December). 

The coastal zone model was evaluated in the surface layer in two subbasins; Slätbaken Bay and 

Kärrfjärden. The model performance shows a good correlation for salinity in both subbasins (Figure 5). 

For Slätbaken Bay, the simulations for N and P are well correlated although the highest peaks are, 

most prominently for P, underestimated which is a reflection of the underestimation in the modelled 

load from land. In the outer basin, Kärrfjärden, the simulations match observation rather well 

concerning the range, although the dynamics are not totally described by the CZM. However, the 

Figure 4. Daily averages of HYPE simulations vs. monthly averages of observations
for water discharge, total N and P concentrations for Ryttarbacken, a small
subcatchment dominated by arable land, and in Storån River, close to the outlet
(1–12 in x-axis indicates the months January to December).

The coastal zone model was evaluated in the surface layer in two subbasins;
Slätbaken Bay and Kärrfjärden. The model performance shows a good correlation
for salinity in both subbasins (Figure 5). For Slätbaken Bay, the simulations for N
and P are well correlated although the highest peaks are, most prominently for P,
underestimated which is a reflection of the underestimation in the modelled load
from land. In the outer basin, Kärrfjärden, the simulations match observation rather
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well concerning the range, although the dynamics are not totally described by the
CZM. However, the relative error is less in this basin. The CZM in the Archipelago is
more influenced by boundary conditions from the outer sea, which are determined
by using a three dimensional sea model including data assimilation. Hence, the
model performance at this observation point is biased by data in the model results.
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Figure 5. Daily averages of CZM simulations vs. bi-monthly observations of salinity,
total N and P concentrations in the surface layer for Slätbaken Bay and Kärrfjärden
(1–12 in x-axis indicates the months January to December).

Overall, the model shows the same seasonal dynamic as the observations, which
reflect the biogeochemical cycle in the ecosystem; phytoplankton consume nutrients
during spring and summer, they grow and are grazed by zooplanktons, until they
die during autumn and are decomposed to nutrients again and create the large
winter storage of soluble nutrients, which is to be digested during next spring
by phytoplankton growth again. This is described in the model and confirmed
by observations.

3.2. Source Apportionment and Mass Balance

Long-term mass-balance of all sources and sinks in the model are compiled
along the flow paths to estimate the contribution from each sector and catchment at
the river outlet. This is done by book keeping of all emissions and transformations
in the model storages, assuming that equal part from all sources is transformed in
each storage and time step. When knowing the rate of transformation in each sink,
the origin of the load at the outlet can be traced through the flow paths upstream.
Modelled contributions from various inland sources to the Slätbaken Bay indicate
that 75% or more of the riverine nutrients originates from arable land in the catchment
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(Figure 6). Waste Water Treatment Plants (WWTP) emissions correspond to 8% of the
total N and 2% of the total P river inflow to the coast.

Simulated long-term annual means in the Slätbaken Bay show that about equal
nutrient contributions were received from land and sea (Figure 7). The removed
amounts of nutrients refer to sedimentation processes of P and sedimentation or
denitrification of N. Approximately 90% of the N removal in the Slätbaken Bay refers
to denitrification and thus leaves the water as atmospheric N gas. In return, the
atmospheric deposition to the water surface is about 10 tons of N/year and 0.1 tons
P /year. During winter, almost no biomass remains in the water storage.

Water 2015, 7 3915 

 

 

In return, the atmospheric deposition to the water surface is about 10 tons of N/year and 0.1 tons P /year. 

During winter, almost no biomass remains in the water storage. 

 

Figure 6. Long-term source apportionment for total N and total P in the Söderköpingsån 

River calculated with the HYPE-model. 

 

Figure 7. Long term annual means for total N and total P fluxes in the Slätbaken Bay 

calculated with the coastal zone model. 

3.3. Scenario Results 

The numerical experiments for reduced emissions from WWTP show that the suggested reduction 

levels reduced the total load by 3%–6% for N and 2% for P (bars 1–3 in Figure 8). However, reduced 

emissions from rural households gave higher impact on P, up to 4% (bar 5 in Figure 8). Protection 

zones did not give any significant impact, while reducing arable land leaching by 20% gave 15% 

reduction on riverine N load and 8% reduction on P load at the outlet (bar 9 in Figure 8). The lower 

effect at the outlet than at the sources is due to processes taking place within the river system and on 

the land surface, such as N denitrification in discharge areas and surface water, and sedimentation and 

absorption processes in bottom sediments. The combination of reductions of both WWTP emissions 

and arable land leaching gave the highest effect in land-based reductions and is illustrated in bar 10 in 

Figure 8. The resulting concentrations in the Slätbaken Bay was then reduced by 8% for P and  

almost 15% for N. 

Figure 6. Long-term source apportionment for total N and total P in the
Söderköpingsån River calculated with the HYPE-model.

Water 2015, 7 3915 

 

 

In return, the atmospheric deposition to the water surface is about 10 tons of N/year and 0.1 tons P /year. 

During winter, almost no biomass remains in the water storage. 

 

Figure 6. Long-term source apportionment for total N and total P in the Söderköpingsån 

River calculated with the HYPE-model. 

 

Figure 7. Long term annual means for total N and total P fluxes in the Slätbaken Bay 

calculated with the coastal zone model. 

3.3. Scenario Results 

The numerical experiments for reduced emissions from WWTP show that the suggested reduction 

levels reduced the total load by 3%–6% for N and 2% for P (bars 1–3 in Figure 8). However, reduced 

emissions from rural households gave higher impact on P, up to 4% (bar 5 in Figure 8). Protection 

zones did not give any significant impact, while reducing arable land leaching by 20% gave 15% 

reduction on riverine N load and 8% reduction on P load at the outlet (bar 9 in Figure 8). The lower 

effect at the outlet than at the sources is due to processes taking place within the river system and on 

the land surface, such as N denitrification in discharge areas and surface water, and sedimentation and 

absorption processes in bottom sediments. The combination of reductions of both WWTP emissions 

and arable land leaching gave the highest effect in land-based reductions and is illustrated in bar 10 in 

Figure 8. The resulting concentrations in the Slätbaken Bay was then reduced by 8% for P and  

almost 15% for N. 
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3.3. Scenario Results

The numerical experiments for reduced emissions from WWTP show that the
suggested reduction levels reduced the total load by 3%–6% for N and 2% for P (bars
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1–3 in Figure 8). However, reduced emissions from rural households gave higher
impact on P, up to 4% (bar 5 in Figure 8). Protection zones did not give any significant
impact, while reducing arable land leaching by 20% gave 15% reduction on riverine
N load and 8% reduction on P load at the outlet (bar 9 in Figure 8). The lower effect
at the outlet than at the sources is due to processes taking place within the river
system and on the land surface, such as N denitrification in discharge areas and
surface water, and sedimentation and absorption processes in bottom sediments. The
combination of reductions of both WWTP emissions and arable land leaching gave
the highest effect in land-based reductions and is illustrated in bar 10 in Figure 8.
The resulting concentrations in the Slätbaken Bay was then reduced by 8% for P and
almost 15% for N.

The corresponding reductions in Slätbaken Bay of either land-based measures
or measures in the Baltic Proper were lower due to dilution and biological processes
taking place within the coastal zone (lower panel of Figure 8). It was notable that 80%
load reduction in the Baltic Proper sources corresponded to 15%–20% load reduction
from land-based sources, to achieve about the same effect on nutrient concentrations
in Slätbaken Bay. Hence, it is much more efficient to reduce the load of the river to
improve the status of the Slätbaken Bay.
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Figure 8. Simulated effect of various remedial measures in total nutrient load
from land-based sources (a) and reduction in the Baltic Proper (b) and their
corresponding effect on concentrations in the Slätbaken Bay (c) and (d). Bars
correspond to Scenarios No. 1–14 in Table 1.
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Comparing the modelled reductions with the reduction targets set-up by the
local water authorities to fulfil the WFD, it was found that no measures reached the
goals, neither for N nor for P (Figure 9). The achieved effect reached only half the
summer target value for the concentration of N and one fourth for the concentration
of P, whereas for the winter target values, they were only reached by 1/3 for N and
1/5 for P. It should be noted that some scenarios (Nos. 1, 3 and 11) actually resulted
in increased P concentrations due to a shift in the internal biogeocycling of nutrients
in the Bay (Figure 8). This can happen if one nutrient is reduced more than the other
so that the algae up-take is restricted or if the bottom sediments start to leach due to
changes in redox potentials.

The combined scenario (No. 10) was used to explore the integrated effect of
the BSAP target and the best composite of land-based actions. This resulted in
about 30%–50% achievement of the desired reduction of nutrients in the Slätbaken
Bay (Figure 10). The land-based measures accounted for the largest part of this
reduction. The reduction was still only about 1/3 of the goal for P, although all the
best land-based actions were combined. It seems unrealistic to achieve roughly three
times as much reduction on the contribution from land than what is already included
in the combination of best land-based actions. It can thus be questioned whether the
selected local environmental goal for Slätbaken Bay is realistic and if this definition
of “good ecological status” for this Bay will ever be reached.
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Figure 9. The effect of remedial measures on summer and winter concentrations of
total N (a, b) and total P (c, d) in the surface water of Slätbaken Bay during summer
(June to August) and winter (December to February). The x-axis corresponds to
scenario No. 1–14 in Table 1. Horizontal lines indicate present conditions and the
target for good ecological status according to the WFD.
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Figure 10. The effect when combining the BSAP target for the Baltic Proper
and the most efficient land-based actions as found in this study. The simulated
concentrations of total N (a) and P (b) are compared to the present state and the
target for good ecological status (horizontal lines) according to the WFD.

3.4. Implications of Findings and Uncertainties

The numerical experiment clearly shows the importance of good
decision-support before implementing remedial measures and environmental quality
targets. The coupled hydro-ecological models indicate that the present targets may
actually be unrealistic to be achieved for the Slätbaken Bay. It also shows that local
land-based measures can be important for semi-enclosed bays. However, exact
values from the experiment results should be taken with caution. All models are
based on assumptions, both in the model structure itself, in input data generation,
and in estimation of model coefficients, constants and parameters. For instance,
Arheimer et al. [21] examined some major uncertainties when using HYPE at various
scales. The most uncertain part of the catchment modelling is processes concerning
soil leakage, how agricultural practices vary in time, and the assumptions on soil
and sediment storages. The overall results mainly reflect the water budget of the
Slätbaken Bay, for which the results are considered to be rather robust. Just analysing
the mass balance of water gives a clear picture of dominating fluxes; in this case the
exchange with the Baltic Proper is relatively small as there are many basins to cross
with potential for denitrification and sedimentation before the water and nutrients
from the sea reaches the Slätbaken Bay. Thereby, locally generated load from land
will have a larger impact.

According to the experiment, local measures for the arable land gave the largest
effect on nutrient reduction. Nevertheless, it should be recognised that 20% reduction
of total load from the arable land may exceed the potential for reduction. A large part
of the soil leaching is natural and the agriculture in the region is not very intensive.
In previous studies of southern Sweden with much more intensive agricultural
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production, the potential reduction for the anthropogenic load from this sector
was estimated to at most 15% [27,28]. It can thus be suspected that the suggested
reduction of 20% by the regional authorities is too optimistic. According to HELCOM,
most effort ought to be put on the agricultural sector as it is supposed to increase
with the recent expansion of the European Union in the South-Eastern part of the
Baltic basin. On the other hand, Humborg et al. [29], showed that an improvement
of sewage treatment in these countries may compensate for the larger nutrient load
from agriculture, at least as far as P is concerned.

When simulating the scenarios with reduced load from the Baltic Proper, it was
not taken into account by which measures this could be achieved. Gren et al. [30]
showed that a reduction in nutrient load to the Baltic Sea by 50% would bring
its status back to what it was 1960 before the high increment in loads. The
80% reduction scenario thus seems unrealistic but was included to test the
sensitivity of sea concentration on the semi-enclosed bay. For credibility, it is also
important to recognise additional on-going changes, for instance climate change.
Arheimer et al. [31] found that the BSAP targets on reductions from land-based
sources may be reached in a future climate for the Baltic Proper if emissions from
both agriculture and WWTP are reduced. In fact, impact from climate change may be
beneficial for N reduction due to increase in denitrification by higher temperatures
and longer residence times of water in the southern part of the region. However,
there were large differences between the climate projections in this respect, which
show the large uncertainties in climate impact assessments.

Even though there are uncertainties involved when experimenting with
hydro-ecological models, it clearly shows that local analyses of mass-balance are
important when improving the status of semi-enclosed bays. Although uncertain,
the models are capable of separating between large and small fluxes. According to
the results for the Slätbaken Bay, neither the efforts according to WFD nor the MSFD
will improve the water quality as much as the local authorities wish to achieve “good
ecological status”. This conclusion is probably valid in spite of model uncertainties,
and can be justified by examining the mass balance and exchange between different
parts of the system. The modelling should thus serve as a platform for knowledge
transfer and understanding of dominant pressures for a specific site, more than
providing exact numbers for planning.

3.5. On the Practical Use of Hydro-Ecological Models for Societal Needs

Water authorities are currently asking for hydro-ecological information across
administrative borders e.g., [32] while most model developers claim that their models
should be used in practice, also for water pollution management e.g., [33–35]. There
is a contemporary movement in the hydrological research community to emphasise
societal needs and practical applications, pointing out “Science in Practice” as one
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major target for the up-coming scientific decade e.g., [11,36]. However, it is not
yet clear which role the scientists aim at towards societal actors, and as Pielke [37]
argued, it can be as a (i) pure scientist out of decision context; (ii) science arbiter
answering inquiries without interfering with the questions; (iii) issue advocate
providing solutions; or (iv) honest broker trying to explain several cause-effect in
relation to the broader context. The latter is probably appealing for many scientists
but it is not easy to achieve as it requires good understanding of the stakeholders
knowledge, setting and commission. There is a need for a common learning process,
which may take long time and much efforts, before the practitioner and the scientist
fully understand the vocabulary and actual needs.

For instance, the coupled model system HYPE-CZM described in this study
was in an early version [38] embedded in a graphical user interface and provided
to the Swedish water authorities. They were asking for a model tool to help them
plan nutrient reduction measures on a catchment scale. However, although the
tool fulfilled all the user requirements and regular training courses were arranged,
they did not use the model as it was far too complex and slow for everyday work
at the authorities. It was an expert system delivered to infrequent users in a
multi-task environment. Ten years later, they received a simple web-based tool
at http://vattenwebb.smhi.se/ with an emulated model for catchment analysis that
is not as precise and with very little functionality. Nevertheless, it gives a rough
estimate, it is easy and quick to use, and it is much appreciated. The results differ only
by some 10% compared to the more complex role-model (S-HYPE). So, for practical
use, a simple model was preferred and the more complex model is nowadays used
only by experts to provide new data, assessments and for research.

The HYPE-CZM model system (and its earlier versions) has also been applied
to facilitate dialogues and participatory processes among various stakeholders to
elaborate on management plans [12,13,39]. The model then served as a platform for
the establishment of a common view of present conditions and the causes behind
these conditions. The benefits were found to be twofold: it increased the willingness
to carry out remedies or necessary adaptations to a changing environment, and it
increased the level of understanding between the various stakeholder groups and
therefore ameliorated the potential for future conflicts. Compared to traditional use
of model results in environmental decision-making, the experts’ role was transformed
from a one-way communication of final results to assistance in the various steps of
the participatory process. Hence, to use the vocabulary from Pielke [37], the scientists
evolved from the role of science arbiters to honest brokers. The participatory process,
however, is time- (and cost-) consuming and may thus not be feasible to implement
at the large scale.

It was interesting to note that model performance, which is so much in focus
in the discussions among scientists, was less important for model credibility among
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the stakeholders. The use of local input data was essential for confidence [40]
and giving explanations for discrepancies was more convincing than the “best fit”
between models and measurements [39]. Another way to improve confidence among
practitioners is to present results from an ensemble of models. This is the common
procedure at operational forecast institutes, where results from several models are
considered before warnings of floods and droughts are issued e.g., [41–43]. To
sum up, based on our experience, we recommend the following for practical use of
hydro-ecological models when addressing societal needs:

1. Simple scenario tools (based on emulated hydro-ecological models) for rough
and quick results on the web for water authorities working with WFD
and MSFD;

2. Participatory modelling involving experts and stakeholders in critical
conflict areas;

3. Hydro-ecological models should primarily be used for research to provide
new knowledge on process interactions and dominant drivers under specific
conditions, which is the basis for simplified models;

4. An ensemble of different models should be used for more reliable
decision support.

4. Conclusions

This paper illustrates the societal relevance of hydro-ecological modelling as the
study shows how coupled models can be used to evaluate environmental targets and
improve policy making for complex systems. Two hydro-ecological models were
coupled in a case study to experiment with various nutrient reduction measures and
to explore the effect in a semi-enclosed Bay vs. local environmental targets set-up by
water authorities. In addition, the practical use of such models was discussed based
on previous experience. The study shows that:

1. For nutrient concentrations in the Slätbaken Bay, the reduction of land-based
load by 15%–20% corresponded to 80% reduction of concentrations in the Baltic
Proper. Local measures are thus recommended for this semi-enclosed Bay, as
they have the largest potential to being implemented.

2. The best effect was achieved when combining measures for WWTP and
agriculture, both locally (in the river catchment) and internationally (for the
Baltic Proper). However, implementation of both the MSFD (BSAP targets) and
the most efficient combined land-based actions suggested by the WFD, is not
enough to achieve the locally established environmental quality targets for this
bay. The present water quality targets thus seem unrealistic.

3. To overcome problems when using hydro-ecological models in practice for
societal needs, we recommend the following: (i) emulate hydro-ecological
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models into simple scenario tools for water authorities working with WFD and
MSFD; (ii) involve both experts and stakeholders in participatory modelling of
critical conflict areas; (iii) use hydro-ecological models by experts only; (iv) use
an ensemble of different models for more reliable decision support.
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The Stability of Revegetated Ecosystems in
Sandy Areas: An Assessment and
Prediction Index
Lei Huang and Zhishan Zhang

Abstract: The stability and sustainability of revegetated ecosystems is a central topic
in ecological research. In this study, long-term monitoring and focused research
on vegetation, soil and soil moisture from 2006 to 2012 were used to develop a
model for evaluating indices of ecosystem stability using the analytical hierarchy
process method. The results demonstrated that rainfall (R), vegetation coverage
(C), and surface soil moisture (S) were the three most influential factors among
the 14 indicators considered in a revegetated desert area in the Tengger Desert,
China. A stability index (SI) was defined as SI = VAR (R) ˆ VAR (C)/VAR (S), and
a comparative study was conducted to examine the stability index of the natural
vegetation community. The SI was divided into three regimes: SI < 0.006 was
stable, 0.006 ď SI < 0.015 was semi-stable, and 0.015 ď SI was unstable. The stable,
semi-stable and unstable periods of revegetated ecosystems in our simulations were
191, 17 and 11 years, respectively, within the total modeling period of 219 years.
These results indicated that the revegetated desert ecosystem would be stable in most
years during the vegetation succession, and this study presents new ideas for future
artificial vegetation management in arid desert regions.

Reprinted from Water. Cite as: Huang, L.; Zhang, Z. The Stability of Revegetated
Ecosystems in Sandy Areas: An Assessment and Prediction Index. Water 2015, 7,
1969–1990.

1. Introduction

Stability has frequently been considered an important characteristic of ecological
systems because of its theoretical and practical significance [1–4]. However, the
concept of ecosystem stability is complex and has often been discussed in vague terms
because of the complex physical and biological structures or integrated functions [5].
This complexity also occurs in artificial ecosystems [6]. Grimm and Wissel (1997) [7]
presented a review and analyzed ecological stability, addressing 163 definitions of
70 different ecological stability concepts. Constancy, resilience, persistence, resistance,
elasticity, mathematical stability and other concepts have been discussed in the
literature in relation to specific problems in various ecosystems [8,9]. In these
studies, debates on complexity-stability and diversity-stability have provided points
of contention [1,10]. Early studies suggested that simple ecosystems were less stable
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than complex ecosystems, but later studies came to the opposite conclusion [11].
Until recently, questions on the relationship between stability and complexity have
not been answered [12–14]. However, for the diversity-stability debate, evidence
from multiple ecosystems at a variety of temporal and spatial scales suggests that
biological diversity acts to stabilize ecosystem functioning when presented with
environmental fluctuations [1]. Moreover, variation among species in their response
to such fluctuations is an essential requirement for ecosystem stability [15,16].
Thus, we can conclude that stability is a multi-dimensional concept that has
scale-dependent features. Generally, ecosystem stability refers to the capacity of
a natural system to apply self-regulating mechanisms and return to a steady state
after an outside disturbance.

Ecologists have developed a variety of approaches to measure ecosystem
stability [2,17–19]. In most cases, mathematical models or empirical methods are
involved, with the former developed and expanded by Robert May in 1973 [20]
using linear stability analysis on models constructed from a statistical universe
(randomly constructed communities with randomly assigned interaction strengths).
However, mathematically derived models are only suitable for characterizing the
dynamic behavior of simple dynamic systems, whereas ecological systems are not
usually uniform [21]. Most ecosystems operate in a variable environment that
includes events at a wide range of frequencies and intensities, and it is often difficult
to determine the degree of changes or disturbances. Empirical methods involve
the development of a stability index that incorporates the main characteristics of
ecosystem structure or environmental factors; the stability of an ecosystem can
then be determined from these indicators [22,23]. However, this solution must still
manage the problem of parameter selection [24]. For instance, in a forest ecosystem,
stability may be described with biomass, diversity, dominant species density, nutrient
cycling and soil characteristics, etc. Thus, developing a method that can combine
quantitative measurements and qualitative descriptions is particularly pertinent
when evaluating analyses of ecosystem stability. The best method for evaluating
problems that involve a number of uncertain indices is the analytic hierarchy process
(AHP) method [25–27]. The AHP is a multiple-criteria decision-making tool that
has been widely applied in diverse fields, such as resource allocation, project
design, maintenance management and policy evaluation. This method is particularly
useful because it enables the decomposition of a given problem into a hierarchy of
more easily comprehended sub-problems that can each be analyzed independently.
The elements of the hierarchy can be related to any aspect of the qualitative and
quantitative problems, including aspects that are tangible or intangible and carefully
measured or roughly estimated. Once the hierarchy is built, the AHP systematically
evaluates its various elements and derives numerical priorities for each of the
decision alternatives [28,29]. Thus, one may easily apply the AHP to select promising
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technologies, and it provides a simple method for making decisions or performing
environmental impact assessments [30–32]. However, relatively few studies have
assessed the application of AHP to ecosystem stability [27,33,34], especially in
revegetated desert areas.

Sand-binding vegetation has been widely used in arid desert regions and is
considered one of the most effective methods of mitigating desertification [35].
However, in recent years, climate change and harsh natural environments have
produced a series of problems, such as declining vegetation cover, poor plant
growth and widespread water stress, which have led us to investigate the stability of
artificial vegetation [6]. In this research, we hypothesized that the natural vegetation
community is stable because natural vegetation in the study area is the result of
long-term (i.e., over thousands of years) evolution [36]. Therefore, this hypothesis is
reasonable, and several studies have also illustrated that ecosystems with artificial
vegetation would become stable over plant succession, with these stabilizing changes
mainly reflected in the increased vegetation cover and soil texture improvements
compared with that of the adjacent natural vegetation communities [37–39]. However,
these improvements are only concomitant with the individual process of vegetation
succession, and a comprehensive system for evaluating stability indices, including
the integration of vegetation, soil and water factors, is still lacking. Furthermore,
previous studies primarily focused on qualitative concept models, and a quantitative
model is not available. In the present study, over 50 years of vegetation succession
and long-term monitoring data (2006–2012) from the Shapotou Desert Research and
Experimental Station on the southeastern edge of the Tengger Desert were used to
investigate soil and vegetation characteristics at different stages of plant succession.
The key influencing factors of the ecosystem stability were then determined with the
AHP method, and a stability index was defined. Finally, the ecosystem’s stability
was predicted with a dynamical model of vegetation cover and soil moisture. Our
results provide basic suggestions for sustainable ecosystem management and new
hypotheses regarding vegetation succession models.

2. Materials and Methods

2.1. Study Site

The study was conducted at Shapotou Desert Research and Experimental
Station of the Chinese Academy of Sciences, located in the Shapotou region at the
southeastern margin of the Tengger Desert (37˝32' N, 105˝02' E). The climate at the
site is characterized by abundant sunshine and low relative humidity. The average
minimum monthly relative humidity is 33% in April, and the average maximum
monthly relative humidity is 54.9% in August. The elevation of the area is 1330 m,
and the mean annual precipitation is 188.2 mm according to meteorological records
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from 1956 to 2009, with rainfall occurring primarily between June and September [37].
The mean annual temperature is 9.6 ˝C, and the mean monthly temperatures are
´6.9 ˝C in January and 24.3 ˝C in July. The evapotranspiration potential during the
growing season (May to September) is 2300 to 2500 mm.

To ensure the smooth operation of the desert section of the Baotou-Lanzhou
railway, a system involving sand-binding vegetation was established by the Chinese
Academy of Sciences and other related departments in 1956. First, mechanical sand
fences were installed at right angles to the prevailing winds, and then 1 mˆ 1 m straw
sand barriers were erected in a checkerboard pattern behind the mechanical sand
fences. Under non-irrigated conditions, xerophytic shrubs dominated by Caragana
korshinskii, Artemisia ordosica, Hedysarum scoparium, Caragana intermedia, Calligonum
arborescens and Atraphaxis bracteata were planted at a spacing of 1 m ˆ 2 m or
2 m ˆ 3 m using the checkerboard of straw barriers as a protective screen. This
ecological shelter was extended in 1964, 1981 and 1987. As shown in Figure 1, a
16 km long protective system of vegetation was eventually established, and our
research site was part of this protective system, which was 500 m wide on the north
side and 200 m wide on the south side of the railway. Over the 50 years since the
establishment of the vegetation, the environment in the area has improved, and
the stabilized sand surface has created conditions that support the colonization of
a number of species. The mass propagation of psammophytes has transformed
the original moving sand into a complex man-made and natural desert vegetation
landscape [37]. This ecological engineering project was viewed as a successful model
for desertification control and ecological restoration along the transport line in the
arid desert region of China. Because sites with different ages were stabilized using
similar approaches, including the planting of shrub seedlings of the same species
with the same density in similar straw checkerboards (see Table 1), they can represent
the different successional stages of sand-binding vegetation.
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Table 1. Description of four revegetation sites with different ages and a natural
community located in the southeastern fringe of the Tengger Desert, Northern China.

Year of
Revegetation

Approaches to Sand Stabilization
and Revegetation

Remaining Shrub Species
of Revegetation

Native/Invasion Dominant
Plant Species

1956

Straw-checkerboard of 1 m2

planted with 10 xerophytic shrubs
at a density of 16 individuals per

100 m2

Artemisia ordosica,
Caragana korshinskii,

Hedysarum scoparium

Artemisia ordosica,
Scorzonera mongolica,

Sonchus arvensis,
Chloris virgata,

Aristida adscensionis,
Setaria viridis,

Bassia dasyphylla,
Chenopodium aristatum

1964

Straw-checkerboard of 1 m2

planted with 10 xerophytic shrubs
at a density of 16 individuals per

100 m2

Artemisia ordosica,
Caragana korshinskii,

Hedysarum scoparium

Artemisia ordosica,
Bassia dasyphylla,

Eragrostis poaeoides,
Sonchus arvensis,

Scorzonera mongolica,
Euphorbia humifusa

1981

Straw-checkerboard of 1 m2

planted with 10 xerophytic shrubs
at a density of 16 individuals per

100 m2

Artemisia ordosica,
Caragana korshinskii,

C. microphylla,
Hedysarum scoparium

Artemisia ordosica,
Hedysarum scoparium,

Bassia dasyphylla,
Eragrostis poaeoides,

Corispermum patelliforme

1987

Straw-checkerboard of 1 m2

planted with 10 xerophytic shrubs
at a density of 16 individuals per

100 m2

Amorpha fruticosa,
Artemisia ordosica,
A. sphaerocephala,

Caragana korshinskii,
C. microphylla,

Calligonum arborescens,
Hedysarum scoparium

Hedysarum scoparium,
Agriophyllum squarrosum,

Bassia dasyphylla,
Echinos gmelinii,

Eragrostis poaeoides

Natural No No

Artemisia ordosica,
Caragana korshinskii,
Lespedeza davurica,
Ceratoides latens,

Oxytropis aciphylla,
Stipa breviflora,

Carex stenophylloides,
Cleistogenes sogorica,
Allium mongolicum,

Oxytropis myriophylla,
Enneapogon brachystachyus,

Asparagus gobicus
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2.2. Methods

2.2.1. Sampling Method and Data Collection

Three 10 m ˆ 10 m quadrats were established in each of the fixed observation
plots in the sand-binding vegetation districts established in previous years (1956,
1964, 1981 and 1987) as well as in the adjacent natural vegetation zones for a total of 15
quadrats. The plant species number, height, and coverage for each species in the sand
stabilization areas of different years were recorded or measured monthly from 2006
to 2012. Plant diversity (H1) was estimated with the Shannon–Wiener index for each
region and month according to the formula: H1 = ´

ř

pilnpi, where p is the proportion
of each species i. Precipitation was recorded every 30 min using tipping bucket-type
rain gauges (Casella) and Campbell CR30X data-loggers (Campbell Scientific, Logan,
UT, USA). Samples were collected monthly with a soil auger, and the soil moisture of
the samples was determined using the oven-drying method (0–40 cm) and neutron
moisture probe method (40–300 cm). To avoid confusion between the surface and
deep soil moisture, the gravimetric moisture content of the surface soil layer and
bulk density measurements were used to calculate the volumetric moisture content.

Soil parameters were measured at depths of 0–20 cm at each site during the
growing season in 2006 and 2010. In each plot, 100 soil sampling points were
mechanically arranged in 10 m ˆ 10 m vegetation plots of different ages. The
transverse and longitudinal spacing were both 1 m. The surface of the sampling
plots was flat, and composite samples were sieved through a 2 mm mesh screen and
used for further analysis. Particle size was analyzed using the pipette method [40],
and soil bulk density was measured using the ring-cutting method [41]. Soil organic
carbon (SOC) was determined according to the dichromate oxidation method of
Walkley–Black [42]. Total nitrogen was measured with a Kjeltec System 1026
Distilling Unit (Tecator AB, Hoganas, Sweden), and electrical conductivity (EC)
was determined by preparing a suspension that consisted of a soil–water mixture in
a ratio of 1:5 and was measured using a portable conductivity meter (Cole-Parmer
Instrument Company, Vernon Hills, IL, USA). Topographic parameters (elevation,
slope angle and aspect) were determined with a Real-Time Kinematic (RTK) global
positioning system (GPS) (S86T, Southern Technology, Guangzhou, China) in 2006.

In this study, we chose the commonly applied method of space-for-time
substitution, which assumes that simultaneous sampling of different sites of different
ages is equivalent to resampling the same site through time [36]. The clay percentage
was selected to represent the soil texture, and soil organic matter and total N content
were used to reflect the soil nutrient regime. According to the depth distribution of
the mass root systems of herbaceous plants and shrubs, the soil moisture content
at 0–40 cm and 40–300 cm, respectively, were determined. The clay percentage was
measured because soil texture is considered an important factor that determines the
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vegetation structure and composition under uniform climatic conditions, whereas
soil moisture was measured because it is considered a driving force for ecological
processes in arid zones. Thus, these indices can reflect the overall stability of the
ecosystem [38].

2.2.2. Analytic Hierarchy Process Methodology

The AHP method was applied to select the major influencing factors from
the above datasets. The AHP procedure involves three basic steps: (i) Design of
the decision hierarchy; (ii) Pair-wise comparison of elements of the hierarchical
structure; and (iii) Construction of an overall priority rating. For more details, refer
to Appendix 5. In this study, fourteen important criteria were selected to evaluate the
stability of the revegetated desert ecosystem (Figure 2). The top level of the diagram
shows the overall goal of the hierarchy, “stability of revegetated desert ecosystems”;
the second level lists the most influential factors obtained from other literature [36,37],
such as soil moisture, soil characteristics, plant cover and topography; and the third
level describes the attributes of each factor. After defining the criteria for selecting
the evaluating index, five comparison matrices were developed: A–B, B1–C, B2–C,
B3–C and B4–C. At each level, the criteria were compared pairwise according to
their levels of influence and according to the specified criteria at the higher level.
In AHP, multiple pairwise comparisons are based on a standardized comparison
scale of nine levels, and ten experts were asked to perform pair-wise comparisons
using a 1–9 preference scale that indicates the importance or dominance of one
element over another. On this preference scale, 1 indicates equal preference and
9 indicates absolute preference. Intermediate values are used to express increasing
preference/performance for one weight/alternative [43]. For example, if the criteria
for soil moisture (B1) were judged as essential or of moderate importance, then the
soil criteria (B2) with respect to the preservation of revegetated desert ecosystem
stability would be given a score of 3. In addition, for other pairwise comparisons
matrices, such as B2–C, the degree of importance was determined by the number
of years of recovery required to reach the level of native ecosystem, such as desert
steppe [36]. All of the important factors were then assigned appropriate weights,
and a standardization index was calculated with the Z-score method. Finally, the
integrated index was calculated, and the most influential factors in the revegetated
ecosystem were determined.
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Figure 2. A hierarchy for the stability evaluation of revegetated desert ecosystems.

2.2.3. Coupled Dynamics of Soil Moisture and Vegetation

Soil water is the major driving force shaping vegetation patterns and processes
in desert areas; however, plant growth, vegetation succession or landscape variability
may also generate temporal and spatial heterogeneity of soil moisture [6]. Thus,
to predict dynamic changes in soil water and vegetation succession in arid desert
regions, a simplified ecohydrological box model that contains the coupled dynamics
of vegetation and soil moisture was selected [44]. The model is as follows:

ds
dt
“ I ps, tq ´ rbxb psq ` p1´ bq x0 psqs (1)

db
dt
“ g psq b p1´ bq ´ u psq (2)

In Equation (1), s is the relative soil moisture averaged over the root zone
(0 ď s ď 1) and b is the fraction of vegetated sites, where 0 < b < 1. Variations in site
occupancy depend on the rate at which empty sites are colonized and the rate at
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which vegetated sites become vacant as a result of mortality. I(s, t) is the infiltration
rate (mm day´1); Xb and X0 denote evapotranspiration (mm day´1), which is distinct
between vegetated and bare sites; g(s) denotes the colonization rate; and u(s) denotes
the local extinction rate (year´1). All of the aforementioned rates were dependent
on soil moisture. Each item in Equation (1) and the above parameter values are
detailed in Appendix 5. Matlab 7.0 (The MathWorks, Natick, MA, USA) and Origin
7.0 (OriginLab, Northampton, MA, USA) software were used for data simulation
and analysis.

3. Results

3.1. Results of the Analytic Hierarchy Process (AHP) Application

Following the input of each factor and its importance into the expert choice
and quantitative approach functions, the comparison results and weights of the
four main criteria were calculated, and they are shown in Table 2. The results
(principal vectors) show that the attributes have the following approximate priority
weights: Soil moisture (0.91), soil (0.22), plant cover (0.23), and topography (0.28).
The consistency ratio (CR) for this comparison was 0.086 < 0.10, which indicated that
the weighted results were valid and consistent. In contrast, if the CR value were
larger than the acceptable value of 0.10, the matrix results would be inconsistent and
exempt from further analysis. Similarly, pair-wise comparisons of the sub-criteria
indices with respect to the four criteria in the middle level were conducted. The
comparison and weight results for this level are shown in Tables 3–6. The final stage
of the AHP was to compute the contribution of each index to the overall goal, and
the global weights were calculated by multiplying the local weights with criteria
and sub-criteria. The final weights and ranking of the indices were then obtained
as shown in Table 7. The ranking of critical ecosystem stability factors showed that
soil moisture and plant factors are the most influential. The highest-ranked factor
was precipitation (0.86), followed by plant coverage (0.25) and surface soil moisture
(0.23). The CR values of all matrices were less than 0.10 and were therefore accepted.
The largest value in the priority weight was the most important criterion, which
means that precipitation, surface soil moisture and plant coverage were the three
most influential factors determining the stability of the revegetated desert ecosystem.
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Table 2. Judgment matrix of the objective hierarchy and the criterion hierarchy.

A B1 B2 B3 B4 Priorities AHP Criteria

B1 1.00 3.00 5.00 4.00 0.91 λmax = 4.23;
CI = 0.078;
RI = 0.900;
CR = 0.086

B2 0.33 1.00 0.50 1.00 0.22
B3 0.20 2.00 1.00 0.50 0.23
B4 0.25 1.00 2.00 1.00 0.28

Notes: The weight of four evaluation criteria: Stability of revegetated desert ecosystem
(A); Soil moisture (B1); Soil (B2); Plant (B3); Topography (B4).

Table 3. Judgment matrix of the criterion B1 and its related factors.

B1 C1 C2 C3 Priorities AHP Criteria

C1 1.00 5.00 4.00 0.95
λmax = 3.09; CI = 0.047;
RI = 0.58; CR = 0.081.C2 0.20 1.00 2.00 0.26

C3 0.25 0.50 1.00 0.18

Notes: The weight of three evaluation criteria: Soil moisture (B1); Precipitation (C1);
Surface soil moisture (0–40cm) (C2); Deep soil moisture (40-300cm) (C3).

Table 4. Judgment matrix of the criterion B2 and its related factors.

B2 C4 C5 C6 C7 C8 C9 Priorities AHP Criteria

C4 1.00 0.33 2.00 1.00 5.00 0.50 0.27
λmax = 6.04;
CI = 0.008;
RI = 1.24;

CR = 0.006.

C5 3.00 1.00 5.00 3.00 9.00 2.00 0.78
C6 0.50 0.20 1.00 0.50 3.00 0.33 0.15
C7 1.00 0.33 2.00 1.00 5.00 0.50 0.27
C8 0.20 0.11 0.33 0.20 1.00 0.14 0.06
C9 2.00 0.50 3.00 2.00 7.00 1.00 0.47

Notes: The weight of nine evaluation criteria: Soil (B2); Clay (C4); Bulk density (C5);
Organic C (C6); Total N (C7); C/N (C8); EC (C9).

Table 5. Judgment matrix of the criterion B3 and its related factors.

B3 C10 C11 Priorities AHP Criteria

C10 1.00 5.00 0.98 λmax = 2; CI = 0;
RI = 0.00; CR = 0.C11 0.20 1.00 0.20

Notes: The weight of two evaluation criteria: Plant (B3); Plant coverage (C10); Plant
diversity (C11).

Table 6. Judgment matrix of the criterion B4 and its related factors.

B4 C12 C13 C14 Priorities AHP Criteria

C12 1.00 1.00 2 0.63254
λmax = 3.02; CI = 0.008;
RI = 0.58; CR = 0.013.C13 1.00 1.00 3 0.72389

C14 0.5 0.33 1 0.27546

Notes: The weight of three evaluation criteria: Topography (B4); Latitude (C12); Slope
(C13); Altitude (C14).
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Table 7. Overall weight of the ecosystem stability evaluation index.

Indices
B1 B2 B3 B4

Overall Priorities0.91 0.22 0.23 0.28

C1 0.95 – – – 0.86
C2 0.26 – – – 0.23
C3 0.18 – – – 0.16
C4 – 0.27 – – 0.06
C5 – 0.78 – – 0.18
C6 – 0.15 – – 0.03
C7 – 0.27 – – 0.06
C8 – 0.06 – – 0.01
C9 – 0.47 – – 0.11
C10 – – 0.98 – 0.25
C11 – – 0.20 – 0.05
C12 – – – 0.63 0.18
C13 – – – 0.72 0.20
C14 – – – 0.28 0.08

CI = 0.052; RI = 0.955; CR = 0.055<0.1

3.2. Stability Index Definition, Measurement and Prediction

The above AHP analysis verified that precipitation (C1), surface soil moisture
(C2) and plant coverage (C10) were the three main limiting factors that affected
the stability of the ecosystem; the stability index (SI) was therefore defined as
SI = VAR (C1) ˆ VAR (C10) / VAR (C2). VAR denotes the variance of a random
variable. Generally, we assumed that the natural vegetation has higher stability; thus,
the greater the similarity of different successional stages of sand-binding vegetation,
the higher its stability. As shown in Figure 3A–D, plant coverage and surface soil
moisture depended on annual precipitation. In particular, the maximum annual
rainfall in 2007 was 271.2 mm, which induced extensive plant growth; in contrast,
in 2006, 2009 and 2010, the annual rainfall was only approximately 100 mm, and
plant coverage and surface soil moisture were maintained at a relatively low level.
However, the amplitude of plant coverage was less than that of surface soil moisture
in different vegetative sites. The SI in the natural vegetation site was 0.005, and it
was 0.011, 0.012, 0.013, 0.017 in the 1956a, 1964a, 1981a and 1987a vegetation sites,
respectively. The above results suggest that with increasing years of sand-binding
vegetation, the revegetated desert ecosystem would become more stable. However,
when compared with the natural vegetation, ecological restoration in arid desert
regions still occurred over a very long time scale.
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Figure 4. (A) Simulated results of daily precipitation; (B) plant coverage; (C) soil moisture 

and (D) stability index using Equation (1) over 219 years. 

Figure 3. (A) Annual precipitation; (B) plant coverage; (C) soil moisture and (D)
stability index of different vegetative sites and the control; The horizontal dashed
lines represents the threshold of ecosystem stability, SIs = 0.004, SIus = 0.015.

At long time scales, we have simulated 219 years of rainfall, vegetation coverage
and soil moisture changes from Equation (1), as shown in Figure 4A–C. Numerical
results have shown that soil moisture and vegetation cover would increase in the
future and that the soil moisture would be maintained at 2.5%, but the rate of increase
was not very high. The vegetation coverage remained at 40%, with fluctuations, but
it was still increasing, and the rate of increase of vegetation coverage was larger
than that of soil moisture. The SI also fluctuated with ecosystem succession, most
of which was closer to the natural vegetation, as shown in Figure 3D. Based on
the above-measured data and its distribution patterns, the SI can be divided into
several regimes, which we defined as follows: SI < 0.006 was stable, 0.006 ď SI <
0.015 was semi-stable and 0.015 ď SI was unstable. Thus, the stable, semi-stable
and unstable periods in our simulations were 191, 17 and 11 years within the total
219 years, respectively, which indicated that the revegetated desert ecosystem would
be stable the majority of the time.
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Figure 4. (A) Simulated results of daily precipitation; (B) plant coverage; (C) soil
moisture and (D) stability index using Equation (1) over 219 years.

4. Discussion

Stability is an important indicator of ecosystem health and a necessary condition
for ecosystem sustainability [4]. The assessment of ecosystem stability is helpful
in revealing community dynamics and vegetation succession [2]. Debate is
ongoing regarding the definition of stability [1], and each researcher has individual
evaluation methods, which is because of regional differences or specific research
objectives [14]. Therefore, in the present study, ecosystem stability was measured
with the comparative method, and natural vegetation ecosystems were considered
stable. In these ecosystems, natural vegetation indicators, such as plant coverage or
soil moisture, were assumed to represent the standard, and ecosystems that are closer
to this standard are more stable. This approach avoids theoretical controversy and
provides a simple method for practical applications. In revegetated desert ecosystems,
soil moisture, soil characteristics, plant cover and topography were selected as the
integral influential factors for ecosystem stability. For the selection of useful variables,
the AHP method was used because it effectively incorporates interdependent criteria
and local problems involving both quantitative and qualitative issues. A key
drawback in using the AHP method is the requirement of pair-wise comparison
that must be completed by experts because such expert judgments may be affected
by factors, such as fatigue and impatience during this process, especially when a
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large number of criteria or alternatives are involved [45]. To avoid this drawback, a
reasonable and manageable number of criteria were contained in the model. Another
alternative is the Bayesian inference [46], which works very well if opinions among
the experts are strongly divergent, and different prior parameters can be used to
test for robustness [47,48]. In this study, based on results from the literature and
information gleaned from discussions with ten experts, who are authorities on
eco-hydrology in arid desert areas and were unified in their feedback, the AHP
method was chosen in this study, and a total of fourteen criteria were determined.
Using the AHP method, we verified that precipitation, surface soil moisture and
plant coverage were the key limiting factors for artificial vegetation stability in arid
desert regions. Precipitation was considered the sole source of water replenishment
in this area, and soil water was the main driving force of the ecosystem’s patterns
and processes. Additionally, the changes in the vegetation patterns also affected the
redistribution of precipitation and infiltration depth in different soil layers. Therefore,
these ecohydrological processes and their feedback mechanisms were identified as
the main problems affecting the restoration and reconstruction of certain ecological
engineering projects in arid regions [6]. However, for other ecosystems (such as
agro-ecosystems, grasslands or forests), ecosystem structure and function are more
complicated than in revegetated desert ecosystems [36–38]; therefore, evaluating
ecosystem stability is more difficult [3,4,6]. Thus, a Bayesian methodology that
provides for semiautomatic searches of consensus building should be considered
instead of AHP.

To quantify the stability indicators, we defined the SI as the integration of
variance of three variables. Because precipitation and surface soil moisture were
inextricably linked, they always varied at the same time. Therefore, we defined the
ratio of the two as a coefficient, and then multiplied it by the variance of vegetation
cover, which directly represents the ecosystem restoration or degradation within
a certain period. Thus, the stability of the ecosystem is specific, quantitative and
verifiable. Simulated results from Equation (1) have shown that the ecosystem may
become unstable in years with high precipitation because years with high annual
precipitation are often followed by several years of continuous drought [49,50], which
dramatically changes soil moisture and vegetation cover. This greater fluctuation
leads to instability of the revegetated ecosystem. Compared with other empirical
stability indices, such as community numbers, biomass or plant diversity [51],
our stability index is simple and practical. Furthermore, it reflects the intrinsic
characteristics of ecosystem stability, such as stochastic dynamics and temporal
dependence, and accurately reflects the entire ecosystem with real environmental
fluctuations. The SI values of different vegetation sites were then compared with
the natural vegetation community, and stable or unstable regimes were determined.
Based on field observations, the results showed that revegetated ecosystems increase
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in stability over time after the establishment of sand-binding vegetation. This
conclusion is also supported by other studies in which the establishment of planted
sand-binding vegetation in the Shapotou region is suggested to promote the
improvement and restoration of regional habitats and provide suitable conditions
for an increase in biodiversity in the desert ecosystem [37].

In terms of the mechanism by which sand-fixing vegetation promotes stability in
the Tengger Desert, studies present inconsistent results on the formation mechanisms
of stable plant communities. Shen (1986) [52] considered that A. ordosica may
form a relatively stable climax community or plagioclimax, with the originally
planted shrubs, such as C. korshinskii, H. scoparium and A. ordosica, degrading nearly
20 years later and withdrawing from the community. Zhao et al. (1988) [53]
predicted that the next stage of vegetation succession would be herb-dominated
plant communities. Li (2005) [38] advanced a conceptual model and stated that
the revegetated plants would lead toward herb-dominated vegetation, which is
similar to the primary vegetation types of the adjacent steppified desert and desert
steppe. These results suggest that vegetation adapts to the habitat and revegetated
ecosystems form a new equilibrium with vegetation succession. However, these
previous studies were conceptual models, and vegetation succession assessments
cannot be quantified. In the present study, a simplified dynamical model originally
developed by Baudena et al. (2007) [44] that has been widely used in vegetation
pattern analyses in arid and semi-arid areas [54,55] was applied, and it was capable
of inferring the vegetation pattern features and useful information on underlying
processes, including the susceptibility of the system to abrupt shifts to a desert state
(i.e., unvegetated) as a result of climate change or anthropogenic disturbances [56].
Through our model simulations and the division of stability intervals, we predict
that sand-fixing vegetation ecosystems will remain stable for a long period of time,
although this stability will be interspersed with a number of semi-stable and unstable
years. For certain theories or proposed mechanisms for the maintenance of ecosystem
stability, such as the diversity theory or redundancy theory [57], self-organization
of plant behaviors during a particular period of time is an essential component of
vegetation succession over long time scales. Similar to banded or spot vegetation
in North America, Africa and Australia [58–60], we could hypothesize that such
self-organization reflects the normal vegetation successional pattern at different
stages and suggest that vegetation may follow a “banded-spot-banded-spot ( . . . )”
pattern. Therefore, variations in vegetation composition, structure and responses
to hydrological processes in the sand-binding areas are necessary stages of natural
succession [61]. Thus, in artificial vegetation ecosystem management, the human
should not be overly interfered with.
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5. Conclusions

In this study, long-term monitoring and focused research was used to develop,
measure and evaluate an index of ecosystem stability. Using the AHP method, we
verified that rainfall (R), vegetation coverage (C) and surface soil moisture (S) are
the three most influential factors in a revegetated desert area in the Tengger Desert,
China. Over short time scales, the stability of the revegetated sandy ecosystem
increased with years of succession. However, the stability of the artificial vegetation
ecosystem may fluctuate with vegetation succession on a timescale of hundreds of
years. The revegetated desert ecosystem was mostly stable based on our established
theoretical system of ecosystem assessment and prediction, thus verifying the success
of this method for desertification control and ecological restoration along a transport
line in arid desert regions. Furthermore, our results provide new ideas for future
artificial vegetation management and sustainable development in arid revegetated
desert areas.
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Appendix

A.1. Analytic process hierarchy (AHP) methodology

AHP is a multi-criteria analysis method that is based on pair-wise comparisons
of the components of a particular problem. This method enables a complex problem
to be broken into a goal, criteria, solutions and other levels to provide a simple
method for decision-making. Applying the AHP procedure involves three basic
steps [62]: (1) Decomposition, or the hierarchy construction; (2) Comparative
judgments, or defining and executing data collection to obtain pair-wise comparison
data on elements of the hierarchical structure and (3) Synthesis of priorities, or
constructing an overall priority rating.

In the first stage, a complex decision problem is structured as a hierarchy. This
structure comprises a goal or focus at the topmost level, multiple criteria that define
alternatives in the middle, and decision alternatives at the bottom. The second step
is the comparison of the alternatives and the criteria. Once the problem has been
decomposed and the hierarchy is constructed, prioritization procedure starts in order
to determine the relative importance of the criteria within each level. The pairwise
judgment starts from the second level and finishes in the lowest level. In each level,
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a nominal scale is used for the evaluation. The scale used in AHP for preparing the
pairwise comparison matrix is a discrete scale from 1 (the two choice options are
equally preferred) to 9 (one choice option is extremely preferred over the other), as
presented in Table A1.

Table A1. Evaluation Scale in AHP.

Intensity of Importance Definition Explanation

1 Equal Importance Two elements have equal importance
regarding the element in higher level

3 Moderate Importance Experience or judgement slightly favours
one element

5 Strong Importance Experience or judgement strongly
favours one element

7 Very Strong Importance Dominance of one element proved
in practise

9 Extreme Importance The highest order dominance of one
element over another

2,4,6,8 Compromises between the Above When compromise is needed

Adverse Adverse Comparisions
The adverse evaluation of the same
criteria, adverse of the same point

under multiplication

Elements in each level are compared in pairs with respect to their importance to
an element in the next higher level. Starting at the top of the hierarchy and working
down, the pair wise comparisons at a given level can be reduced to a number of
square matrices A “ paiiqnˆn as in the following:

A “

»

—

—

—

–

a11 a12 ... a1n
a21 a22 ... a2n
... ... ... ...

an1 an2 ... ann

fi

ffi

ffi

ffi

fl

aii “ 1, aji “ 1{aij, aij ‰ 0

After all pair wise comparison matrices are formed, the vector of weights,
w “ pw1, w2, ..., wnqis computed on the basis of Sattys eigenvector procedure. The
computation of the weights involves two steps. First, the pair wise comparison matrix
A “ paiiqnˆnis normalized by Equation (A1) and then the weights are computed by
Equation (A2).

aii˚ “
aij

n
ř

i“1
aij

, for all j “ 1, 2, ..., n (A1)

wi “

n
ř

j“1
aij˚

n
, for all j “ 1, 2, ..., n (A2)
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Satty (1980) showed that there is a relationship between the vector weights, w
and the pair wise comparison matrix, A, as shown in Equation (A3).

Aw “ λmaxw (A3)

The λmax value is an important validating parameter in AHP and is used as a
reference index to screen information by calculating the Consistency Ratio (CR) of
the estimated vector. To calculate the CR, the Consistency Index (CI) for each matrix
of order n can be obtained from Equation (A4).

CI “
λmax ´ n

n´ 1
(A4)

Then, CR can be calculated using Equation (A5):

CR “
CI
RI

(A5)

Where RI is the random consistency index obtained from a randomly generated
pair wise comparison matrix. Table A2 shows the value of the RI from matrices
of order 1 to 10 as suggested by Satty [28]. If CR < 0.1, then the comparisons are
acceptable. If, however, CR ě 0.1, then the values of the ratio are indicative of
inconsistent judgments. In such cases, one should reconsider and revise the original
values in the pair wise comparison matrix A.

Table A2. Random Indicators.

n 1 2 3 4 5 6 7 8 9 10

RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49

A.2. The Coupled Soil-Vegetation Model

The coupled soil-vegetation system (B1) was original presented in Baudena et al.
(2007) [44], and we have improved some items in the equation as following, which
would give a better description in our research area.

ds
dt “ Ips, tq ´ rbxbpsq ` p1´ bqx0psqs
db
dt “ gpsqbp1´ bq ´ upsqb

(A6)

where s is relative soil moisture averaged over the root zone (0 ď s ď 1), The fraction
of vegetated sites is denoted by b(0 ď b ď 1). The infiltration rate Ips, tq is assumed
to be equal to the rainfall rate, as long as the soil layer is not saturated; when rainfall
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exceeds the available water storage in the soil, the excess is converted into surface
runoff. Thus,

I “

#

r
nZr

r∆t
nZr ă 1´ s

1´s
∆t

r∆t
nZr ě 1´ s

(A7)

where ∆t = 1 day. n is soil porosity and Zr is the active soil depth in millimeters. r
is daily rainfall, which is modeled as instantaneous events occurring according to
a marked Poisson process of rate (mean frequency of rainfall events) λ, and with
exponentially distributed depths with mean h. xbpsq was the water losses from
vegetated soil, which include direct soil evaporation and plant transpiration, s˚ is
the critical soil moisture value below which plants start reducing transpiration by
closing their stomata, and s1 is the soil field capacity above which leakage occurs.
The losses from evapotranspiration are assumed to increase linearly as a function
of s until the moisture reaches a threshold s˚, above which the evapotranspiration
takes place at a maximum value Emax, when the soil moisture exceeds the soil field
capacity s1, the leakage losses was start by an exponential growth and reaching the
saturated hydraulic conductivity ks at s =1.

xbpsq “

$

’

&

’

%

Emax
s˚ s

Emax

Emax ` ks
eβps´s1q´1
eβp1´s1q´1

0 ď s ă s˚

s˚ ď s ă s1

s1 ď s ă 1
(A8)

x0psqwas the water losses in bare soil; Esoil is pure soil evaporation before the leakage
occurs. It increases linearly up to field capacity s1, above which the leakage losses
was start with the same expression as for the vegetated soil.

xbpsq “

# Esoil
s1

s

Esoil ` ks
eβps´s1q´1
eβp1´s1q´1

0 ď s ă s1

s1 ď s ă 1
(A9)

xbpsq “

# Esoil
s1

s

Esoil ` ks
eβps´s1q´1
eβp1´s1q´1

0 ď s ă s1

s1 ď s ă 1
(A10)

the colonization and extinction rates gpsq and upsq depend on s, as seen in the
Figure A1, it can be modeled as:

gpsq “
0.05s2

1` 12.36s2 , upsq “ 0.0006e´4.69s (A11)
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expression as for the vegetated soil. 
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the colonization and extinction rates )(sg  and )(su depend on s, as seen in the Figure A1, it can be 

modeled as: 
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reached to its maximum maxg sharply with increased soil moisture, which have showed a typical “S” 

curve. The extinction rate is assumed to exponential decreased with soil moisture. The parameters for  

Matlab simulation were shown in Table A3. 
  

Figure A1. Sketch for vegetation colonization rate and extinction rate.

When the soil moisture was below the field capacity s1, plant growth was slowly
at first and then reached to its maximum gmax sharply with increased soil moisture,
which have showed a typical “S” curve. The extinction rate is assumed to exponential
decreased with soil moisture. The parameters for Matlab simulation were shown in
Table A1.

Table A1. Parameters of the simplified ecohydrological box model.

Parameters Symbol (Unit) Value

Soil porosity n 0.43
Active soil depth Zr (cm) 40

Critical soil moisture below which
plant undergoes water stress s* 0.11

Field capacity s1 0.56
Pore size distribution parameter β 12.7
Saturated hydraulic conductivity Ks (cm/d) 800

Pure soil evaporation Esoil (mm/d) 0.1
Maximum evapotranspiration rate Emax (mm/d) 3.67

Average rainfall frequency λ (/d) 0.15
Average precipitation depth h (mm/d) 0.61

The parameters in the model were obtained from the directly measured data.
The cutting ring method was used to determine soil porosity n and field capacity
s1 of root zone (3 repeats at the 0, 20 and 40 cm soil depths, respectively, and take
the average). The saturated soil hydraulic conductivity Ks was measure by using
of the tension infiltrometer model SW 080B (SDEC, Paris, France) in undisturbed
field conditions; s* and another soil parameters β were determined according to
related reference [63]. the historical precipitation information such as average rainfall
frequency and depth were extracted from the receive data at a near weather station,
and minor calibration was done by referring to the experiential relationship between
precipitation and elevation. The depth of active soil or root zone depth, defined as
the soil depth range in which 95% below-ground biomass were distributed, was
determined by filed investigation. Pure soil evaporation Esoil were measured with
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micro-lysimeters, which were made using PVC pipes that were 30 cm high and 10
cm in internal diameter [64]. And maximum evapotranspiration rate Emax were
determined with the combination of the stem heat balance technique (Dynamax Inc.,
Houston, TX, USA), the observations was measured continuous during the 2008-2012
growing season [65].

Conflicts of Interest: The authors declare no conflicts of interest.
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Catchment-Scale Modeling of Nitrogen
Dynamics in a Temperate Forested
Watershed, Oregon. An Interdisciplinary
Communication Strategy
Kellie Vaché, Lutz Breuer, Julia Jones and Phil Sollins

Abstract: We present a systems modeling approach to the development of a
place-based ecohydrological model. The conceptual model is calibrated to a variety of
existing observations, taken in watershed 10 (WS10) at the HJ Andrews Experimental
Forest (HJA) in Oregon, USA, a long term ecological research (LTER) site with
a long history of catchment-scale data collection. The modeling framework was
designed to help document and evaluate an evolving understanding of catchment
processing of water, nitrogen, and carbon that has developed over the many
years of on-going research at the site. We use the dynamic model to capture
the temporal variation in the N and C budgets and to evaluate how different
components of the complex system may control the retention and release of N
in this pristine forested landscape. Results indicate that the relative roles of multiple
competing controls on N change seasonally, between periods of wet/dry and
growth/senescence. The model represents a communication strategy to facilitate
dialog between disciplinary experimentalists and modelers, to produce a more
complete picture of nitrogen cycling in the region. We view this explicit development
of complete, yet conceptually simplified models as a useful and important way to
evaluate complex environmental dynamics.

Reprinted from Water. Cite as: Vaché, K.; Breuer, L.; Jones, J.; Sollins, P.
Catchment-Scale Modeling of Nitrogen Dynamics in a Temperate Forested Watershed,
Oregon. An Interdisciplinary Communication Strategy. Water 2015, 7, 5345–5377.

1. Introduction

Human-induced changes to global biogeochemical cycles are large, having for
example effectively doubled the global rate of annual N fixation [1] yet the ultimate
response of ecosystems to these changes remains unclear. This lack of clarity is due in
part to the inter-dependencies and feedbacks between system components as well as
to an incomplete understanding of the complex processes governing biogeochemical
cycles. These relationships result in the inherent complexity and non-linearity of
environmental systems. Components comprising environmental systems include
functionally discreet entities like the atmosphere, vegetation, and soils; spatial
assemblages of these entities, including hillslopes, riparian transitions, and instream
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environments; and also the different elements that cycle through them, including
nitrogen, carbon, water, and a host of others. The detailed study of each of these
individual units tends to be well-covered by traditional disciplines, such as hillslope
hydrology, aquatic ecology, soil biogeochemistry, forest ecology, etc., but with less
attention given to the relationships between components. That these dependencies,
in some sense by definition, fall at interfaces between traditional disciplinary
boundaries is an ongoing challenge for ecosystem science, though the emergence
of cross-cutting disciplines, such as ecohydrology and hydrobiogeochemistry, is an
indication that this challenge is being addressed. The use of numerical models, which
are designed to capture relationships between system components, represents one
method that can be used to contribute to our understanding of how ecosystems
function, and how they may respond to future change in both climate and landcover.

The retention and release of N from temperate forested ecosystems provides
a clear example of this need for understanding, at an integrated catchment scale.
Its relevance is, of course, well established, with tremendous progress having been
made throughout the last three decades [2–4]. Much of this progress has been
driven by the need to better understand the response of forested catchments, which
are commonly limited by N, to environmental changes, including climate change,
disturbance, and increased N deposition [5]. Increasing N deposition provides a
useful example, where the potential effects have been succinctly synthesized as
the “nitrogen saturation” hypothesis [5,6]. Under this hypothesis, the chronically
increased rates of N deposition invoke a variety of ecosystem responses, culminating
in increased nitrate mobility in soils, nutrient imbalances in vegetation, forest decline,
the acidification of soils, as well as increased surface water N loading leading to the
potential for both acidification and eutrophication [5]. Numerous catchment scale
experiments have been developed to test the saturation hypothesis [7,8], and along
with them, models have been developed to predict the response of catchments to
different deposition patterns [9]. Because nitrate in solution is the dominant form of
N lost from these systems, the models that have been developed tend to emphasize
inorganic N (e.g., [10]).

Despite the strides made in understanding catchment nitrogen cycling under
the saturation hypothesis, in many temperate forested catchments, notably those
on the Western side of both North and South America, current N deposition rates
remain similar to those found historically [11]. In these areas that lie outside of urban
or other point sources of atmospheric nitrogen, N continues to be a major limiting
nutrient, losses of plant-available N remain very low, and nitrogen saturation is
not currently part of the developmental trajectory [12]. The models that have been
developed in regions of excess N deposition are not necessarily applicable in these
places, a fact that underscores the suitability of low deposition regions as a useful
counterpoint in the evaluation of ecosystem N cycling.
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The HJ Andrews Experimental forest (HJA) in the Pacific Northwest of the USA
is one such region. A variety of studies, based in small watersheds at HJA, and
focused on different components of the nitrogen cycle have been developed since
its inception in the 1960s. The synthesis of these various disciplinary studies is an
ongoing effort. The application and development of a conceptual numerical model,
which attempts to incorporate key components of the evolving understanding of
N dynamics, provides an opportunity to inject some temporal dynamism into the
ecosystem budget approach, and in this sense, contribute to the overall direction of
field-based research and interpretation.

The overall objective of this paper is to outline a model formulated to describe
the processes controlling N cycling in low deposition, small and primarily coniferous
forest watersheds at HJA. The basis for this objective is twofold. First, some potential
factors associated with the low deposition nature of the region are not explicitly
captured by the current suite of standard ecosystem models. These include the
relative importance of losses of organic nitrogen, as well as the potential importance
of instream processing of nitrogen, and epiphytic and asymbiotic nitrogen fixation.
Second, a range of disciplinary experimentalists, ranging from forest ecologists to
soil biogeochemists to hillslope hydrologists and aquatic biologists collect data and
develop expertise at the site. Much of this expertise has a direct bearing on nitrogen
cycling, yet because it emerges from different disciplines it has been difficult to
integrate it and develop a more complete understanding of the ecosystem as a whole.
The model has been developed to explicitly capture a temporally dynamic N budget,
by directly capturing observed rates and states that operate at HJA and forests like it
(Figure 1).

The model represents a communication strategy to facilitate dialog between
disciplinary experimentalists, to produce a more complete picture of nitrogen cycling
in the region. This kind of modeling has seen recent growth in the environmental
sciences [13,14] and we view this explicit development of complete, yet conceptually
simplified models as a mechanism to more fully evaluate complex environmental
dynamics. In particular, our work contributes to the idea that conceptual systems
modeling can contribute to interdisciplinary science as a means of providing the
capacity for individual researchers to contribute to evolving models of complex
systems [13]. The models that result from such a process are not necessarily designed
as predictive tools, but instead as a means to document key system details and
how components may interact. Such a model may provide a useful point to begin
the development of predictive modeling tools, either through detailed sensitivity
and uncertainty analysis, or through the development of process-based algorithms.
Nonetheless, roughly calibrated conceptual models, like we present here, present a
useful framework for discussion.
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Figure 1. A flow chart outlining key model stocks and fluxes. Some minor flux
terms have been left out of the figure to improve clarity. Note also that the
litter input into aquatic biomass is derived directly from the stocks of foliage
and branches/coarse wood.

2. Materials and Methods

2.1. Ecosystem Modeling

A wide variety of models have been developed to evaluate questions related
to nitrogen dynamics, with the variation primarily manifested as different levels of
complexity, different scales of application, and different questions of interest. These
range from 3-dimensional physically-based research models, which are applicable
across a broad range of environments and time scales (ecosys; [14]) to lumped
data-based techniques (UNERF; [15]), which are reliant upon long term input output
measurements, and maintain no physical basis. In this paper we are primarily
interested in forested watershed nitrogen dynamics, which represents only a small
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subset of this broad range of models. For these ecosystems, modeling strategies
generally incorporate associated carbon and water cycling, and while there is
considerable overlap, the models tend to focus on one of three basic lines of inquiry.
The first of these relates to forest productivity and succession. Productivity models
are developed primarily to predict the successional evolution of above ground
biomass (e.g., 3PG [16]) or focus on carbon dynamics and primary productivity (e.g.,
the PnET models [17]). Models in this group tend to include a more robust depiction
of primary production, canopy processes, and carbon allocation, with somewhat
less detail in terms of soil organic matter processing. The second general class of
ecosystem models focuses more heavily on soil nutrient cycling and soil organic
matter (SOM) dynamics. This group includes many of agricultural models, some of
which have been adapted to represent forested landscapes (CENTURY [18]). A third
approach focuses not on vegetation or SOM properties, but rather on hydrology and
nitrogen export in an effort to provide a predictive tool to quantify nitrogen leaching
potential (MERLIN [10]).

Regional to global scale biogeochemical models, a somewhat different class of
simulation tools make use of many of the concepts outlined in the models above,
coupling water, carbon, and nitrogen cycles to represent complete regional scale
ecosystems. These models display less disciplinary focus, and are used primarily
to evaluate the function of whole ecosystems under changing climate or deposition
patterns. Representative models in this group include GEM [19] and BIOM-BGC [20]
and INCA [21].

Most of these ecosystem scale models maintain a spatially lumped approach,
though a number of spatially distributed simulation tools—those that include lateral
interaction terms—have been developed (e.g., RHYSSYS [22]). With the exception of
MEL [23] none of these models treat the production or mobility of dissolved organic
nitrogen, an oversight representing a potentially significant structural error in terms
of potential maximum amounts of sequestered carbon [23]. Additionally, while a
variety of aquatic simulation models have been developed [2], these concepts have
not been explicitly included in any of the ecosystem models.

The modeling we developed here relies fundamentally upon a variety of ideas
and algorithms proposed within the range of existing ecosystem models. Our
intention isn’t to replace any of these models, but rather to select elements from
them, and to put those elements together to represent a particular location with a
particular set of processes.

2.2. Study Site

The HJ Andrews Experimental Forest (HJA) Watershed 10 (WS10) is located in
the western Cascades of Oregon. Soils are predominantly composed of weakly
developed Inceptisols with local areas of Alfisols and Spodsols made up of
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thick organic horizons over weathered parent materials [24]. The geology of
WS10 is characterized by Miocene volcanics, primarily breccia and massive tuff,
predominate [25]. Glacial, alluvial, and mass movement processes have resulted in
a deeply dissected, locally steep drainage with highly variable regolith depths [25].
Vegetation is primarily comprised by Douglas-fir (Pseudotsuga menziesii), western
hemlock (Tsuga heterophylla), and western red cedar (Thuja plicata). Average annual
precipitation ranges from 2300 mm at lower elevations to over 3550 mm at the highest
elevations and the climate is Mediterranean, with wet mild winters characterized by
long duration low to moderate intensity frontal storms. WS10 is rather unique in that
a significant debris flow in 1996 effectively removed the entire riparian area and most
of the stream channel currently flows on bedrock. We limit our model explorations
in WS10 to the pre-1996 period, when the riparian area was intact. A more complete
description of WS10 and other small watersheds at HJA is provided in [26].

Over the 55 years of small watershed studies HJA, researchers have investigated
recurring themes including material and elemental budgets, forest hillslope-stream
interactions, biogeochemical and hydrologic responses to disturbances, and forest
ecology. Framing this long-term research is a unique long term dataset documenting
the seasonal input/output response, including organic and inorganic nitrogen and
water, of six small catchments for over 30 years [27]. In this paper, we focus
on one of the small catchments, WS10, where terrestrial [28,29] and aquatic [30]
elemental budgets have previously been developed. These studies provide a key set
of measurements which we revisit in this paper as calibration and evaluation terms
for the numerical model.

2.3. The HJA-N Model

The HJA-N model is cast as a set of mass balance equations, and uses various
strategies to represent rate terms. The formulation is designed to explicitly track
fluxes and masses that pass through a set of roughly defined environmental
storages, differentiated in both vertical and lateral terms. It is a dynamic model
that incorporates transient input data at monthly time steps, and as such is useful
for evaluating potential effects of seasonality on N cycling and long term trends
in N cycling in response to environmental disturbances including climate change,
increasing CO2 concentration, and large scale vegetation manipulation. It is, however,
not currently designed for the short time scales necessary to consider the time scale
of storm events. Table 1 outlines the naming convention used in tables outlining the
model. The full list of mass balance equations is included in Table 2, with the rate
terms outlined in Tables 3–6. Model parameters are listed in Tables 7 and 8. The
model was implemented using the Stella© systems modeling framework [31] to more
fully communicate the developing model structure with the disciplinary experts
providing the perceptual model of catchment process.
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Table 1. Definition of naming convention used in the mathematical description of
the model. Terms used in rate equations follow the form: ComponentMass,Location.

System Component Mass Additional Information

Name Short Name Name Short Name Short Name Name

Biomass B Carbon C Root Zone R

Detritus D Particulate
Nitrogen N Below Root Zone B

Soil Organic
Matter (SOM) S

Available
Nitrogen (DIN) Na Hyporheic Zone HY

Unavailable
Nitrogen (DON) Nu In stream/aquatic IS

Aquatic
Biomass A Water Wa

Canopy C
Wood w

Fine root r
Foliage f

Table 2. The mass balance equations (differential equations) used to define the
HJA-N model.

Equation Defines

dBCi
dt “ PCi ´ TCi Ñ where i “ f oliage, wood, f ine ¨ roots Carbon in biomass

dBNi
dt “ Ui f ` FSNi ´ TNi Ñ where i “ f oliage, wood, f ine ¨ roots Nitrogen in biomass

dDCi
dt “ TCi ´DCi ´ RCi,D Ñ where i “ f oliage, wood, f ine ¨ roots Carbon in detritus

dDi f
dt “ FANi ` TNi ´DNi Ñ where i “ f oliage, wood, f ine ¨ roots Nitrogen in detritus

dSC,R
dt “ DCr `DCw `DC f ´ RC,R ´ TC Carbon in the root zone SOM

dSN,R
dt “ DNr `DNw `DN f ´MNu,R ´MNa,R ´ TN ` INa,R Nitrogen in the root zone SOM

dSC,B
dt “ TC ´ RC,B Carbon below the root zone SOM

dSN,B
dt “ TN ´MNa,B ´MNu,B ` INa,B Nitrogen below the root zone SOM

dWNa,R
dt “ DPNa `DNu,R `MNa,R ´UNa ´DNNa,R ´ INa,R ´QNa,R Dissolved available nitrogen in the root zone

dWNu,R
dt “ DPNu `MNu,R ´DNu,R ´QNu,R Dissolved unavailable nitrogen in the root zone

dWNa,B
dt “ QNa,R `DNu,B `MNa,B ´QNa,B ´DNNa,B ´ INa,B Dissolved available nitrogen below the root zone

dWNu,B
dt “ QNu,R `MNa,B ´DNu,B ´QNu,B Dissolved unavailable nitrogen below the root zone

dWNa,IS
dt “ QNa,B `MNa,IS ´ INa,IS ´DNNa,IS ´QNa,IS Dissolved available nitrogen in the aquatic environment

dWNu,IS
dt “ QNu,B `MNu,IS ´QNu,IS Dissolved unavailable nitrogen in the aquatic environment

dAN
dt “ BIN ` INa,IS ´MNa,IS ´MNu,IS ´ PN Aquatic Biomass (particulate, algae,benthic)

dWW,C
dt “ DPW ´ TFw ´ EW Water in the canopy

dWW,R
dt “ TFW ´ ETw ´VFW Water in the root zone (we assume it moves vertically)

dWW,B
dt “ INW,R ´ LFw ´ SFw

Water below the root zone (we assume
it moves horizontally)

dWW,HY
dt “ LFw ` SFW ` HEW,IS ´ HEW,HY Water in the riparian/hyporheic zone
dWW,IS

dt “ HEW,HY ´ HEW,IS ´QW,IS Water in the channel

Table 3. Rate terms comprising the hydrological model. See Table 7 for
parameter definitions.

Rate Definition Units

DPW,C Deposition of water (precipitation) m/day
TFW,C “WW,CkW,c Throughfall from canopy m/day
EW,C “WW,CkW,e Evaporation from canopy m/day

ETW,R Evapotranspiration from root zone m/day
VFW,R “WW,RkW,v Vertical movement of water within the root zone m/day
LFW,B “WW,BkW,l Long (time) flowpaths of water below the root zone m/day
SFW,B “WW,BkW,s Short (time) flowpaths of water below the root zone m/day

HEW,IS “WW,ISkW,IS Hyporheic exchange of water from the stream m/day
HEW,HY “WW,HYkW,HY Hyporheic exchange of water from the Hyporheic zone m/day

QW,IS “WW,ISkW,q Discharge of water from the stream m/day
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Table 4. Rate terms comprising vegetation mass balance equations. See Table 7 for
definitions of parameter values.

Rate Definition Units

PCi “ PnηCi
Pn allocated to foliage(i = f ),

wood (i = w) and fine roots (i = r) kg C/m2

TCi “ BCiτ f i
Turnover of C from foliage (i = f ),
wood (i = w) and fine roots (i = r) kg C/m2

Un “ umax

ˆ

WNa,R
u1{2`WNa,R

˙

Uptake of N kg N/m2

UNi “ UNηNi
Uptake allocated to foliage (i = f ),
wood (i = w) and fine roots (i = r) kg N/m2

TNi “ BNiτ f i
Turnover of N from foliage (i = f ),
wood (i = w) and fine roots (i = r) kg N/m2

FSNi “ FSmaxηiλ
Symbiotic fixation allocated to foliage

(i = f ), wood (i = w) and fine roots (i = r) kg N/m2

DCi “ BCip1´ fco2 f qdiλ
Decomposition to SOM from foliage

(i = f ), wood (i = w) and fine roots (i = r) kg C/m2

DNi “ BNie
´pCND f {CNcr f q

k3
diλ

Decomposition of N from foliage (i = f ),
wood (i = w) and fine roots (i = r) kg N/m2

FANi “ FAmaxλ
Asymbiotic fixation allocated to foliage
(i = f ), wood (i = w) and fine roots (i = r) kg N/m2

RCi,D “ BCi fco2 idiλ
Decomposition as resp from foliage

(i = f ), wood (i = w) and fine roots (i = r) kg C/m2

Table 5. Rate terms comprising soil-processing mass balance equations. See Table 7
for parameter definitions.

Rate Definition Units

RC,i “ SC,iriλ Respiration of C from root zone (i = R), below (i = B) kg C/m2

TC,R “ SC,Rτt,R Transfer of C from root zone to below kg C/m2

MNu,i “
RC,i

CNS,i
fNuNaλ

Mobilization of unavailable N from RZ (i = R),
below (i = B) kg N/m2

MNa,i “
RC,i

CNS,i
p1´ fNuNaqλ

Mobilization of available N from RZ (i = R),
below (i = B) kg N/m2

TN,R “ SN,Rτt,R Transfer of N out of root zone kg N/m2

INa,j “ imax

ˆ

WNa,j
i1{2j`WNa,j

˙

λ Immobilization of available N (j = R), below (j = B) kg N/m2

DPNa Deposition of DIN kg N/m2

DNu,i “WNu,idNu,iλ
Breakdown of HMW DON from the root zone

(i = R) or below (i = B) kg N/m2

DNNa,i “WNa,idniλ
Denitrification from RZ (i = R), below (i = B), and

instream (i = IS) kg N/m2

Qi,R “
Wi,R

WW,R
WW,RkW,vsi,R

Hydrologic transfer of N from RZ.
(i = Na—unavailable. i = Nu—available) kg N/m2

DPu Deposition of DIN kg N/m2

Qi,B “
Wi,B

WW,B
WW,BpkW,s ` kW,lqsi,B

Hydrologic transfer of N from brz. (i = Na
represents unavailable, i = Nu represents available) kg N/m2
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Table 6. Rate terms comprising instream-processing of N. See Table 7 for
parameter definitions.

Rate Definition Units

Mi,IS “Wi,ISmi,IS
Mobilization of available N from instream (i = Na

represents unavailable, i = Nu represents available) kg N/m2

INa,IS “WNa,IS iNa,ISλ Immobilization of available N from instream kg N/m2

Qi,IS “ QW,IS

ˆ

Wi,IS
pWW,HY`WW,ISq

˙

Discharge of available N from stream. (i = Na
represents unavailable. i = Nu represents available) kg N/m2

BIN Biological input of N to the stream kg N/m2

PN,IS “ Anq f
´1 pp Particulate export from the stream kg N/m2

when QW,IS{qmax ą 1, q f“

˜

ˆ

1` p
1´QW,IS{qmaxq

k3

˙k2
¸

, Else q f “ 1

Table 7. Parameters and auxiliary equations completing the production and
allocation portions of the model.

Term Definition Units

φs Incoming shortwave radiation KJ/m2-day
φp Photosynthetically active radiation (PAR) KJ/m2-day

φPA “ p1´ e´kLAIqφp Absorbed PAR (Beer’s Law) KJ/m2-day
k Light extinction coefficient –

LAI “ BC, f {SLA Leaf area m2/m2

SLA Specific leaf area kg/m2

ϕPAU “ ϕPAξ Utilized absorbed PAR KJ/m2-day
ξ “ ft fa fv fsw fn Growth modifier –
PG “ αcϕPAU Gross Primary Productivity (GPP) kg/ha

αc Canopy quantum efficiency Mol C/mol photon
Pn “ PGY Net canopy production (from 3PG) kg C/m2

Y Respiration fraction of GPP –
ft “

ˆ

Ta´Tmin
Topt´Tmin

˙ ˆ

Tmax´Ta
Tmax´Topt

˙

Tmax´Topt
Topt´Tmin

Temperature modifier –

fsw “ 1{1` rp1´ θ{θxq {cθs
nθ Soil water modifier –

fv “ e´kvV Vapor pressure deficit modifier –
fa “ 1{1`pa{ra amaxq

na Age modifier –
If CNtr{CNmin ă 1

fn “ 1{1` rp1´ CNtr{CNminq {n1s
n2 Nutrient modifier -

otherwise
fn “ 1

ηi f “ p1´w fiq ˚ p1´ηirq
Allocation fraction of foliage where i = C for

Carbon and i = N for Nitrogen –

ηiw “ w fi ˚ p1´ηirq
Allocation fraction of wood where i = C for

Carbon and i = N for Nitrogen –

ηCr “ a1

”

a2 `p
PARu
PAR qa3

ı´1
Allocation fraction root C –

ηNr “ a4

”

a5 `p
CNr
CNtr

qa6

ı´1
Allocation fraction root N –

w fi
C (i = C) or N (i = N) remaining

allocated to wood –

λ “ q10
T{10 Temperature modifier –

a1, a2, a3,a4, a5, a6 Root allocation parameters (hyperbola) –
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Table 8. Parameters and auxiliary equations completing the soil, aquatic, and
hydrologic portions of the model.

Term Definition Units

umax Max uptake rate kg N/m2

u1{2 Uptake 1
2 saturation kg N/m2

τ f t ,τwt ,τrt Turnover rate constants year´1

d f d , dwd , drd Decomposition rate constants day´1

q10 Coef by which D increases each 10 C kg/m2

T temperature C
fCO2 f , fCO2w , fCO2r Fraction of D as CO2 –

CND f , CNDw , CNDr CN ratios of detrital pools –
CNcr f , CNcrw , CNcrr Critical CN, above which N is retained –

rR , rB Soil respiration coefficient year´1

τt,R Transfer rate of particulates year´1

CNS,R , CNS,B CN ratios of SOM pools –
imax Max immobilization rate year´1

i1{2 Immobilization 1
2 saturation kg N/ha

dnR , dnB , dnIS Denitrification rate constant year´1

sNa,R , sNa,B , sNu,R , sNu,B Sorption rate constant year´1

dNu,R , dNu,B Decomposition rate of dissolved unavailailable N day´1

mNa,IS , mNa,IS Instream mobilization rate constant day´1

iNa,IS , iNa,IS Instream immobilization rate constant day´1

q f Hydro factor for particulate export –
pp Max particulate export rate constant day´1

qmax Hydro threshold m/m
k2 Hydro factor –
k3 Hydro factor –

kW,c , kW,e Canopy interception and evaporation rate terms day´1

kW,v , kW,l , kW,s Vertical, long, and short flowpath day´1

kW,HY , kW,IS Hyporheic and instream exchange day´1

kW,q Instream water retention rate constant day´1

2.3.1. Measured Data

Atmospheric inputs included precipitation, air temperature, radiation, and
atmospheric deposition from observational records at the primary meteorological
station at the Andrews Forest, composited to 3-weekly sampling intervals. Stream
outputs, used for model evaluation, include discharge and fluxes of dissolved organic
and inorganic N from stream chemistry sampling at Watershed 10 (WS10) in the
Andrews Forest, also at a 3-weekly sampling resolution [27].

2.3.2. Hydrologic Model

The hydrologic model is conceptually similar to models such as HBV [32] in
that process descriptions involving filling and drainage of storages in the model are
based on first order assumptions. While a variety of more sophisticated techniques
are readily available, our simplifications are consistent with the monthly timescales
of both input and output data. A complete description of the rate terms is included in
Table 3. Five pools are used to define the hydrology (Table 2). These pools represent
the canopy, root zone, below the root zone, instream aquatic environment, and as
well as a separate storage representing the riparian/hyporheic zone.
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Interception is treated as a linearly decreasing function of canopy storage.
Canopy evaporation is calculated independent of evapotranspiration and, along with
canopy throughfall, it is treated as a first order loss term from canopy water storage.
Evapotranspiration from the rooting zone is calculated using a simple air temperature
index approach, which is limited by water content, following from [33]. The runoff
generation model is comprised of two vertically-oriented storages. The storages
conceptually correspond to the rooting zone and to the region below the rooting
zone and above bedrock, which is considered to be impermeable. Surface soils in the
region are highly permeable and surface ponding or infiltration excess overland flow
has not been observed [34]. Following from these observations, modeled infiltration
capacity assumed to be larger than the rainfall rate, and all throughfall enters the
upper soil layer. The upper water storage feeds water vertically into the lower storage
unit. Downslope flows are assumed to occur within the lower storage as saturated
subsurface stormflow, which has been demonstrated in the catchment during high
input events [26]. Water exiting the lower soil zone enters the near-stream zone
where exchanges between the riparian zone, hyporheic zone and surface water are
depicted again using a series of first order storage terms.

2.3.3. Vegetation Model

Carbon and nitrogen in pools representing wood, foliage, and fine roots are
included in the model. The woody pool includes coarse roots, logs, as well as
branches (Table 9). The three pools were utilized primarily because they are consistent
with a variety of measurements that have been made at HJA and because they are
functionally useful in that CN ratios and decomposition rates from these three pools
are distinct.

Biomass production follows closely from the 3-PG model [16]. Gross primary
production (GPP) is estimated based upon measured net shortwave radiation
and using a simple empirical relationship between shortwave radiation and the
photosynthetically active fraction (PAR). Beer’s law is utilized to approximate
light attenuation through the single layer canopy and the fraction of incident PAR
absorbed by the vegetation. The leaf area index (LAI) is calculated based upon the
simulated foliar biomass, where the specific leaf area is assumed to be a species
dependent constant.

A collection of five functional modifiers are utilized to reflect role of
environmental conditions in limiting the quantity of absorbed radiation utilized
by the vegetation. These modifiers relate to soil moisture, vapor pressure deficit,
stand age, air temperature, and in an extension of the original 3-PG concept [16], we
have also included the availability of plant-available nitrogen in the root zone. The
resulting estimate of utilized radiation governs, in combination with an estimate of
canopy quantum efficiency, the estimated GPP. Net primary production (NPP) is
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then estimated as a constant fraction of GPP. Live allocation of NPP (as carbon) to
the three major biomass stocks follows from [16]. Nitrogen storages follow from the
production of carbon, and are based on targeted CN ratios for each of the pools. NPP
is initially allocated to fine roots, as a function of absorbed and utilized radiation.
More limiting growth conditions (captured as the five modifiers defined above and
resulting in utilized radiation) result in a larger allocation to roots, following directly
from [19]. After fine root NPP is calculated, the remaining fraction NPP is allocated
to woody material and foliage using set fractions developed to maintain targeted CN
ratios of wood and foliage.

Uptake of N is a rate term which transfers mass from the dissolved inorganic
nitrogen (DIN) pool into the living biomass N pools. This rate term is similar to
that employed within MERLIN [10]. Michaelis-Menten kinetics are used to develop
a non-linear rate which depends upon DIN availability and also plant nutritional
requirements (see Table 4), as inferred from NPP and the targeted CN ratio of the
three vegetation pools. The dependence of uptake on production is incorporated
by allowing KNup to vary linearly with NPP. The rate of change, or the 1

2 saturation
constant likely varies in time, dependent upon the plant CN ratio [8], however the
additional complexity is not incorporated into the current model. Nup is allocated
to each of the three live biomass storages based upon deviations of the current CN
ratios from target live CN ratios (defined as CN/CNt) for the fine root components.
As the CN ratio for the fine roots deviates further from the targeted value, a larger
percentage of Nup is allocated to the fine roots. The portion of Nup which is not
allocated to the fine roots is portioned between the wood and foliar components
based upon a constant allocation fraction.

Stoichiometric N requirements of living biomass are also satisfied through N
fixation, which occurs primarily in the canopy, given the presence of lichen. The rate
of symbiotic fixation is calculated using a maximum fixation rate modified using
the air temperature modifier [26]. Nitrogen fixed within the canopy is distributed
based upon the nitrogen allocation fractions. Nitrogen is also introduced into the
system through asymbiotic fixation, calculated analogously to symbiotic fixation.
The moisture status of substrate may plays a role in the rate of fixation, but given
the overall degree of model complexity, we did not attempt to include this factor
directly. The important point is that we have tried to include key features, and to
parameterize them based upon available observations and/or acceptable estimates.
A symbiotic fixation rate of 2.8 kg/ha-year has been estimated at WS10 [29] and for
our modeling we used a maximum value of 4 kg/ha-year, modified by temperature
to result in somewhat more dynamic value that is approximately similar to the older
estimate. Asymbiotic fixation was not estimated by [29], but in the intervening years
it has become clear that it is a potential N source; one which we did include in our
modeling. Without additional information, we assumed the maximum rate was

196



1 kg/ha-year as an addition into each of the Dead Biomass pools. Turnover of each
of the vegetation pools is assumed to proceed as a first order loss rate.

Transfers of C and N from plant residue into SOM are based upon fixed turnover
rates, with fluxes dependent upon C and N concentrations and air temperature. The
dependency of turnover rates on other physical factors, such as, moisture status, ET,
CO2 concentration, fire patterns or surface to volume ratios are not incorporated. A
more mechanistic model could provide better estimates, but our goal was to balance
model simplicity with an interest in capturing key stocks and flows. Here we felt that
simplicity in the SOM turnover was justified. The plant availability of N is largely
determined by decomposition; however the microbial populations present within
decomposing material typically immobilize any available N prior to its release to
SOM. This results in a typical pattern comprised of an initial decrease in the CN
ratios of fresh plant residues, with release of N and stability of CN ratios after only
some period time [35].

This observation is incorporated into the model through the specification of
the stable CN ratio below which N is transferred to SOM. As substrate CN ratios
fall below these critical CN values, N is lost to SOM at the same rate as C. Initial
CN ratios of the different residue pools exert a strong influence on N losses through
decomposition in this lumped model. Refer to Table 4 for a complete description of
the rate terms defining the vegetation sub-model.

2.3.4. Soils Model

The soil organic matter (SOM) sub model is defined similarly to that utilized
in the PNET-CN model of [17] in that the number of SOM pools is very small,
particularly when compared with standard SOM models. The current version of
HJA-N includes two SOM pools, the first representing root zone SOM and the second
representing below root zone SOM, with carbon and nitrogen explicitly represented
in both (Table 2). Although the inclusion of additional pools could be used to more
precisely describe the wide distribution of temporal SOM stability, an evaluation
of the simpler definition against the long term measured data represents a useful
first step, and is consistent with the soil nitrogen budget developed in WS10 in the
early 1980s [29].

Four additional below-ground nitrogen pools are included to represent DIN
and DON in both the rooting and below rooting zones. A kinetic sorption isotherm
is used to separate soil bound nitrogen from dissolved forms, assuming that the
proportion of each stays constant through time. Hydrologic losses are defined based
upon the flux rates calculated by the hydrologic components of the model and the
concentrations of freely available DON and DIN. Landscape scale denitrification rates
are not well understood, but the model does maintain a first order denitrification
loss pathway from the DIN storage.
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The soil respiration model is defined similarly to that for respiration from plant
residues as a first order rate, which includes temperature dependence based upon
the q10-based temperature modifier. The respiration rate is assumed to represent
the production of both CO2 and DOC. The mobilization of both DIN and DON is
calculated as a proportion of the soil respiration rate.

The incorporation of DON production and loss is a key feature of the model.
Very few ecosystem models include DON as a component of the nitrogen cycle,
however [19] proposed and evaluated four potential definitions of DOC mobilization,
and then used soil CN ratios to proportionally estimate the production of DON. These
definitions included a constant loss model, a first order model, a model based upon
soil CN ratios, and lastly a model where the rate of mobilization was proportional to
the microbial respiration rate. The last of these rate definitions is consistent with our
definition of SOM production, and as such was incorporated into the model.

At WS10 we have a long term record of streamwater DON and DIN export, but
production rates in soils have not been studies. Our model reflects this in its simplicity.
We assume that the production of dissolved N, in total, is proportional to the soil
respiration rate, depending upon the soil CN ratios. This overall production rate
of dissolved nitrogen is then split into DIN and DON assuming a fixed portioning
constant. The DON pool includes an additional respiration term that is used to
simulate the continuous decomposition processes of DON, which we assume result
in the further production of DIN.

A more compelling definition of these dissolved N pools would separate plant
available N from unavailable N, rather than organic from inorganic [36,37]. Such a
distinction would recognize the fact that organic nitrogen is a term that represents
a wide variety of compounds, with a significant range in molecular weights [38].
This would then allow for the lower molecular weight fraction of that distribution to
interact more directly with the vegetation and microorganisms. However, in this case
we are limited by available long term records of aquatic DON and DIN, which do not
support such distinction. To be consistent with these data, we make the simplifying
assumption that the DON pools, throughout the model domain, are unavailable
forms. A complete description of the rate terms defining the SOM sub-model is
included in Table 5.

2.3.5. Aquatic Environment Model

Most watershed-level studies of nutrient retention and release focus primarily
upon terrestrial processes, and most watershed-level ecosystem models maintain this
focus, and do not explicitly include nutrient dynamics within near stream areas. Yet
it is known that the aquatic and hyporheic environment in small streams can exert
significant influence on both the quantity and the forms of exported nutrients [32,33].
The residence time of water and solutes can also be extended based upon hyporheic
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exchange flows [39]. A 15N addition experiment [40] demonstrated that 32.5% of N
added over a 6-week period during the growing season was retained by a second
order stream in HJA. HJA-N explicitly includes a set of stocks (Table 2) and flux terms
(Table 6) designed to capture the potential role of the aquatic system in regulating
the export of terrestrial N fluxes.

The model makes use of three pools to represent nitrogen in the aquatic
environment, and in this version of the model carbon is not accounted for within
the aquatic environment. The pools that are included correspond to DON, DIN,
and the aquatic biomass. These pools are assumed to represent the combination of
the channel and hyporheic zones. The aquatic biomass pool contributes, through a
first order respiration model, to both the DIN and DON pools. In addition, gross
immobilization of DIN, as an addition input into the aquatic biomass, is also included
as a first order term. Nitrogen is lost from the stream system as DON and DIN export,
and also through a first order denitrification term. The aquatic biomass also includes
a loss rate associated with particulate export, conceptually associated only with the
near stream area environment. Inputs of particulate matter from the upslope region
are defined based upon the turnover terms (litterfall and mortality) of foliage and
woody material.

The loss of aquatic biomass is treated as a first order rate that is activated only
above a discharge-based threshold. At high flows, accumulated biomass is quickly
lost from the system, with periods of accumulation during lower flow conditions.

2.3.6. Control Capacity

To facilitate a discussion of the seasonal variation in the features controlling
nitrogen cycling, we propose the nitrogen control capacity as a set of normalized rate
terms which can be derived from the temporally varying model results to provide
insights into these features. Hydrology controls nitrogen dynamics through export
of dissolved nitrogen compounds. To capture this flushing behavior, we define the
term transport control as:

Hydrologic Flushing “ QDIN,IS ` QDON,IS ` QDIN,RZ ` QDIN,BRZ ` QDON,RZ ` QDON,BRZ (1)

where QDIN,IS and QDON,IS are the simulated export rates of DON and DIN from the
stream and QDIN,RZ, QDIN,BRZ, QDON,RZ and QDON,BRZ are the rates of movement of
dissolved N through the watershed. Hydrologists tend to view nitrogen dynamics
through the lens of the flushing hypothesis and this term is designed to capture the
contribution of flushing to the movement of N in the system. The contributions of
simulated DIN and DON to the flushing index were normalized by the area of the
stream, rather than the area of the watershed. We used an area of 767 m2, following
from [30].
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The vegetation controls N cycling through nitrogen mobilization, which we
define as the difference between litter decomposition rates and uptake. We have
elected to group litter and vegetation together, though clearly they could also be
treated independently. Under this definition, the above ground control term is
defined as:

Vegetation Processes “ DN,f ` DN,w ` DN,r´UDIN,RZ (2)

where UDIN,RZ is the uptake rate into vegetation and DN,f, DN,w, DN,r, are
the decomposition rates contributing nitrogen from foliar, woody, and root
litter respectively.

Soil control is defined analogously as the of the net mobilization rate, in this case:

Soil Processes “ MDIN,RZ ` MDON,RZ ` MDIN,BRZ ` MDON,BRZ´pIDIN,RZ ` IDIN,BRZq (3)

where MDIN,RZ and MDON,RZ are the mobilization rates of DIN and DON within
the root zone, respectively, MDIN,BRZ and MDON,BRZ are the mobilization rates of
DIN and DON below the root zone, respectively, and IDIN,RZ and IDIN,BRZ are the
immobilization rate of DIN in the root zone and below the root zone, respectively.
Note that DON is assumed to be unavailable to plants or the microbial complex, and
as such has no immobilization rate.

We then define the aquatic control in a somewhat different fashion, including
the net mobilization of nitrogen, but also the simulated rate of particulate export.

Instream Processes “ MDIN,IS ` MDON,IS´ IDIN,IS ` PN,IS (4)

where MDIN,IS and MDON,IS are the mobilization rates of DIN and DON from the
aquatic biomass, IDIN,IS is the immobilization rate of DIN from the aquatic biomass,
and PN,IS is the export rate of particulate N, which again originates from the aquatic
biomass. Similar to the simulated values of stream DIN and DON, the instream
process control was normalized by stream area, rather than the full watershed area.

For comparative purposes, the four values are then normalized by the overall
sum of the included rate terms to produce a ratio of control for each term, which
varies throughout the model timeframe, given the system dynamics.

3. Results and Discussion

3.1. Results

The model includes a variety of rate terms, many of which have not been
independently measured. In order to accommodate the resulting uncertainty we
approached model evaluation using a parameter adjustment strategy based primarily
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upon expert judgment. During this phase of application, the model was evaluated
against both measurements and, for those terms where measurements in WS10 were
unavailable, more qualitative estimates of reasonability. The model was run for a
total of 80 years, using a repeated 20-year input dataset, which was based on the
3-week compositing of inputs and outputs from 1968 to 1988. It is important to note
that the watershed was clearcut in 1975, and that the effects of the harvest were
evident in the observed N export. Reported here are only the last 20 of those years,
with the first 60 years acting as a period to allow the differential equations which
make up the model to come to a relatively steady state with respect to the initial
values of all of the state variables.

3.1.1. Evaluation of Budget Estimates of N and C Stocks

The average modeled results of the key nitrogen and carbon stocks are consistent
with budget-based measurements that are available from WS10 [29], or have been
taken from similar forested regions [41]. Key features of the results include a
dominance of carbon storage in woody material (65% of total carbon storage) and
nitrogen storage in soils (75% of total nitrogen storage) (Figure 2). Differences
between the modeled values and the measurements were anticipated, particularly
because the measured stocks were not necessarily binned in the same manner as the
model description, and because we are comparing average model results representing
20 years of simulation to measurements that were developed to represent a full year,
and in the case of the Wind River data [41], at different location. Direct comparisons
between the available budget-based measurements and the model-based estimates
(Figures 3 and 4; Table 1) indicate that the model is able to capture the general
magnitude of carbon and nitrogen storage, and also the differences between the key
environmental compartments.

3.1.2. Model Evaluation against Observations

The long-term record, which includes stream water discharge, and DON and
DIN export is rare, and provides an opportunity to constrain model operation. A
comparison of the time series records to the modeled result is included in Figure 5
and demonstrates that model effectively captures the seasonal pattern that is outlined
by the measured discharge and DON. For these variables, the modeled Nash Sutcliffe
efficiency [42] values are 0.71 and 0.53 respectively. The efficiency for DIN is ´0.12,
which clearly indicates that the model does not capture the measured response.
This apparent failure of the model is likely because we did not attempt to simulate
impacts of the clear-cut harvest that occurred in 1975. The removal of the trees, and
pre-treatment activity, led to elevated DIN export after the harvest. The effects on
DIN of this disturbance have been explored by [43] and are clearly evident in the
long-term record and has been attributed to reduced uptake of N by vegetation. It is

201



worth noting that the calculated Nash-Sutcliffe for years prior to the management
activity (1968 to 1973) is higher, 0.33, lending additional support to the suggestion.
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Figure 2. A comparison of simulated stocks of nitrogen (a) and carbon (b) against
budget estimates from [29]. Note that estimates of observed C stocks (except for
SOM, labelled above were originally derived by [28] and that we assumed the
carbon content of dry mass was 50%. Additionally, we assumed that 50% of the
category “Fallen foliage and fine woody litter” from [29] were dead foliage and that
50% were dead wood.
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Figure 3. Measured versus modeled annual yearly storage of nitrogen and carbon.
These data are also plotted in Figure 2. Each data point represents a different
storage term, as outlined in Figure 2. A one to one line is included for reference.
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Figure 4. Model results for average annual storage of nitrogen and carbon. Results are 

normalized by the total sum of nitrogen and carbon. 
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Figure 4. Model results for average annual storage of nitrogen and carbon. Results
are normalized by the total sum of nitrogen and carbon.

Evaluation of against Budget Estimates of N and C Fluxes

Given that the model is capable of representing key long term output
measurements of water, DIN and DON, and also the overall trends in storage, the
next step is to evaluate the degree to which the model is working for the right
reasons—this we accomplish through an evaluation of the internal rate terms. These
rates include respiration, mobilization, immobilization, internal solute fluxes and
the aquatic processes that follow from them. Here we return to the existing budget
studies which provide a set of annual flux estimates which we utilize in calibration,
and to better understand model function. Rate terms are broadly grouped into four
categories representing carbon fluxes, the sources of nitrogen, SOM dynamics, and
processes occurring in the aquatic environment. This division is not to suggest that
these categories are independent of one another, but only to facilitate presentation
of results. In all cases, we present continuous model results (Figures 6–9) and
in addition, time-integrated average yearly values (included in Figures 6–9 and
Tables 9 and 10), which can be directly compared against yearly values from the
budget studies.
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Fine Roots  0.48 0.593 (0.01)  6.4 (0.11)  93.06 

Soil 
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Figure 5. Measured versus model time series for stream water discharge (a),
dissolved inorganic nitrogen (b) and dissolved organic nitrogen (c). Nash-Sutcliffe
efficiencies for discharge is 0.71, for DON is 0.53. For DIN the efficiency is ´0.13,
as discussed in the text, this is likely due to the clearcut that occurred in the
watershed in the early 1970s. The model did not attempt to incorporate the effects
of the management.

Table 9. Comparison of modeled pool sizes (averaged over the 20 year simulation
period) against measured values as reported in (a) [29] from WS10 and from (b) [41]
from Wind River, WA. We assumed a carbon content of 50% to estimate C from
the dry mass reported in [29]. The standard deviation of the modeled values is
included in parenthesis.

Ecosystem Component C (kg/m2) N (g/m2) CN

a b Model a Model a Model

Vegetation
Wood 42.29 37.87 31.77 (0.04) 52.17 63.3 (0.11) 810.63 501.57

Foliage 0.69 0.94 2.17 (0.04) 14.44 18.2 (0.38) 48.13 119.20
Fine Roots 0.06 0.36 1.12 (0.04) 0.69 11.7 (0.16) 80.65 96.34

Detritus
Wood 13.31 9.87 9.54 (0.05) 47.1 61.1 (0.58) 282.59 156.05

Foliage 1.28 1.78 2.01 (0.02) 11.76 18.1 (0.15) 108.84 110.73
Fine Roots 0.48 0.593 (0.01) 6.4 (0.11) 93.06

Soil
Root Zone 6.65 9.3 4.28 (0.06) 372.4 338.5 (4.23) 17.88 12.65
Deep Soil 12.80 (0.33) 220.5 (5.39) 58.07
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Figure 6. Key modeled rate terms associated with carbon cycling. (a) The plot represents 

the modeled time series, as indicated in the legend, across the 20 year simulation time frame. 

These data are summarized and presented as a box and whisker plot (b). Note that  
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Figure 7. Key modeled rate terms associated with the input of nitrogen into the system. (a) 

The plot represents the modeled time series, as indicated in the legend, across the 20 year 

simulation time frame. These data are summarized and presented as a box and whisker plot 

(b). Note that the y axis is log transformed in the upper plot, but is linear in the lower plot.   
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Figure 6. Key modeled rate terms associated with carbon cycling. (a) The plot
represents the modeled time series, as indicated in the legend, across the 20 year
simulation time frame. These data are summarized and presented as a box and
whisker plot (b). Note that the y axis is log transformed in the upper plot, but is
linear in the lower plot. The combination is provided to more clearly outline the
range in variation.
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Figure 7. Key modeled rate terms associated with the input of nitrogen into the
system. (a) The plot represents the modeled time series, as indicated in the legend,
across the 20 year simulation time frame. These data are summarized and presented
as a box and whisker plot (b). Note that the y axis is log transformed in the upper
plot, but is linear in the lower plot.
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Figure 8. Key modeled rate terms associated with root zone SOM. (a) The plot represents 

the modeled time series, as indicated in the legend, across the 20 year simulation time frame. 

These data are summarized and presented as a box and whisker plot (b). Note that the y axis 

is log transformed in the upper plot, but is linear in the lower plot. 
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Figure 9. Key modeled rate terms associated with SOM processing occurring below the root 

zone. (a) The plot represents the modeled time series, as indicated in the legend, across the 

20 year simulation time frame. These data are summarized and presented as a box and 

whisker plot (b). Note that the y axis is log transformed in the upper plot, but is linear in the 

lower plot. 
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Figure 8. Key modeled rate terms associated with root zone SOM. (a) The plot
represents the modeled time series, as indicated in the legend, across the 20 year
simulation time frame. These data are summarized and presented as a box and
whisker plot (b). Note that the y axis is log transformed in the upper plot, but is
linear in the lower plot.

Table 10. Simulated average annual rates defining the carbon model. The rates in
bold are summaries across each of the individual compartments.

Rate g/m2-year

Gross primary production 935.28
Growth wood 44.34
Growth foliage 177.34

Growth fine roots 217.96
Total growth (NPP) 439.63

Mortality wood 32.56
Mortality foliage 176.62

Mortality fine roots 217.35
Total mortality 426.53

Decomposition from wood 4.37
Decomposition from foliage 127.54

Decomposition from fine roots 185.66
Total decomposition 672.16

Respiration from wood 39.35
Respiration from foliage 0.01

Respiration from fine roots 32.76
Respiration from SOM RZ 173.98

Respiration from SOM BRZ 44.16
Respiration heterotrophic 332.78
Respiration Autotrophic 495.70

Total respiration 828.48

DOC Production RZ 17.4
DOC Production BRZ 4.42

Total DOC production 21.82
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Figure 9. Key modeled rate terms associated with SOM processing occurring below
the root zone. (a) The plot represents the modeled time series, as indicated in the
legend, across the 20 year simulation time frame. These data are summarized and
presented as a box and whisker plot (b). Note that the y axis is log transformed in
the upper plot, but is linear in the lower plot.

Table 11. Simulated average annual rates defining the nitrogen model. The rates in
bold are summaries across each of the individual compartments.

Rate g/m2-year

DON_Deposition 0.04
DIN_Deposition 0.03
Total deposition 0.08

Symbiotic fixation allocated to wood 0
Symbiotic fixation allocated to foliage 0
Symbiotic fixation allocated to roots 0.43

Total symbiotic fixation 0.43

Uptake allocated to wood 0.04
Uptake allocated to foliage 1.79
Uptake allocated to roots 1.87

Total uptake 3.70

Mortality wood 0.06
Mortality foliage (litterfall) 1.81

Mortality roots 2.33
Total turnover 4.21

Asymbiotic fixation allocated to wood 0.08
Asymbiotic fixation allocated to foliage 0.08
Asymbiotic fixation allocated to roots 0.076

Total asymbiotic fixation 0.22
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Table 11. Simulated average annual rates defining the nitrogen model. The rates in
bold are summaries across each of the individual compartments.

Rate g/m2-year

Decomposition of wood 0.27
Decomposition of foliage 1.93
Decomposition of roots 2.42

Total decomposition 4.64

DON mobilization (RZ) 2.58
DIN mobilization (RZ) 2.58

DIN Immobilization (RZ) 1.19
DON breakdown to DIN (RZ) 2.28

DON transport in RZ 0.34
DIN transport in RZ 0.00
Denitrification RZ 0.00

DON mobilization (BRZ) 1.92
DIN mobilization (BRZ) 1.17

DIN Immobilization (BRZ) 2.67
DON breakdown to DIN (BRZ) 2.23

DON transport in BRZ 0.62
DIN transport in BRZ 0.020
Denitrification BRZ 0.01

Particulate input to aquatic 1.88
DON mobilization 0.00

DIN immobilization 0.00
DIN mobilization 0.00

Denitrification from aquatic 0.00
DIN export 0.00
DON export 0.02

Particulate export 0.02

3.1.3. Carbon Fluxes

The key rate terms capturing carbon dynamics are gross and net primary
production, turnover (including mortality and litterfall), and both autotrophic and
heterotrophic respiration. Model results for each rate term were integrated over
the 20 year simulation period, and the yearly average over that time period is
presented in Table 9. The average yearly gross primary productivity is estimated as
1.4 kg/m2-year, with the daily rates ranging from nearly 0 kg/m2-year (periodically
during the winter period) to over 3 kg/m2-year (Figure 6). The average yearly rate
is somewhat lower than the range of 1.4 to 3.3 kg/m2-year estimated by [41] for a
similar old growth forest, and within the range of 1.08–1.92 kg/m2-year estimated
using remote sensing techniques across a Douglas-fir western hemlock forest on
Vancouver Island, Canada by [44]. The simulated values are considerably lower
than the 11.1–21.7 kg/m2-year estimated by [28] at HJA in 1970, and different
respiration estimates explain the discrepancy. We assumed a respiration value
of 47% of GPP, a heuristic model generated as part of the collaborative model
development process. The older budgets of [28] resulted in respiration values of
92%–94% of GPP. Given the assumption that Ra is 47% of GPP, the yearly average
NPP from the model is 0.60 kg/m2-year. This value is similar to other estimates
of NPP reported at other similar sites, for example [41] estimated a range of NPP
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from 0.45–0.741 kg/m2-year at similar location in Washington State, [28] estimated a
range from 0.41 to 0.66 kg/m2-year at HJA and [45] used a model to estimate a stable
value of 0.50 kg/m2-year at HJA. Our model estimates are within the wide range
of variation possible for NPP. The constant fraction model to estimate Ra explains
the similarity in the time series representing NPP and Ra in Figure 6. Turnover
is treated as a first order model which does not include any outside dependence
(for example air temperature, soil water content, etc.). This is reflected in the low
temporal variation displayed for the turnover rate. The modeled value of average
yearly turnover (0.572 kg/m2-year) is similar to that measured by [41] which ranged
from 0.370 to 0.690 kg/m2-year. Modeled heterotrophic respiration (Rh) is defined
to include the production of CO2 and DOC from litter and soils. The average
yearly value of 0.397 kg/m2-year is of within the range of 0.341 to 0.509 kg/m2-year
estimated by [43].

3.1.4. Input of N to SOM

External inputs of N include deposition, and both symbiotic and asymbiotic
fixation. Internal inputs of N to SOM include both mortality/litterfall and
decomposition. Decomposition and turnover rates—internal recycling—are
simulated to be at least an order of magnitude larger than the external rates (Figure 7).
The external rates of deposition (which include both DIN and DON) are simply
measurements, and the fixation rate terms have been calibrated to mimic the few
estimates that are available for these sites. Symbiotic respiration in WS10 have been
estimated to be 0.280 g/m2-year [29], which is of a similar order to our average yearly
modeled estimate of 0.305 g/m2-year. The modeled estimate of asymbiotic fixation
is 0.107 g/m2-year. Actual asymbiotic fixation rates of, on average, 0.45 umol/g/day
have been estimated for the tree species which dominated W10 prior to the clearcut
in 1975 (Psuedotsuga menziesii) [46]. Given the model’s average annual litter estimate
of 43.55 kg/m2, this measured fixation rate is equivalent to 0.100 g/m2-year, in
close agreement with the model rate. A complete listing of time integrated average
nitrogen fluxes is included in Table 10.

3.1.5. Root Zone N Dynamics

The dynamics of nitrogen in the root zone are defined primarily by a series
of seven rate terms, including the mobilization and flushing of DON and DIN, the
immobilization and uptake by vegetation of DIN, and the breakdown of DON to
produce DIN, which occurs through respiration processes. There is also potential for
denitrification as a pathway of loss, however given the well aerated nature of soils in
WS10, we assume that denitrification does not occur in the root zone. These terms
are outlined in Figure 8, as both time series and box plots. These results indicate
a net mobilization (mineralization) of inorganic nitrogen of 2.51 g/m2-year, and
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that mobilization of DON is 2.51 g/m2-year. The values are equivalent because,
without additional data, we simply assume that total nitrogen mobilization was
proportional to respiration and that the product was half organic and half inorganic
nitrogen. Mobilized DON is continuously decomposed to further add to the DIN
pool, most of which is utilized through plant uptake. The average yearly uptake
rate is 3.62 g/m2-year, similar to the 2.29 g/m2-year estimated by [13]. The rate of
flushing for DON (0.337 g/m2-year) is considerably larger than for DIN, which was
effectively 0 for our simulations. This result is consistent with the well-established
high N retention capacity of these watersheds. The rates of flushing periodically fall
to zero, indicated as breaks in the time series in Figure 8. This occurs when amounts
of DIN or DON are not sufficient to support all of the simulated loss pathways.

3.1.6. N Dynamics below the Root Zone

Below root zone dynamics are similar to those simulated in the root zone, with
flushing rates of both DON and DIN significantly lower than the rates of internal
recycling (Figure 9). However, flushing rates of DON are larger than from within the
rooting zone (467.7 mg/m2-year root zone compared to 283.6 mg/m2-year below the
root zone), while flushing of DIN is somewhat higher from below the rooting zone
(0.36 mg/m2-year root zone compared to 23.61 mg/m2-year below the root zone)
primarily because vegetation is no longer able to mediate the flux of DIN from below
the rooting zone. The model results indicate that the region below the root zone
is a moderate nitrogen sink, with a net mobilization value of ´99.40 mg/m2-year.
No measurements exist within this region of the watershed, and Figure 9 therefore
represents only one possible result which is consistent with both simulated inputs
from the root zone, and more importantly, measured outputs of water and dissolved
nitrogen from the catchment.

The discussion of the aquatic environment focuses on mobilization and
immobilization of N, as well as flushing. Particulate export of N dominates the
model results in the aquatic region, with simulated values of 1.73 g/m2-year. A value
of 2.53 g/m2-year was estimated by [30] for a particular year. The next largest rate
term in the aquatic environment, DON export, is 0.024 g/m2-year, and because of the
approximately two orders of magnitude difference, particulate export has not been
included in Figure 10. Results indicate net immobilization of DIN (3.42 mg/m2-year)
occurs in the aquatic region, consistent with [47] for a somewhat larger stream in HJA.
The dynamic model results also indicate, however, that during the growing season,
the instream biomass can function as a source of N, primarily because DIN limitation
caps the growth rate, yet DIN mobilization is treated with first order dependence
on the aquatic biomass, and so proceeds at a relatively higher rate during periods of
low DIN availability (Figure 10). Nevertheless, even excluding simulated particulate
export, model results indicate that more nitrogen is lost from the stream environment
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on a yearly basis in dissolved forms (24.8 mg/m2-year) that is retained within it by
the aquatic biomass (3.42 mg/m2-year).

3.1.7. Aquatic Environment
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Figure 10. Key modeled rate terms associated with the aquatic environment. (a)
The plot represents the modeled time series, as indicated in the legend, across the
20 year simulation time frame. These data are summarized and presented as a box
and whisker plot (b). Note that the y axis in log transformed in the upper plot, but
is linear in the lower plot.

3.2. Discussion

HJA-N was constructed in an effort to explore relationships between biotic and
abiotic processes in the retention and release of nitrogen from small watersheds. An
elementary, yet key, finding is that the model can be parameterized so as to produce
results that are consistent with a wide range of measurements from WS10 or from
similar sites. This result is a prerequisite for any further analysis. Having established
consistency with available measurements, the model results can be further evaluated
to provide a number of intriguing insights into how watershed components interact
over seasonal timescales to recycle nitrogen. The important contribution of the model
is that it allows us to quantify the seasonal variability of rate terms, greatly extending
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the budget based estimates of storage and fluxes which comprise a significant amount
of available measurements [28–30,41].

3.2.1. Relative Importance of Various System Components

A key theme of this research is the development of quantitative, internally
consistent estimates of the relative roles of watershed components in the retention
and release of nitrogen over seasonal timescales. The overall goal is the exploration
of the temporally varying relationship between these components—vegetation, soils,
hydrology, and the aquatic environment—in regulating the release of nitrogen from
the system. In the hydrologic literature, much work in this direction has focused
on the concept of hydrologic flushing [48]. At the same time, it is often assumed in
both the soils and forest ecology literature (e.g., [49]) that the temporal variation in
net mobilization is ultimately responsible for the availability of any nitrogen that
might be flushed out of the system by the hydrology. This mobilization potential
is particularly relevant in regions, like the PNW, where atmospheric deposition
remains low. All the while, the role of the stream channel, as well as the riparian
vegetation [47] in immobilizing significant amounts available nitrogen from the
aquatic system, and hence modifying cross-weir export measurements, frequently
remains unnoticed in catchment studies. And perhaps even more importantly in
systems where nitrogen is strongly retained, the particulate export of dissolved
organic nitrogen, over which the aquatic system exerts significant control, is often
of a similar magnitude, if not considerably larger, than the export of dissolved
nitrogen [30].

Our modeling work indicates that hydrologically-mediated fluxes are much
smaller in magnitude (DON + DIN export of 22.1 mg/m2-year) than the mobilization
fluxes that occur within the vegetation (747.7 mg/m2-year N mobilization,
decomposition-uptake) or within the root zone SOM (3838.3 mg/m2-year) N
mobilization. This finding is consistent with the wide variety of observational work at
HJA [29] and has also been demonstrated at other forested watersheds [43]. However,
the hydrologically-mediated fluxes are larger in magnitude to the immobilization
potential of the aquatic environment (3.42 mg/m2-year) (Figures 6–10). These
observations provide a useful means of understanding the system and ranking
system components as to their role in the regulation of nitrogen cycling. In addition,
the model results provide data that can be evaluated at finer seasonal time scales.

Control Capacity

We interpret the N control capacity ratio as the degree of control that each system
components exerts on the release dynamics of nitrogen cycling within the model
domain (Figure 11). There is, of course, a degree of subjectivity in the definitions,
nonetheless evaluating the results in this fashion provides a unique mechanism to
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evaluate the relative importance of components, and how this degree of control
varies with time. These kinds of analyses are available only through the use of the
continuously varying results, which are not typically measured over long periods,
providing significant further utility in the application and development of conceptual
numerical simulation.
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Figure 11. The nitrogen control capacity. (a) The plot outlines the summed
rate terms which are used to estimate the control capacity of the watershed
components as indicated in the legend. These four time series correspond directly to
Equations (1)–(4); (b) The plot represents the control capacity, where the time series
from the upper plot have been normalized by the total rate of nitrogen movement.
(c) The plot represents the monthly averages of the control capacity, again including
comparisons of the four different watershed components.

As expected given the well-established capacity of these types of watersheds to
retain N, vegetation and soils exert a primary control on N dynamics. Hydrologic
flushing of nitrogen is well-represented during the winter period, though even
during periods of elevated N export and flushing, vegetation and soils still represent
important controls (Figure 11). The explanation behind the result is clear—the
Mediterranean climate in the Pacific Northwest results in significant winter moisture,
which produces increased soil moisture, higher soil water flux, and larger stream
discharge than seen during the dry summer period. In addition, the lower
temperatures that dominate during the winter period suppress primary production

213



and SOM dynamics. During the growing season, however, hydrologic flushing
moves into the background, while control capacity of other components increases.
This change in control is most evident in June–August, when mobilization rates tend
to increase and flushing rates decrease. SOM contributes a larger portion of available
nitrogen than the vegetation during this period of time, and this is primarily because
uptake increases and the vegetation acts as a stronger sink of N that SOM during the
summer period. This difference is in part a reflection of our lumping of litter and live
biomass in our definition of control capacity. Particulate flushing of nitrogen mimics
hydrologic flushing because of increased mobilization of aquatic biomass during the
wet season, but the signal is muted when compared to hydrologic flushing. The lower
seasonal variability develops at least in part because particulate inputs are derived
directly from the litterfall/mortality model which did not include seasonal effects.

These results lend credence to the idea that understanding the dynamics of
nitrogen, carbon, and water in ecosystems requires a multidisciplinary approach [39].
This approach certainly includes attention to flushing behavior, but the level of
attention given to flushing must be on par with that given to production of available
nitrogen, which may be dissolved or in particulate forms. Furthermore, the
seasonality of the system imposes a series of constraints that result in predictable
temporal variation in the activity of different system components. This variation
is difficult to approach through standard field-based budget techniques; however
numerical modeling can be used to extend budget results to provide a clearer picture
of the seasonality.

3.2.2. Limitations of the Modeling Framework

The model framework and analyses presented here represent a step in our
evolving understanding of how small catchments at HJA function. There are,
however, a number of limitations to this work. The modeling focuses on an
approximately monthly time series of input output data, which provides insight
into seasonal dynamics. However, this time step is too coarse to understand the
finer time dynamics that are often the focus of experimentalists working within the
wide variety of contributing disciplines. At the same time, it may be too coarse
to understand the longer term evolution of catchments, both in terms of nitrogen
availability and changing climate. We envision significant potential to redevelop
these modeling ideas to correspond to these different timescales—but the model as
presented herein is not suited to either. Similarly, while we included a simple model
of instream particulate retention and release, extreme events are not included. These
events include for example large storms, mass movement, and fire, and in terms of
nitrogen control, it is clear that over long time scales, these are at least as significant
as the biotic controls and flushing that we explored here. These limitations simply
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mean that interpreting the results outside of the timeframe over which the model
was run is not possible.

The model outlined here includes a variety of parameters that cannot be
measured directly. For example to separate net nitrogen mineralization into gross
mineralization and gross immobilization requires a set of measurements that are very
difficult to perform at point scales [50]. And further, the relationship between these
point scale observations for catchment level simulations is not well-established.
Yet competition between vegetation and microbes is a key feature of nitrogen
cycling [51], and microbial immobilization and mobilization, as well as plant uptake
must be included in a model designed to explore the effects of this competition. The
parameters involved in this portion of the model (and others) are developed based
solely upon educated guesses, and calibration procedures relying upon evaluation of
the resulting rate terms. In the case of models developed for predictive purposes,
simpler tends to be more effective, and incorporating net mineralization, which can
be more readily measured, would make more sense. Nonetheless, while some of our
decisions clearly reduce the predictive capability of the model through increased
parameter uncertainty, the more complete structural definition provides a framework
to outline both what is known, and what hypothesized about how these catchments
function with respect to N cycling.

Some of the most interesting aspects of watershed nitrogen work to emerge
in the last two decades involve the role of spatially disaggregated watershed
components in the processing of key stocks. This spatial dependence is evident
throughout the literature, including terrestrial biogeochemistry, aquatic processes,
catchment hydrologic processes, hyporheic zone interactions, climate science, and
forest ecology. As constructed, HJA-N does include some quasi spatial distribution,
but this distribution simply separates the upslope processes from the near stream
processes. From both a biotic and abiotic standpoint, this is a large simplification. An
important next step is the incorporation of similar mass balance equations within
a spatially-distributed model that would better allow for the incorporation of key
differences in spatial distribution of ecosystem processes.

Lastly, a more complete evaluation of the model is needed to provide further
guidance in terms of parameter sensitivity and associated model uncertainty.
Sensitivity analyses also have the potential to provide insight into the degree of
understanding we have regarding different model components, and as such assist in
the prioritization of experimental studies designed to improve the both the general
understanding of the system, and the predictive capability of the model.

4. Conclusions

The primary goal behind the development of HJA-N was to distill knowledge
from a variety of disciplinary scientists, including key observational datasets, to
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succinctly describe N dynamics in WS10 at HJA. In doing so, we have produced
a temporally dynamic simulation, which produces results that are consistent with
existing water, N, and C budgets. One of the motivations was to construct a tool that
could be used to quantify the relative roles of vegetation, hydrology, soils and SOM,
and the near stream zone in controlling the release of N in retentive regions like HJA.
The key finding is that each of the different catchment elements plays a significant
role in the retention of N, and that those roles vary seasonally. While in and of itself,
this is not entirely surprising, the ability to quantify those contributions provides a
useful means to more fully understand how the catchment functions with respect to
N dynamics.
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Spatial Quantification of Non-Point Source
Pollution in a Meso-Scale Catchment for an
Assessment of Buffer Zones Efficiency
Mikołaj Piniewski, Paweł Marcinkowski , Ignacy Kardel , Marek Giełczewski ,
Katarzyna Izydorczyk and Wojciech Frątczak

Abstract: The objective of this paper was to spatially quantify diffuse pollution
sources and estimate the potential efficiency of applying riparian buffer zones
as a conservation practice for mitigating chemical pollutant losses. This study
was conducted using a semi-distributed Soil and Water Assessment Tool (SWAT)
model that underwent extensive calibration and validation in the Sulejów Reservoir
catchment (SRC), which occupies 4900 km2 in central Poland. The model was
calibrated and validated against daily discharges (10 gauges), NO3-N and TP loads
(7 gauges). Overall, the model generally performed well during the calibration
period but not during the validation period for simulating discharge and loading of
NO3-N and TP. Diffuse agricultural sources appeared to be the main contributors to
the elevated NO3-N and TP loads in the streams. The existing, default representation
of buffer zones in SWAT uses a VFS sub-model that only affects the contaminants
present in surface runoff. The results of an extensive monitoring program carried out
in 2011–2013 in the SRC suggest that buffer zones are highly efficient for reducing
NO3-N and TP concentrations in shallow groundwater. On average, reductions of
56% and 76% were observed, respectively. An improved simulation of buffer zones
in SWAT was achieved through empirical upscaling of the measurement results. The
mean values of the sub-basin level reductions are 0.16 kg NO3/ha (5.9%) and 0.03 kg
TP/ha (19.4%). The buffer zones simulated using this approach contributed 24% for
NO3-N and 54% for TP to the total achieved mean reduction at the sub-basin level.
This result suggests that additional measures are needed to achieve acceptable water
quality status in all water bodies of the SRC, despite the fact that the buffer zones
have a high potential for reducing contaminant emissions.
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Giełczewski, M.; Izydorczyk, K.; Frątczak, W. Spatial Quantification of Non-Point
Source Pollution in a Meso-Scale Catchment for an Assessment of Buffer
Zones Efficiency. Water 2015, 7, 1889–1920.
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1. Introduction

1.1. Water Management Context

Fulfilling the requirements of the European Water Framework Directive [1]
and the Nitrates Directive [2] by reducing pollution emissions to water ecosystems
remains a major challenge faced in water management. Particularly, the main issue
is the reduction of non-point pollution that originates from agricultural land. The
contributions of agriculture to the pool of nitrogen and phosphorus compounds in
water ecosystems are high.

In Poland, the large share of farmland consisting of highly fragmented arable
land and strongly dispersed developments has resulted in major pressure from
pollution emission sources, including (1) pressure from agriculture related to the use
of inappropriate farming practices (transport of organic and mineral nitrogen and
phosphorus compounds from fertilizers to the environment) and (2) pressure from
scattered households that are not connected to sewage systems.

Thus, the development of N and P reduction strategies is a major task for
water authorities throughout Europe. One example of activities that are undertaken
to achieve sustainable water management goals in agricultural catchments is the
EU-funded EKOROB project (Ecotones for reducing diffuse pollution). The main
objective of this project is to develop an Action Plan for reductions of diffuse pollution
in the Pilica River catchment (Poland) and will help achieve a good ecological status
for the water in the Sulejów Reservoir, particularly by reducing eutrophication and
decreasing the frequency and intensity of cyanobacterial blooms.

The Action Plan is based on the ecohydrology concept [3–5], which assumes
that the basis for integrated river basin management is the quantification of
catchment-scale processes that are part of the hydrological cycle. The concept of
ecohydrology involves quantifying hydrological processes at the basin scale and the
entire hydrological cycle to quantify ecological processes. This quantification includes
the patterns of hydrological pulses along the river continuum and the identification
of various human impacts on point and non-point sources of pollution [6]. Thus,
this quantification should be the first step when developing regulatory processes for
sustainable water use and ecosystem protection. Although many mathematical tools
are available for this task, the Soil and Water Assessment Tool (SWAT) [7] is one of
the most widely used and comprehensive tools.

1.2. The Use of SWAT for Quantifying Emission Sources

SWAT is a comprehensive hydrological/water quality model that is increasingly
being used to address a wide variety of water resource problems across the globe [8].
Several studies have investigated the spatial variability and distribution of various
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pollutant emissions/losses in catchments of different sizes [9–12]. Niraula et al. [9]
calibrated SWAT (and a less complex GWLF model) for a small catchment in Alabama
and used it to identify Critical Source Areas (CSAs) for sediment, TN and TP based
on the loadings per unit area (yield or emission or losses) at the sub-basin level.
Another application of SWAT in a medium-sized Greek catchment resulted in similar
findings, but with a finer level of Hydrological Response Units (HRUs) [10]. Wu and
Chen [11] investigated the influences of point source and diffuse pollution on the
water quality of a relatively large catchment in south China by using SWAT. These
authors concluded that diffuse pollution overwhelmingly surpasses point source
pollution for all constituents except TP. In addition, these authors identified CSAs at
the HRU and sub-basin levels. Finally Wu and Liu [12] calibrated SWAT for a large
catchment in Iowa and showed a relationship between the shares of agricultural
areas with sediment and NO3-N emissions by using the calibrated model.

1.3. Riparian Buffer Zones and Their Modeling in SWAT

Riparian buffer zones (ecotones, vegetative filter strips) are an effective Best
Management Practice (BMP) for buffering aquatic ecosystems against nutrient losses
from the agricultural landscapes. Buffer zones are strips of permanent vegetation
(including herbs, grasses, shrubs or trees) that are adjacent to aquatic ecosystems
and used to maintain or improve water quality by trapping and removing various
non-point source pollutants from overland and shallow sub-surface flow [13–16].

For pollutants transported in surface runoff, the process of sediment and
nutrient trapping by buffer zones is reasonably well understood, particularly for
grass filter strips (cf. review [17]). Reductions in the surface flow velocities due
to the increased hydraulic roughness of the vegetation in the buffer enhanced
particle deposition. Vought et al. [18] reported that a buffer strip with a width
of 10 m can reduce phosphorus loads, which are typically bound to sediments,
by as much as 95%. Buffer zone are effective for removing sediments and other
suspended solids contained in surface runoff; however, soluble forms of nitrogen and
phosphorus are not removed as effectively as sediments [19]. Results collected from
44 fields (row crops with slopes range from 1%–14%) showed that a 10-m buffer zone
reduced the total suspended solids, soluble phosphorus and nitrate-nitrogen contents
by 64%, 34% and 38%, respectively [20]. The efficiencies of narrow buffer zones
(5–10 m) in Norway varied from 81%–91%, 60%–89% and 37%–81% for particles,
total phosphorus and total nitrogen, respectively [21].

Buffer strips are normally less efficient for removing nitrate than
orthophosphates from surface runoff. In contrast with orthophosphate, nitrogen
is very labile and is not largely adsorbed within the soil [18]. However, the
impacts of the sub-surface flow efficiency of the buffer zones on reducing nitrogen
are well described in the literature and often reach a concentration reduction of
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90% [17]. A meta-analysis of nitrogen removal in riparian buffers based on data
from 65 individual riparian buffers from published studies indicated a mean removal
effectiveness of 76.7% [22]. However, the efficiency of buffer zones for reducing
phosphorus in shallow groundwater is not well documented, and some studies
suggest that riparian zones are ineffective for removing dissolved phosphorus or
could even release phosphorus to the water [23,24].

Buffer zones along small streams that are more exposed to pressure from
agriculture are more efficient than buffer zones along larger rivers. A key factor for
determining the efficiency of buffer zones is their continuity. Continuous and narrow
riparian buffers are more efficient than wider and intermittent buffers [25]. Hence,
an important issue for effective water management is the selection of priority areas
that have the highest emissions of diffuse pollution. Next, concentrating measures,
such as buffer zones, should be applied in these areas. Catchment-scale water quality
modeling is one possible solution for quickly identifying priority areas.

Numerous examples are available regarding the application of SWAT for
simulating the affects of buffer zones on diffuse pollution [26–29]. Older versions
of SWAT used a very simplistic equation that was only based on filter width
for calculating the HRU-level reduction rate of buffer zones. This equation was
based on empirical data from the US regarding buffer strip efficiency [27,28]. Since
then, SWAT has undergone certain modifications to address variable source areas
within watersheds and vegetated buffers adjacent to streams [26,30]. The new VFS
sub-model currently used in SWAT reduces the sediment, nitrate and phosphorus
loading in streams as a function of estimated reductions in runoff. Hence, the new
VFS sub-model only affects contaminants present in surface runoff and neglects
nutrient trapping in shallow groundwater. As mentioned previously for nitrogen
in sub-surface flow, buffer zones are very efficient measures [17]. However, little
consensus has been reached for phosphorus [23,24]. This result suggests that the
buffer zone efficiency is case-specific and depends on local conditions. Hence it is
equally as important to apply existing models as it is to measure the efficiency of
existing buffer zones in the field to gain more confidence regarding their behavior.

1.4. Objective

Two objectives of this paper are:

1. Spatial quantification of NO3-N and TP emissions from major pollution
sources in a meso-scale catchment using SWAT.

2. Simulation of buffer zone effects on the mitigation of pollution losses when
applied in Critical Source Areas through the combined use of the default
SWAT VFS sub-model and local field monitoring data.

The term “meso-scale catchment” refers to catchments with an order of
magnitude between 10 and 103 km2 [31]. A part of the Pilica catchment selected
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as the case study in this paper, a demonstration catchment of the EKOROB project,
satisfies this condition.

2. Materials and Methods

2.1. Study Area

The study was conducted in the Sulejów Reservoir catchment (hereafter referred
to as the SRC). Sulejów is a shallow and eutrophic artificial reservoir that was built
in 1974 and is situated in the middle course of the Pilica River in central Poland. Two
main tributaries supply water to the Sulejów Reservoir: the Pilica and Luciąża Rivers.
At its full capacity, this reservoir covers an area of 22 km2, with a mean depth of
3.3 m and a volume of 75 × 106 m3. The Sulejów Reservoir was used as a drinking
water reservoir for Łódź agglomeration until 2004 and is currently an important
recreational site that has been extensively studied (cf. review [32]). Microcystis
aeruginosa is the dominant species of bloom-forming cyanobacteria in the reservoir
and produces microcystin-LR, microcystin-YR, and microcystin-RR [33–35].

The SWAT model is used in this study for the entire SRC area upstream of the
dam, which occupies 4933 km2 (Figure 1). This area consists of the Pilica (contributing
79.8% of area) and the Luciąża (15.3%) River catchments and a direct reservoir
sub-catchment with several smaller streams (4.9%). The elevation of the SRC varies
from 154 m in the lowland areas in the north to 499 m in the highland areas in the
south. The distribution of land cover in the SRC area is as follows: 44.4% arable
land, 38.6% forest areas, 12.3% grasslands, and 4.7% urban areas (mainly low-density
residential areas), with the remaining land occupied by other types of land cover
(data according to Corine Land Cover 2006). The predominate soil types in this area
are loamy sands and sands. The climate of this area is typical for central Poland,
with a mean annual temperature of 7.5 ◦C and mean January and July temperatures
of −4 ◦C and 18 ◦C, respectively. The mean annual precipitation is 600 mm. The
highest amounts of precipitation occur in June/July, and the lowest amounts of
precipitation occur in January. The flow regime is characterized by early spring
snow-melt induced floods and summer low flows with occasional summer floods.
The quantitative pressure on surface water resources is relatively low. The fish
farming industry scattered around the catchment and the Cieszanowice Reservoir
constructed in 1998 on the Luciąża River (volume of 7.3 × 10 m3 at full capacity) are
the only considerable sources of flow alteration.

In contrast, multiple point and non-point pollution sources in the area result
in elevated N and P loads flowing into the Sulejów Reservoir, which eventually
contribute to toxic cyanobacterial blooms in its waters. These different sources will
be described systematically in terms of SWAT model inputs in Sub-Section 2.4.
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2.2. SWAT Model

2.2.1. General Features

SWAT is a physically based, semi-distributed, continuous-time model that
simulates the movement of water, sediment, and nutrients on a catchment scale
with a daily time step. The basic calculation unit, referred to as a “hydrological
response unit” (HRU) is a combination of land use, soil, and slope overlay. Both
water balance components, which is a driving force behind affect all processes that
occur in a watershed, and water quality, output parameters are computed separately
for each HRU. Water, nutrients and sediment leaving HRUs are aggregated at the
sub-basin level and routed through the stream network to the main outlet to obtain
the total flows and loadings for the river basin.

Figure 1. Study area.
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In this study, channel routing was modeled using a variable storage coefficient
approach. The modified USDA Soil Conservation Service (SCS) curve number
method for calculating surface runoff and the Penman-Monteith method for
estimating potential evapotranspiration (PET) were selected. In the model, snow-melt
estimations are based on the degree-day method. The SWAT adapted plant growth
model, which is used to assess the removal of water and nutrients from the root
zone, transpiration, and biomass/yield production, is based on EPIC [36]. The
in-stream water quality component allows us to control nutrient transformations in
the stream. The in-stream kinetics used in SWAT for nutrient routing are adapted
from QUAL2E [37].

SWAT simulates the movement and transformation of several forms of nitrogen
and phosphorus in the watershed. In the nitrogen cycle, the main processes are
denitrification, nitrification, mineralization, plant uptake, decay, fertilization, and
volatilization. In the phosphorus cycle, the main processes are mineralization,
fertilization, decay, and plant uptake. The nutrient transport pathways from
upland areas to stream networks correspond to the following hydrological
transport pathways: surface runoff, lateral subsurface flow and groundwater flow.
Additionally point source discharges of water and contaminants can be defined that
are directly input into the water routed through the stream network.

From the point of view of modeling buffer zones in SWAT, it is important to note
that HRUs are lumped and non-contiguous geographic units within each sub-basin.
A SWAT model setup may consist of thousands of such units, and each of them may
represent one field, a portion of a field, or, more likely, portions of many fields [38].

2.2.2. Runoff-Reduction-Based Buffer Zone Sub-Model

A key characteristic of the buffer zone sub-model implemented in SWAT is that
it works at the HRU level and reduces the loads of sediment, nitrate and phosphorus
that enter the stream as a function of estimated reductions in runoff. Hence, the
sub-model only affects contaminants that are present in surface runoff and neglects
the potential affects of buffer zones on shallow groundwater. This sub-model was
developed and evaluated using measured data derived from the literature and
included data that were collected using differing experimental protocols and under
conditions with different soils, slopes and rainfall intensities. When measured
data were unavailable, predictions from the process-based Vegetative Filter Strip
MODel (VFSMOD) [39] and its companion program, UH, were used. The UH
(upland hydrology) utility uses the curve number approach (USDA-SCS, 1972),
unit hydrograph and the Modified Universal Soil Loss Equation (MUSLE) [40] and
allowed us to generate a database of sediment and runoff loads that enter the VFS.
VFSMOD simulations were used to evaluate the sensitivities of various parameters
and correlations between the model inputs and predictions. Consequently, an
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empirical model for runoff reduction by VFSs was developed, as described by the
following equation:

RR = 75.8 − 10.8 ln(RL) + 25.9 ln(Ksat) (1)

where RR is the runoff reduction (%); RL is the runoff loading to the buffer zone
(mm); and Ksat is the saturated hydraulic conductivity (mm · h−1). An important
consideration is that SWAT conceptually partitions VFS sections within an HRU into
two parts: a short part that occupies 10% of its length and receives flow from the
0.25–0.75 of the field area and a part that occupies 90% of its length and receives the
remaining amount of flow. A fraction of the flow through the most heavily loaded
10% that is fully channelized is not subject to the VFS sub-model. Although the buffer
zone width is an essential and intuitive characteristic that influences its trapping
efficiency, it is not implemented as a parameter of the VFS sub-model in SWAT.
Instead, the drainage area to buffer zone area ratio (DAFSratio) that is negatively
correlated with the buffer zone width is combined with the HRU-level predicted
runoff to estimate RL.

The sediment reduction model based on VFS data removes sediment by reducing
runoff velocity and enhancing infiltration in the VFS area, which is described by the
following equation:

SR = 79.0 − 1.04SL + 0.213RR (2)

where SR is the predicted sediment reduction (%) and SL is the sediment loading
(kg · m−2).

The nitrate reduction model was only based on runoff reduction, as described
by the following equation:

NNR = 39.4 + 0.584RR (3)

where NNR is the reduction of nitrate nitrogen (%).
The model for total phosphorus reduction was based on sediment reduction,

which is described by the following equation:

TPR = 0.9SR (4)

where TPR is the total phosphorus reduction (%); and SR is the sediment
reduction (%).
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2.3. SWAT Setup of the SRC

Table 1 lists all major data items and sources used to create the SWAT model
setup of the SRC. The specific applications of this data at different stages of model
development are described below.

Table 1. Data items and sources used to create the SWAT model setup of the SRC.

Data Source

Digital Elevation Model CODGiK (Central Agency for Geodetic and Cartographic Documentation)
Water cadastre GIS layers RZGW (Regional Water Management Authority in Warsaw)
Corine Land Cover 2006 GDOS (General Directorate of the Environmental Protection)
Orthophotomap GUGiK (Head Office of Geodesy and Cartography: geoportal.gov.pl)
Agricultural statistics The Local Data Bank of GUS (Central Statistical Office)
Agricultural soil map 1:100,000 IUNG-PIB (Institute of Soil Science and Plant Cultivation - National

Research Institute)
Forest soil maps 1:25,000 RDLP (Regional Directorate of State Forests in Łódź, Radom

and Katowice)
Atmospheric deposition of nitrogen GIOS (Chief Inspectorate of Environmental Protection
Climate data IMGW-PIB (Institute of Meteorology and Water Management - National

Research Institute)

The automatic watershed delineation of the SRC was based on the Digital
Elevation Model (DEM) and stream network GIS layer. A 5 m resolution DEM
characterized by a mean elevation error of 0.8–2.0 m was created from the ESRI TIN
DEM available from CODGiK (Polish Central Geodetic and Cartographic Agency).
This DEM resulted in the division of the catchment into 272 sub-basins with average
areas of 18.1 km2 (Figure 2). The Corine Land Cover (CLC) 2006 layer was used as
the primary data source for the land use/land cover map. However, this layer was
enhanced by several supplementary datasets and analyses:

• The (open) drainage ditch layer was used to sub-divide the CLC grasslands
class into those under (code: FES2) and beyond (code: FESC; cf. Figure 3) the
influences of drainage. It was assumed that the influences of the drainage
ditches occurred within a 100 m buffer around the ditches.

• The orthophotomap was used to identify which SWAT crop database classes
should be assigned to the “Heterogeneous agricultural areas” CLC class (code
2.4). Based on a manual, case-by-case investigation, the following three classes
were most frequently assigned: “Agricultural land generic” (AGRL), “Urban
low density” (URLD) and “Mixed forests” (FRST).

• The commune-level (39 units) agricultural census statistical data from 2010
were used to sub-divide the “Non-irrigated arable land” CLC class (code
2.1.1) into classes that represented particular crops that were cultivated in
the SRC. This subdivision was done using a set of GIS techniques, including
the “Create Random Raster” tool in ArcGIS. Thus, a 100 m resolution raster
dataset that represented the random (yet preserving the commune level of
crop distribution) locations of 6 major crops was created and combined with
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the final land cover map used as SWAT input. Although it may seem risky
to generate random crop locations, we believe that this approach does not
significantly impact the modeling result due to the lumped nature of the HRUs
within each sub-basin.

Overall, the following five crops were distinguished as well as a
fallow/abandoned land class (BERM): spring barley (BARL), rye (RYE), potato
(POTA), corn silage (CSIL) and head lettuce (LETT). Figure 3 shows the final
distributions of all land cover classes in the SWAT model setup.

The numerical soil map (scale 1:100,000) from the Institute of Soil Science and
Plant Cultivation (IUNG) and numerical soil maps (scale 1:25,000) from the Regional
Directorate of State Forests were used to create a user soil input map with 27 soil
classes. By overlaying the land use and soil maps, 3401 HRUs were delineated in
the catchment. The following area thresholds were used in the HRU delineation: 30
ha for land cover and 50 ha for soils. Thus, when using this method, all land cover
types below the first threshold in each sub-basin were removed and aggregated into
the remaining classes.

The meteorological data required by SWAT (precipitation, solar radiation,
relative humidity, wind speed, and maximum and minimum temperatures) were
acquired from the Institute of Meteorology and Water Management-National
Research Institute (IMGW-PIB) for 1982–2011. Precipitation data were obtained
from 49 stations, whereas data for other variables from 17 stations. To improve
the spatial representation of climate inputs, spatial interpolation of all variables
(apart from solar radiation, which was only available for one station) was performed
before reading the SWAT input files. For precipitation, the Ordinary Kriging (OK)
method was applied. However, the Inverse Distance Weighted method was used
for the other variables. Szcześniak and Piniewski [41] showed that the OK method
outperforms the SWAT default method for precipitation. For other weather variables,
the interpolation process did not significantly affect the modeling results.

2.4. Pollution Sources in the Model Setup

Parameterization of point and non-point source pollution plays a critical role in
water quality modeling and has attracted considerable attention in this paper. The
following anthropogenic pollution sources were identified: (1) diffuse pollution from
agricultural areas; (2) sewage treatment plants and septic tanks and (3) fish ponds.
Atmospheric deposition of nitrogen was also considered.
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Figure 2. Delineation of the SRC into sub-basins and the gauging station locations
used for calibration and validation.

2.4.1. Atmospheric Deposition

The mean concentration of nitrogen in precipitation measured in Sulejów near
the inlet of the Sulejów Reservoir was obtained from the Chief Inspectorate of
Environmental Protection (GIOS). The monthly results covered the time period
of 1999–2010. Precipitation samples were collected daily, and an integrated sample
was created and measured in the laboratory each month. Between 1999 and 2010, the
mean annual concentrations varied significantly between 1.39 and 2.2 mg N · L−1.
The final value input into the model was subject to calibration and equaled
1.48 mg N · L−1.
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Figure 3. Land cover classes used as input for the SWAT model of the SRC. All
codes as in the default SWAT plant database with one exception: FES2 has the same
parameters as FESC, but is under the influence of open drainage ditches.

2.4.2. Fertilizers

Diffuse N and P pollution from agricultural fields mainly results from fertilizer
use. SWAT enables us to define crop- and soil-specific management practices
scheduled by date for each agricultural HRU. Typical management practice schedules,
including the dates, types and amounts of fertilization, were obtained by consulting
local extension service experts. First, derived management schedules were assigned
to agricultural HRUs by using the ArcSWAT interface. However, this approach
typically leads to bias in the total amounts of spatially-averaged fertilizer when
compared with data from external sources. In this study, we used commune-level
data from the Central Statistical Office (as for 2010) to determine mineral fertilizer use
and livestock population. The livestock population was used to calculate the amount
of available organic fertilizer (manure or slurry). In the final step conducted using
GIS software, correction factors for fertilizer rates were defined for the sub-basins that
overlapped with different communes. The commune layer intersected the sub-basin
layer so that the total amounts of fertilizer used annually in different communes
(expressed in tons of N and P) could be distributed over the SWAT sub-basins
proportionally to the area of agricultural land in each sub-basin. Simultaneously,
we aggregated the total fertilizer use per sub-basin from the model output based
on initially implemented management schedules. Next, correction factors were
calculated for each sub-basin as the ratios of total fertilizer use at the sub-basin level
from census data to the total fertilizer use obtained from the SWAT output files. In the
final step, each HRU fertilizer rate in the operation schedules was adjusted using the
calculated correction factors. After this adjustment, the bias in the spatially averaged
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amounts of fertilizer largely decreased. Figure 4 shows the final, sub-basin-averaged
rates of mineral and organic fertilizers applied in the SWAT model of the SRC.

Figure 4. Sub-basin-averaged N and P fertilizer rates: (A) mineral nitrogen;
(B) organic nitrogen; (C) mineral phosphorus; (D) organic phosphorus.
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2.4.3. Sewage

Twenty three sewage treatment plants discharging an average of more than
2 L · s−1 of treated sewage water annually were identified in the SRC and used
in the model setup (Figure 5A). The largest plant of the SRC situated in Piotrków
Trybunalski discharges its sewage water downstream of the Sulejów Reservoir and
was therefore neglected during model setup. For each sewage treatment plant,
discharge and nutrient loads were expressed as constant or mean monthly values
depending on the available data. These values were obtained directly from plant
operators in most cases by using a telephone/electronic survey.

Figure 5. Sewage treatment plants (A) and fish ponds (B).

Even though water management in Poland is undergoing rapid modernization,
which is manifested, for example, by investments in treatment plants, many rural
and suburban areas remain disconnected from sewer systems. In such cases,
domestic septic systems are usually used for sewage treatment. However, one
common problem associated with domestic septic systems in Poland is leaking septic
tanks [42]. The SWAT model uses a biozone algorithm [43] to simulate the effects of
on-site wastewater systems. The type of septic tank widely used in Poland can be
approximately represented by the so-called “failing systems” in SWAT. To identify
approximate locations of septic systems in the SRC, commune-level data for the
number of people disconnected from wastewater treatment plants were used, which
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were obtained from the Local Data Bank of the Central Statistical Office (GUS). This
number was estimated as 229,000 people for the entire SRC. Spatial analysis of these
data made it possible to identify 202 HRUs with the land cover classes “URLD”
(urban low density) or “URML” (urban medium-low density), in which the septic
function was initiated (Figure 5A). The water quality parameters of the sewage
effluents were specified based on the available literature [44]. For example, the TN
and TP concentrations were 60 mg · L−1 and 20 mg · L−1, respectively.

2.4.4. Fish Ponds

An important feature of the SRC is carp breeding in earth ponds at traditional
land-based farms adjacent to the river channels. The area of ponds identified in the
32 sub-basins was significant (Figure 5B). The ponds were represented in SWAT by
defining monthly water use parameters (water withdrawn from the reaches of the
river for filling the ponds in the spring and maintaining the desired water level until
late summer) and point source discharges (representing water release to adjacent
reaches of the river in October to empty the ponds before winter). The quantities
of the abstracted and released water were calculated based on the estimated pond
volume. The water quality characteristics of the discharged water remain largely
unknown. Thus, a literature review of the effects of carp breeding on water quality
in Central Europe [45,46] was used to define the mean concentrations of the different
constituents in the released water: 2.96 mg TN · L−1 and 0.7 mg TP · L−1.

2.4.5. Summary

Table 2 lists three main anthropogenic point pollution sources and quantifies
the mean annual TN and TP loads that originated from these sources and entered
the stream network of the SRC. These estimates are very uncertain for each pollution
source. The quantity of released water and the TN and TP concentrations both vary
temporally and spatially. Table 2 shows that the order of magnitude is the same
for all variables. For TN, the loads from the sewage treatment plants are slightly
greater than those from the septic tank effluent and fish pond releases. For TP, the
fish pond releases are the major source and the treatment plants and septic tanks
are the second and third sources, respectively. However, in our opinion, the TP load
from septic tank effluents is underestimated because SWAT does not simulate the
downward movement of P to the groundwater. In addition, while the loads from
treatment plants (in SWAT) are usually constant with time, the loads from the fish
ponds only occur in October. In contrast, the loads from septic tank effluents are
variable with time because the travel time between the bottom of the tank to the
nearest river depends on the soil physical properties and hydrological conditions.
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Table 2. Mean annual TN and TP loads entering the stream network in the SRC
that originated from different pollution sources.

Pollution Source TN (kg/year) TP (kg/year)

Sewage treatment plants 81,989 6,913
Septic tank effluent 65,572 1,462
Fish pond releases 53,313 9,273

Total 200,874 17,648

Table 2 does not include the loads from the two remaining sources of
atmospheric deposition and agricultural production. Because these sources are
land-based sources, the load that enters the soil profile is generally known (e.g.,
Figure 4) but the load that enters the stream network is not. The load that enters the
stream network is definitely smaller than the load entering the soil profile due to soil
retention, plant uptake etc., and its direct estimation would require modeling.

2.5. Spatial Calibration Approach

SWAT-CUP is a program that allows to use a number of different algorithms
to optimize the SWAT model. In addition, SWAT-CUP can be used for sensitivity
analysis, calibration, validation and uncertainty analysis [47]. In this paper, we
applied SWAT-CUP version 2009 4.3 and selected the optimization algorithm SUFI-2
(Sequential Uncertainty Fitting Procedure Version 2), which is an inverse modeling
program that contains elements of calibration and uncertainty analysis [48]. Although
SUFI-2 is a stochastic procedure, it does not converge with any “best simulation” and
quantifies standard goodness-of-fit measures, such as the Nash-Sutcliffe Efficiency
(NSE) or R2 for each model run. Hence, SUFI-2 indicates the “best simulation” among
all of the performed runs, which corresponds to the run with the highest/lowest
value of the earlier defined objective function. In this study, we used the widely
used NSE as an objective function. The NSE can range from −∞ to 1, where 1
is optimal. Moriasi et al. [49] recommended the value of 0.5 as the threshold for
satisfactory model performance for a monthly time step, mentioning that under
certain circumstances (e.g., daily time step, high uncertainty of observations) this
requirement could be made less stringent. We also tracked other goodness-of-fit
values, such as R2 and percent bias (PBIAS). The PBIAS measures the average
tendency of the modeled data to be larger or smaller than their observed counterparts.
Positive values indicate model underestimation bias, and negative values indicate
model overestimation bias.

Calibration was performed in three steps, beginning with continuous daily
discharge, continuing with irregular (approximately one measurement per month)
and daily NO3-N loads and ending with TP loads. The calibration period was
from 2006 to 2011, and the validation period was from 2000 to 2005. Figure 2
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presents the locations of the 10 flow gauging stations (data acquired from IMGW-PIB)
and 7 water quality monitoring stations (concentration data acquired from the
General Inspectorate of Environmental Protection), from which the time series
were used for calibration and validation. The average daily loads (kg · day−1)
on the sampling dates were calculated based on observed daily discharge data
(m3 · day−1) at the closest flow gauging station. If the flow gauging station was
situated at another location than the water quality station, discharge data were scaled
using catchment area ratios. We evaluated the relationships between the NO3-N
and TP concentrations and discharge for all studied gauges and concluded that the
correlations were too low (median R2 equal to 0.2 for NO3-N and 0.03 for TP) to use
any regression-based methods for continuous load estimation.

Three parameter sets, one for discharge, one for NO3-N, and one for TP,
and their initial ranges applied in SUFI-2 (Electronic Supplement, Tables S1–S3)
were chosen based on the previous applications of the SWAT model under Polish
conditions [41,50,51], and on the sensitivity analysis performed in the SRC.

In most SWAT studies, calibration is restricted to the catchment outlet. In some
cases, especially in small (i.e., <100 km2) catchments, this approach is justified and
sometimes inevitable due to data scarcity. However, wide variations occur in the
runoff that is produced in different sub-areas of large river basins due to variations
in the physical catchment properties and the associated hydrological processes [52].
Variations in water quality may be even higher due to natural and anthropogenic
factors. One of the most effective methods used to account for this type of variation
is to perform spatially distributed calibration (i.e., multi-site or multiple gauges,
hereafter referred to as “spatial calibration”), as performed by [52–54].

Spatial calibration is a much more complex task than single-gauge calibration,
and its complexity depends on the number of gauges used and the spatial
dependencies between them. We used the widely applied approach (e.g., [54,55] ) of
the “regionalization” of parameter values sequentially from upstream to downstream
nested catchments. This approach was applied in three steps: discharge, NO3-N
and TP.

After successful calibration and validation, the optimal parameter values were
written into the SWAT project and the model was executed for the joint calibration
and validation period from 2000 to 2011. Hereafter, this simulation is referred to as
the “Baseline” scenario.

2.6. Buffer Zone Efficiency Monitoring in Shallow Groundwater

The monitoring program of the buffer zone efficiency for reducing nitrate and
phosphate pollution in shallow groundwater was conducted in 12 transects located in
6 different areas within the SRC. All investigated buffer zones were located between
arable fields and stream channels and had variable widths (ranging from 10 to 50 m)
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and hydrogeological structures (from high to low permeability). The predominant
type of land cover of the buffer zones were cultivated meadows, with narrow tall
herb fringes and common reed bed communities adjacent to the stream channels.

The groundwater well network was installed in January 2011. Two wells were
installed for each transect, one at the edge of the arable land (inlet) and one at the
edge of the buffer zone of the stream bank. The wells consisted of HDPE pipes
(φ 50 mm; Eijkelkamp) that were installed in hand-drilled or machine-drilled holes.
The bottom 1 m of each HDPE pipe was perforated. The lithology (granulometric
estimation and thickness) was determined through visual inspection of the cores that
were collected with the auger during installation.

Groundwater samples were collected monthly from February 2011 until
February 2014. Once the water level was measured, the water filling the well bottom
were pumped out. Next, the groundwater was sampled by using submersible
pumps (Eijkelkamp). During each sampling, temperature, conductivity, and pH
were measured in situ. The nitrate, nitrite, ammonium, and phosphate levels were
measured using ion chromatography (Dionex ICS-1000, Sunnyvale, CA, USA).

The percent effectiveness of the riparian buffer zones (RR for reduction rate)
was calculated by assessing the degree by which the NO3-N and PO4-P levels were
reduced along the buffer zone.

RRX =
cin − cout

cin
· 100% (5)

where X denotes a measurement variable, NO3-N or PO4-P, cin denotes the inlet
concentration and cout denotes the outlet concentration. The values of RRX were
calculated separately in the first step for each year and transect.

The goal was to derive one reduction rate value per variable based on the
entire set of sampling results for application in the buffer zone scenario model in
SWAT. The mean annual cin across all investigated transects ranged from 0.08 to
31.4 mg NO3-N · L−1 and from 0.05 to 1.49 mg PO4-P · L−1. Because it was observed
that positive RRX values mainly occur if the inlet concentration exceeds a certain
threshold (which usually corresponds to high diffuse pollution in a neighboring
field), all measurements with mean annual cin values below 5.65 mg NO3-N · L−1

and 0.166 mg PO4-P · L−1 were removed before conducting further calculations. The
thresholds were set according to Polish water legislation. Concentrations above these
thresholds are in third or higher classes of groundwater quality (where first and
second classes denote very good and good quality, respectively). Consequently, only
nine transects located in five different areas (Figure 2) were retained for analysis.
Thus, the following values of cin, cout and RR were obtained (mean values across all
transects and years):

• For NO3-N: cin = 17.6, cout = 7.91 and RRNO3−N = 56%;
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• For PO4-P: cin = 0.76, cout = 0.18 and RRPO4−P = 76%

2.7. Buffer Zone Scenario Assumptions

The VFS SWAT sub-model simulates reductions in sediment and nutrient
contents in surface runoff and neglects the role of lateral and groundwater flow
in nutrients that contribute to the stream. The field measurements described in
Section 2.6 clearly indicated the efficiency of VFS in the reduction of nitrates and
soluble phosphorus concentrations in shallow groundwater. Thus, the buffer zone
scenario implemented in SWAT in this study consisted the following two items:

• The application of the default SWAT VFS function mimicking reduction of
nutrients in surface runoff using the default values of all parameters describing
the VFS action; and

• The adjustment of groundwater quality parameters related to nutrient
concentrations mimicking reduction of nutrients in shallow groundwater.

At the model parameterization stage, the soluble phosphorus concentrations in
the groundwater GWSOLP were specified at the HRU level based on the available
field measurements in the wells situated on arable land fields. SWAT does not
dynamically model the pool of P in the groundwater. Thus, the concentration
remained constant throughout the simulation period. To reflect the role of the buffer
zone, the GWSOLP values were multiplied by the estimated phosphorus reduction
rate RRPO4−P.

Unlike phosphorus, the groundwater nitrate pool was modeled in SWAT, which
allowed for fluctuations in nitrate loadings in the groundwater over time. To reflect
the reduction of nitrate in the buffer zone, the values of the HLIFE_NGW parameter
(the half-life of nitrate in the shallow aquifer) were adjusted. This parameter accounts
for nitrate losses due to biological and chemical processes; thus, this parameter can
be manipulated to approximate reductions of nitrate due to the acting buffer zone.
HRU-specific values of HLIFE_NGW were decreased by empirical factors, and the
nitrate concentrations in the groundwater were reduced by a value of RRNO3−N
relative to the concentrations before the change.

The buffer zone scenario was only implemented in the HRUs that used arable
land as a type of land cover and were characterized by high N and P emissions
to surface waters. The arable land HRUs accounting for the top 20% of nitrogen
and phosphorus emissions were selected. Hence, buffer zones were only tested
in Critical Source Areas (CSAs) (i.e., areas with disproportionately high pollutant
losses). As proven by the field monitoring results described in Section 2.6, the buffer
zone efficiency rapidly decreases when the input concentrations are low (i.e., when
the upland field is extensively cultivated). This finding suggests that applying buffer
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zones in low-emission areas is not efficient. Thus, the application of buffer zones was
restricted to the CSAs.

3. Results and Discussion

3.1. Calibration and Validation

3.1.1. Discharge

Table 3 presents the model performance measures for the calibration and
validation periods of the three modeled variables. Figure 6 shows simulated vs.
observed hydrographs for the two main gauges (the last stations on the Pilica and
Luciąża before the Sulejów Reservoir). The hydrographs for the remaining 8 gauges
are shown in Figure S1 of the Electronic Supplement. The goodness-of-fit values and
a visual inspection of the hydrographs both demonstrate good model performance
for simulating daily flows in the SRC. However, a few deficiencies were noted.

• During the validation period, the model generally underestimates discharge
across the entire range of flow variability. The median value of PBIAS is 0.21;

• The peaks of the largest floods are generally slightly underestimated by
most gauges;

• The timing of the flood peaks is sometimes advanced by 1–3 days compared
with the timing of the peaks identified in the observed data;

• For the three upstream gauges with relatively small catchment areas (less than
360 km2) the values of NSE were smaller than 0.5 for either the calibration or
validation period.

Table 3. Median values of selected goodness-of-fit measures for discharge, NO3-N
and TP for calibration and validation periods.

Variable NSE cal. NSE val. R2 cal. R2 val. PBIAS cal. PBIAS val.

Discharge 0.64 0.61 0.70 0.72 0.07 0.21
NO3-N loads 0.56 –0.04 0.69 0.28 0.01 0.26

TP loads 0.48 0.08 0.71 0.25 0.05 0.47

As observed in previous SWAT applications in Poland [51,54], we observed a
clear relationship between the model performance indicators and the area upstream
of the calibration gauge, at least for NSE and R2 (Figure 7). The larger catchment size,
the higher values of NSE and R2. No relationship of this type can be identified for
the absolute value of PBIAS.

The hydrological conditions for the validation period were much wetter than
those during the calibration period, which potentially resulted in the observed
differences, particularly the high positive value of PBIAS. The mean discharge at
the main outlet in Sulejów was higher. Snow melt floods were dominant during the
validation period and storm floods were dominant during the calibration period.
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Figure 6. Calibration and validation plots for discharge at the Sulejów gauging
station (the Pilica River) and the Kłudzice gauging station (the Luciąża River).
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Figure 7. Relationship between the area upstream of a gauge and the model
performance measures for discharge for the calibration and validation periods:
(A) NSE; (B) R2; (C) |PBIAS|.

3.1.2. NO3-N Loads

The goodness-of-fit statistics for NO3-N loads are not as good as those for
discharge (Table 3). During the calibration period, the results are highly variable
depending on the gauge. The three problematic gauges with low NSE and R2 values
are situated in the headwater highland part of the SRC. It is very likely that these
values are affected by the low performance measure values for discharge simulations
in this part of the studied catchment. By contrast, the results are very good for the
Czarna Maleniecka and Czarna Włoszczowska Rivers (cf. Figure S2 and Table S4 of
the Electronic Supplement). In addition, a reasonable fit was observed between the
simulations and observations of the two main rivers entering the Sulejów Reservoir
(Figure 8A,B).

The model performance during the validation period is slightly worse than
during the calibration period. As shown in Figure 8F, the model failed to capture one
very large peak. However, a more detailed analysis shows that the modeled peak
lagged by 5 days. This lag resulted from the lag in the flood peak from snow melt.
Another issue that is visible during the validation period is the considerable bias for
most gauges (with a median of 0.26). This bias also reflects the bias in the modeled
discharges. Overall, some of the problems identified during hydrology calibration
and validation were transposed to the calibration of NO3-N loads. However, it
should be noted that the model preserves several important aspects of the NO3-N
loads and concentration dynamics (e.g., the highest values during the winter and
spring and the lowest values during the summer and autumn).

3.1.3. TP Loads

As with NO3-N, the goodness-of-fit statistics for the TP loads are not as good
as those for discharge (Table 3; Figure S3 of the Electronic Supplement). For the
calibration period, the comments mentioned in Section 3.1.2 are largely valid for
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TP. Particularly, lower performance measure values were also noted in the small
headwater sub-catchments of the SRC in the south. The very good fit between the
simulations and observations is shown in Figure 8C,D.

Figure 8. Calibration and validation plots for the NO3-N and TP loads at the
Sulejów (the Pilica River) and Przygłów gauging stations (the Luciąża River).

However, the model significantly underestimates the observed TP loads in most
of the gauges, with a median PBIAS value of 0.47. This high bias cannot be explained
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by the underestimation of discharge alone. In some cases (e.g., for the large peak in
TP loads shown in Figure 8G), the modeled flood peak occurred 5 days before the
measured flood peak, which clearly affected the high underestimation of the TP load
when water samples were measured.

3.2. Spatial Variability in NO3-N and TP Emissions

In this section, we present an analysis of the calibrated model outputs for the
Baseline scenario (2000–2011).

Figure 9 shows the mean emissions at the sub-basin level of NO3-N (A) and
TP (B) from land areas to the stream network. These emissions include all of the
possible pathways of the studied constituents from the sub-basins to SWAT reaches
via surface runoff, sub-surface runoff, tile drain outflow and base flow. The results
are expressed per unit of catchment (not just agricultural) area. Therefore, the results
indirectly incorporate the effects of different areas of agricultural land in different
sub-basins. For nitrogen and phosphorus, the spatial variability of the calculated
emissions is very high. The difference between the sub-basins with the highest and
the lowest emissions is two orders of magnitude for NO3-N and three orders of
magnitude for TP.

Figure 9. Mean emissions of NO3-N (A) and TP (B) from land areas to stream
networks for the baseline period 2000–2011 in the SRC. The units are in kilograms
per hectare of sub-basin area per annum.
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For NO3-N, the highest emissions are concentrated in two regions of the
SRC: (1) the Bogdanówka and Strawa sub-catchments in the northwest and
(2) the Białka Lelowska catchment in the south. Both areas are characterized
by relatively high proportions of agricultural land and high fertilizer rates
(cf. Figure 4). The first area has the highest share of inhabitants not connected
to sewage systems (cf. Figure 5A). The second area is covered by a large patch of
loess soils that are less permeable than the neighboring sands and loamy sand. In
addition, two large areas are present with moderately high emission rates: (1) the
upper Pilica and Żebrówka sub-catchments in the south and (2) the Biała and Nowa
Czarna sub-catchments in the central portion of the SRC. As previously observed,
it is clear that both agriculture and septic tank effluents play a critical role in the
emission levels in these two areas.

The regions of high TP emissions only partly overlap with the regions of high
NO3-N emissions. The new regions with high TP emissions (in which NO3-N
emissions are not too high) include the headwater parts of the Czarna Włoszczowska
and Czarna Maleniecka sub-catchments in the east and the Udorka and Uniejówka
sub-catchments in the south. The latter area is also known for intensive head lettuce
farming and for using large amounts of fertilizers. Moderately high TP emissions
can be found in the Czarna Struga sub-catchment in the central region and in a
few smaller isolated sub-catchments that are scattered around the SRC. Most of
the mentioned regions overlap with areas receiving relatively high P fertilizer rates.
However, this result does not only occur for the headwater area of the Czarna
Maleniecka sub-catchment in the east. In this case, the emissions can be explained by
the high septic tank effluent emissions from the households that are not connected to
sewage systems (cf. Figure 5).

3.3. Buffer Zone Scenario Results

Figure 10 illustrates the locations of the agricultural HRUs with the highest
NO3-N and TP emission rates that were identified as the CSAs. Overall, 20% of the
HRUs with the highest NO3-N emissions are responsible for 36% of the total load,
and the same amount of HRUs with the highest TP emissions is responsible for 51% of
the total load. This finding shows that the magnitude of TP losses is more diversified
than the magnitude of NO3-N losses. The areas with the highest density of selected
606 HRUs largely correspond with the high emission regions described in Section 3.2.
In addition, Figure 10 shows the mean difference in NO3-N (A) and TP (B) emissions
between the “Buffer zone” scenario and the Baseline scenario (negative values should
be interpreted as the estimated reduction levels that are reached by applying buffer
zones). The values are expressed in kg per unit of sub-basin area; thus, they are
affected by the HRU-level efficiency of the buffer zone and the percentage of the
selected HRUs in the sub-basins. The mean HRU-level reductions reached 0.82 kg

244



NO3-N · ha−1 and 0.18 kg TP · ha−1 (the values per hectare of HRU area), and the
90th percentiles reached 1.64 kg NO3-N · ha−1 and 0.28 kg TP ·ha−1, respectively.
However, at the sub-basin level, the efficiency is significantly reduced, with mean
values of 0.16 kg NO3-N · ha−1 and 0.03 kg TP · ha−1 (the values per hectare of
sub-basin area), and 90th percentiles of 0.31 kg NO3-N · ha−1 and 0.09 kg TP · ha−1.
When expressed as a percentage, the average reduction across all of the sub-basins
where buffer zones were “implemented” is considerably higher for TP than for
NO3-N (19.4% compared to 5.9%).

A spatial analysis of Figure 10 results in the observation that the highest
reductions of NO3-N or TP generally correspond with the areas with the highest
emissions (cf. Figure 9). However, this result does not occur in sub-basins where
at least one of the two following circumstances occur: (1) the percentage of HRUs
selected for this measure is low and (2) high emissions result from septic tank
effluents rather than from agriculture. In several cases, the baseline emission level
from some sub-basins was low. Thus, although the percent reduction reached 10% or
15%, it was too low in terms of the absolute value to appear on the map.

As mentioned in Section 2.7, the “Buffer zone” scenario implemented in SWAT
in this study consisted of two items: (1) the application of the default SWAT
VFS function dealing only with surface runoff and (2) the incorporation of field
monitoring-based reduction rates to the shallow groundwater component in SWAT.
To verify how each item contributed to the final result, we created two additional
scenarios, one that only incorporates feature No. 1 (“BZ-VFS”), and another that
only incorporates feature No. 2 (“BZ-GW”). Next, we estimated the sub-basin level
reduction rates for the “BZ-VFS” and “BZ-GW” scenarios and compared them with
the results from the original “Buffer zone” scenario. Overall, the effect of effect of
VFS (72% of the total load reduction) for NO3-N was dominant over the effect of
field monitoring-based parameters (28% of the total load reduction). By contrast, the
contributions of each component to the total reduction of TP emissions in the SRC
were similar: 46% and 54%, respectively. These modeling results showed that shallow
groundwater reduction mechanisms are more effective for TP than for NO3-N, which
agrees with the calculated reduction rates from Section 2.6.
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Figure 10. The modeled effects of buffer zones on agricultural pollution emissions
from a land to stream network. The mean difference in NO3-N (A) and TP (B)
emission between the “Buffer zone” scenario and the Baseline scenario. Units are
in kilograms per hectare of sub-basin area per annum.

3.4. Discussion

The performance of the SWAT model for simulating daily discharge in the
SRC was spatially variable but generally good or satisfactory. The main downside
was underestimation bias during the validation period, which occurred because of
the significantly wetter hydrological conditions during this period compared with
the calibration period. Because the calibrated parameter values are very sensitive
to climatic conditions, the values calibrated for dry and short periods might not
be suitable for simulating the opposite conditions [56,57], which results in lower
performance statistics. Unfortunately, this bias in the validation period for discharge
translates into an even greater bias for the NO3-N and TP loads during this period.
However, the reported values of PBIAS for most of the gauges are within the ranges
of satisfactory performance for discharge (+/–25%) and the NO3-N and TP loads
(+/–70%) [49]. In summary, our results support the findings of Ekstrand et al. [58],
who applied SWAT to model the TP losses in five catchments in central Sweden.
Overall, Ekstrand et al. [58] observed that obtaining satisfactory results for a
validation period often depends on whether the range of hydroclimatological
conditions is similar (as in calibration).
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An additional problem is that evaluating water quality simulations using a
daily time step and only one measurement per month is not an optimal. Typically,
model simulations are less accurate when shorter time steps are considered than
when longer time steps are considered [59]. If sampling is performed during a
flood event, which occurred several times (as shown in Figure 8), it is likely that
(1) discharge estimations from SWAT for the sampling date are very far from the
observations because of common underestimations and lag problems associated with
flood peaks (cf. Section 3.1.1) We analyzed a few events with different magnitudes
that occurred during different seasons and reaches and noted that SWAT was not
capable of reproducing this kind of effect with reasonable accuracy. Regarding the
problem of capturing peaks, we analyzed all NO3-N and TP daily validation plots
case by case. In six out of 11 plots (three per variable), we identified situations in
which the observed peaks lagged behind or preceded the event by 2–15 days. Next,
we matched the modeled and observed peaks (between two and three per plot) and
recalculated the performance statistics. The model performance improved for each
case and for each indicator (Electronic Supplement, Table S5). Increases in the NSE
ranged between 0.15 and 0.57, increases in the R2 value ranged between 0.1 and 0.54
and the positive values of PBIAS decreased by 2%–18%. This result demonstrates
that the validation results were significantly impacted by a small number of missed
peak events by the majority of gauges.

Furthermore, in five out of 11 cases, we identified another reason for poor
validation results. We compared the mean observed discharges and loads between
the calibration and validation periods (Electronic Supplement, Table S6). In all
analyzed cases, (1) the PBIAS during the validation period was significantly higher
than during the calibration period; (2) the PBIAS during the validation period was
larger than or equal to 0.4; (3) the mean observed discharge during the validation
period was significantly greater than that during the calibration period; and (4) the
mean observed NO3-N and TP loads were much greater during the validation period.
These results clearly demonstrate that more than the hydrological conditions differed
between these two periods. In addition, this analysis shows that the mean nutrient
concentrations in some of the gauges were significantly greater in 2000–2005 than in
2006–2011. The first decade of the twentieth century in Poland has been marked by
rapid development in the number of sewage treatment plants and by an increasing
treatment level [60]. Because the majority of the input data used to build the model
setup were valid for 2010 or later and may represent the period of 2000–2005, we
hypothesized that this finding could partially explain the poor model performance
during validation.

We applied SWAT in the SRC to spatially quantify NO3-N and TP emission from
various pollution sources. The purpose of this spatial quantification was to identify
CSAs in which the buffer zones that mitigate pollutant emissions to the surface water
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could be implemented. In Table 2, we specified the mean annual TN and TP loads
that originated from sewage treatment plants, septic tank effluents and fish pond
releases. In Figure 9 we presented the spatially variable NO3-N and TP loads that
predominantly originated from cultivated land and, to a smaller extent, from septic
tank effluent. Integration of the sub-basin data from Figure 9 to calculate the total
catchment load and subtracting the load assigned to septic tank effluent provided a
rough estimate of the mean annual diffuse pollution load in the SRC, which reached
1,240,000 kg NO3-N and 60,700 kg TP. Although these values also include emissions
from urban (very small percentage) and forest (very low emission) runoff, this
estimate confirms the initial hypothesis that diffuse agricultural pollution is largely
the dominant source of pollution in the SRC. Although the SRC, or more widely, the
Pilica catchment, have recently attracted the attention of a number of researchers
studying pollution emissions and transport [32,61,62], this finding is new and has
certain implications regarding water management. Particularly, regarding the fact
that Poland has been sent to court by the EU Commission for failing to guarantee that
they are addressing water pollution by nitrates effectively [63]. However, no Nitrate
Vulnerable Zone (NVZ) has been included in the SRC under current legislation.
However, Figure 9 indicates that some portions of the catchment could easily be
designed as NVZs.

Strong evidence for the contributions of agriculture to pollutant emissions to
streams also strengthens the basis for scenarios that assume the application of buffer
zones in the identified CSAs. Previous modeling attempts of buffer zones in Poland
using SWAT [51] have shown its limitations (i.e., the fact that the VFS sub-model only
accounts for the trapping effect in surface runoff (cf. Section 2.2.2). Consequently, the
efficiency of applying buffer zones described by Piniewski et al. [51] when measured
at the catchment outlet was negligible for NO3-N and small for PO4-P. In this study,
we used buffer zone field monitoring data from the studied catchment to improve
the mechanisms by which SWAT reduces pollutant losses. The modeled reduction
rates were spatially variable, but higher than those in the study of Piniewski et al. [51].
In addition, the results showed that, the average contributions of the “shallow
groundwater” mechanism to total reduction reach 28% for NO3-N and 54% for TP.
This demonstrates that the “surface water” trapping mechanism by VFS in SWAT is
not sufficient (i.e., it overlooks an important pathway by which both NO3-N and TP
compounds can reach the stream network). The efficiencies of buffer zones critically
depend on the mechanisms by which N and P are transported from the land to the
stream [64]. Although we have only empirically tested SWAT in the SRC, it is likely
that this limitation would affect other areas, particularly areas of the vast Polish
Plain, which are characterized by physiographic conditions that are similar to those
of the SRC. However, the approach we used to consider the field measurements
of the buffer zones in SWAT was fairly simplistic and based purely on parameter
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modification. In the future, larger field monitoring samples (in space and time)
should allow for the development of a new SWAT sub-routine that would better
reflect the pollutant pathways from field areas through buffer zones to streams under
variable hydrological conditions.

To assess the effects of buffer zones on the nutrient loads that enter the Sulejów
Reservoir, we summed the mean annual loads from all eight reaches with their outlets
at the reservoir shoreline (cf. Figure 2). The results showed that applying buffer zones
in the selected CSAs (occupying 20% of the arable land area and culminating in 12.4%
of the land in the catchment) would contribute to the reduction of the pollutant loads
entering the reservoir by 7% for NO3-N and 16% for TP. This outcome is particularly
important for TP, which is mainly responsible for reservoir eutrophication and for
intensity of toxic algal blooms [34,65].

The estimated buffer zone efficiency can be considered as substantial. However,
it is clear that other conservation practices are important for obtaining more
pronounced reductions in pollutant runoff. Particularly, the activities should focus
on reducing the inputs of nutrients to the landscape in the form of mineral and
organic fertilizers by convincing the farmers to use fertilization plans more widely.
Examples of other measures include extension of the closed period for spreading
organic fertilizers, elimination of soil cultivation during the autumn, the cultivation of
catch crops, and the construction of wetlands. Spatially-explicit indications of CSAs
provide an opportunity for selecting effective measures. In the second step, their
precise and cost-efficient application substantially increases the chance of improving
the water quality in the catchment.

4. Conclusions

This study demonstrated that diffuse agricultural pollution is the main
contributor of elevated NO3-N and TP concentrations in the surface waters of the
SRC relative to point source pollution from sewage treatment plants, septic tank
effluents and fish pond releases. The application of a semi-distributed water quality
model and performing a comprehensive spatial calibration and validation allowed us
to spatially quantify the emission rates at the HRU and sub-basin level, which helped
identify Critical Source Areas. These CSAs were selected to test the efficiencies of
riparian buffer zones. The default SWAT sub-model designed for simulating the
effects of buffer zones only accounts for nutrient trapping in surface runoff and
overlooks an important sub-surface pathway in which nutrients can be trapped.
The monitoring data from the SRC showed that the mean field-level reductions in
the concentrations in the shallow groundwater near the buffer zone average 56%
for NO3-N and 76% for TP. These empirical reduction rates were used to enhance
the capability of SWAT for representing the effects of the buffer zone. The scenario
results showed that the efficiency of the buffer zones at the catchment level is lower
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than that at the field level but still significantly contributes to reductions in pollutant
emission to the nearest streams and to reductions of the total pollutant load entering
the Sulejów Reservoir (by 7% for NO3-N and 16% for TP). Only using the default
SWAT function of the simulating buffer zones would lead to an underestimation of
buffer efficiency, particularly for phosphorus (54%). Thus, we argue that empirical
data are important for improving existing models that monitoring more samples
in the future should allow us to develop new SWAT routines for simulating the
sub-surface trapping effects of the buffer zones.

The poor model performance of the nutrient load simulation during the
validation period indicates that the nutrient load estimates from the SWAT model
of the SRC are highly uncertain. However, it can be argued that simulated percent
reductions in pollutant emission due to the application of buffer zones are more
reliable, because of known model bias.

The implications from this study are valuable for water managers and other
decision-makers. The use of water quality mathematical models to address
contemporary water management problems is still limited in many countries,
including Poland. Our study shows how the SWAT model is useful for the (1)
quantification of point and diffuse pollution sources; (2) identification of high
emission areas (CSAs) where measure implementation should be prioritized; and
(3) quantification of the efficiency of conservation practices. All these three
aspects are vital for the development of medium and long-term water quality
improvement strategies by river basin managers. Further progress can be achieved
by including the economic functions representing implementation costs of different
conservation practices.
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32. Wagner, I.; Izydorczyk, K.; Kiedrzyńska, E.; Mankiewicz-Boczek, J.; Jurczak, T.;
Bednarek, A.; Wojtal-Frankiewicz, A.; Frankiewicz, P.; Ratajski, S.; Kaczkowski, Z.; et al.
Ecohydrological system solutions to enhance ecosystem services: The Pilica River
Demonstration Project. Ecohydrol. Hydrobiol. 2009, 9, 13–39.
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Model Calibration Criteria for Estimating
Ecological Flow Characteristics
Marc Vis, Rodney Knight, Sandra Pool, William Wolfe and Jan Seibert

Abstract: Quantification of streamflow characteristics in ungauged catchments
remains a challenge. Hydrological modeling is often used to derive flow time
series and to calculate streamflow characteristics for subsequent applications that
may differ from those envisioned by the modelers. While the estimation of model
parameters for ungauged catchments is a challenging research task in itself, it is
important to evaluate whether simulated time series preserve critical aspects of
the streamflow hydrograph. To address this question, seven calibration objective
functions were evaluated for their ability to preserve ecologically relevant streamflow
characteristics of the average annual hydrograph using a runoff model, HBV-light,
at 27 catchments in the southeastern United States. Calibration trials were repeated
100 times to reduce parameter uncertainty effects on the results, and 12 ecological
flow characteristics were computed for comparison. Our results showed that the most
suitable calibration strategy varied according to streamflow characteristic. Combined
objective functions generally gave the best results, though a clear underprediction
bias was observed. The occurrence of low prediction errors for certain combinations
of objective function and flow characteristic suggests that (1) incorporating multiple
ecological flow characteristics into a single objective function would increase model
accuracy, potentially benefitting decision-making processes; and (2) there may be a
need to have different objective functions available to address specific applications
of the predicted time series.

Reprinted from Water. Cite as: Vis, M.; Knight, R.; Pool, S.; Wolfe, W.; Seibert, J.
Model Calibration Criteria for Estimating Ecological Flow Characteristics. Water
2015, 7, 2358–2381.

1. Introduction

The interactions between streamflow and aquatic ecosystems have occupied
researchers across a range of disciplines for more than 50 years. Beginning with
studies as early as Rantz [1] and continuing through Tennant [2] to the present day,
numerous individual streamflow characteristics have been associated with various
ecological responses [3]. More recently, studies have emphasized the importance
of multiple streamflow characteristics operating simultaneously or interacting to
influence ecological outcomes [4]. These streamflow characteristics are used to
quantify relations between flow and ecological responses. At sites where streamflow
records are available, the ecologically relevant streamflow characteristics (SFCs) can
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be derived directly from streamflow observations. However, many, probably most,
sites of biological interest have few if any observed streamflow records.

Where streamflow records are unavailable, hydrological modeling is commonly
used to derive flow time series, and these simulated time series are then used to
derive streamflow characteristics. The basic assumption is that if a model is capable
of reproducing observed streamflow with some accuracy, the simulated time series
are also suitable to derive ecologically relevant flow characteristics. However, one
has to note that flow simulations are never perfect and that they generally depend on
the model and its parameterization. Therefore, the suitability of simulated flow series
as a basis for the estimation of streamflow characteristics might vary considerably.
Key issues that must be addressed include which aspects of the stream hydrograph
(SFCs) should be estimated and which modeling approaches are best suited for
estimating them.

At least two broad approaches to hydrologic modeling have been applied to
ecological flow problems. Regional statistics have been used to predict ecologically
relevant streamflow characteristics at ungauged sites to support the development
of ecological response functions, with streamflow as the controlling variable [5–7].
Such statistical models depend on prior definition of the streamflow characteristics
of interest and thus are of limited flexibility should other flow characteristics later
emerge as important [8]. An alternative approach is the use of runoff models, which
simulate an entire hydrograph for some period of interest from which any number
of streamflow characteristics can subsequently be calculated [8]. Runoff models
have been recommended by some authors as the tool of choice for ecological flow
studies [4], while others have expressed reservations about their suitability for such
applications [8,9].

There are two main criticisms related to using runoff models for application to
ecological-flow studies. The first is the difficulty in transferring the calibrated model
parameters from a gauged basin, where the model can be calibrated and verified,
to an ungauged basin where model performance cannot be evaluated directly. This
issue of predictions in ungauged catchments is an area of active research and can
be addressed by different regionalization approaches [10]. However, even with
perfectly estimated parameter values (i.e., the estimated parameters for an ungauged
catchment correspond to what had been achieved with local model calibration) a
second issue remains. This is that the models are generally calibrated on some
measure of overall model performance such as the model efficiency [8,9], while
biological responses to streamflow are commonly associated with specific aspects
of the hydrograph, such as the long-term mean or, often more important, high- or
low-flow extremes [6,11–14]. This observation raises the question: Can alternative
approaches to the design and calibration of runoff models improve their ability
to estimate ecologically relevant flow characteristics with a level of accuracy and
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precision needed to provide useful insights to the interaction between streamflow
and ecosystems?

In this study, we used the HBV-light model [15–19] for runoff simulations. This
model is an example of a multi-tank catchment model, with 10–15 parameters which
are typically estimated by calibration. Several objective functions, each focusing
on a different aspect of the hydrograph, were used to calibrate HBV-light. The
aim of this study was to evaluate different objective functions for their ability
to produce simulated time series that adequately preserve ecologically important
flow characteristics.

2. Materials and Methods

2.1. Study Catchments

The 27 catchments used in this analysis represent parts of four Level 3
Ecoregions [20], listed east to west: Blue Ridge, Ridge and Valley, Central
Appalachians, and Appalachian (Cumberland) Plateau (Figure 1). The catchments
have average basin area of 829 square kilometers (km2) (range 104–4799 km2) and
average elevation of 491 m above the North American Vertical Datum of 1988 (NAVD
88) (range 174–937 m) (Table 1). Hardwood forest and pasture are the dominant land
cover in the study area. Soils are deep in the Blue Ridge ecoregion which leads to
increased baseflow in comparison to the relatively thinner soils of the Appalachian
Plateau and Ridge and Valley ecoregions [20] Generally, topographic slope and
regolith thickness decreases from east to west, while karst development is most
prominent in the Ridge and Valley [21]. Combined, these catchment characteristics
produce noticeable and documented regional variations in hydrologic response and
streamflow regimes [21–24].
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Table 1. U.S. Geological Survey (USGS) stream gaging sites used for model
calibration and error evaluation. Latitude and longitude represent the basin outlet;
ecoregion defined as the Level 3 ecoregion with the majority of the basin area; km2,
square kilometers; horizontal reference is North American Datum 1983; vertical
reference is North American Vertical Datum 1988.

Map
Number

(Figure 1)

USGS
Station

Number
Latitude Longitude Average

Elevation (m)
Primary Ecoregion

(Omernik, 1987)
Basin Area

(km2)

1 03441000 35.2731 ´82.7058 645 Blue Ridge 104
2 03443000 35.2992 ´82.6239 628 Blue Ridge 766
3 03446000 35.3981 ´82.5950 637 Blue Ridge 173
4 03455000 35.9816 ´83.1611 308 Blue Ridge 4799
5 03459500 35.6350 ´82.9900 712 Blue Ridge 906
6 03460000 35.6675 ´83.0736 749 Blue Ridge 127
7 03463300 35.8314 ´82.1842 810 Blue Ridge 112
8 03465500 36.1765 ´82.4574 463 Blue Ridge 2082
9 03471500 36.7604 ´81.6312 642 Blue Ridge 198

10 03473000 36.6518 ´81.8440 546 Blue Ridge 785
11 03475000 36.7132 ´81.8187 555 Ridge and Valley 534
12 03479000 36.2392 ´81.8222 795 Blue Ridge 236
13 03488000 36.8968 ´81.7462 519 Ridge and Valley 578
14 03497300 35.6645 ´83.7113 337 Blue Ridge 271
15 03498500 35.7856 ´83.8846 259 Blue Ridge 697
16 03500000 35.1500 ´83.3797 612 Blue Ridge 361
17 03500240 35.1589 ´83.3942 615 Blue Ridge 146
18 03503000 35.3364 ´83.5269 537 Blue Ridge 1130
19 03504000 35.1275 ´83.6186 937 Blue Ridge 135
20 03512000 35.4614 ´83.3536 562 Blue Ridge 476
21 03524000 36.9448 ´82.1549 457 Ridge and Valley 1382
22 03528000 36.4251 ´83.3982 323 Ridge and Valley 3816
23 03531500 36.6620 ´83.0949 384 Central Appalachians 828
24 03540500 35.9831 ´84.5580 232 Cumberland Plateau 1815
25 03550000 35.1389 ´83.9806 474 Blue Ridge 268
26 03568933 34.8975 ´85.4631 202 Ridge and Valley 379
27 03574500 34.6243 ´86.3064 174 Cumberland Plateau 814

Temperature and precipitation in the study area vary with longitude and
elevation. Average annual temperature in the area is 13.9 degrees Celsius (˝C).
The warmest months of the year are July and August, and the coldest are typically
January and February [25]. The Blue Ridge averages about 1350 millimeters per
year (mm/y) of precipitation annually, compared to 1450 mm/y in the Cumberland
Plateau and Ridge and Valley [26]. Locally, precipitation in the Blue Ridge can exceed
2000 mm/y at the highest elevations. Less than 2 percent of the precipitation comes
as snow (based on 1:10 ratio of rain to snow). The streamflow regime in the study area
is characterized by peak runoff typically between December and April as the result of
frozen or saturated soils and low evapotranspiration rates. Summer months typically
have lower streamflows because of increased temperatures and evapotranspiration
rates, though occasional convective or tropical storm systems may produce locally
severe flooding. Lowest flows occur in the late-summer through the fall coinciding
with continuing high temperatures and evapotranspiration rates combined with
decreased precipitation (October is the driest month generally). Annual runoff for
the study area varies from approximately 450 to more than 760 mm [27].
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The Tennessee and Cumberland River basins (considered as one aquatic
ecoregion by Abell et al. [28]) have the highest level of freshwater diversity in North
America and possibly the most diversity for any temperate freshwater ecoregion in
the world [29,30]. Included in this measure are 231 fish species (with 67 (29 percent)
being endemic) along with a globally outstanding unionid mussel and crayfish
fauna. Many of these species are restricted to the Tennessee and Cumberland
River basins [28] (pp. 212–213). A wide range of human activities threaten these
populations, including urbanization, mining, logging, agriculture, and other forms
of land disturbance that alter hydrologic response [28]. In addition, the entire main
channels of the Tennessee and Cumberland Rivers, together with many of their
tributaries, have been impounded. Flow alteration as a result of these activities has
degraded or destroyed stream habitat according to Abell et al. [28], with more than
57 fish species and 47 mussel species at risk in the Tennessee–Cumberland aquatic
ecoregion [31] (cited in Abell et al. [28], p. 213).

2.2. HBV Model

The HBV model [15,16] is a simple multi-tank-type model for simulating runoff.
Rainfall and air temperature data [32] as well as estimated potential evaporation data
based on the American Society of Civil Engineers Penman–Monteith method [33–36]
are inputs to the model, which consists of four commonly used routines: (1) snow;
(2) soil moisture; (3) response; and (4) routing. These routines, or slight modifications,
are commonly used in other similar models (for example PRMS; Leavesley, Lichty,
Troutman, and Saindon, 1983). In the snow routine, snow accumulation and snow
melt are calculated by a degree-day method [37]. The soil moisture routine represents
soil–water storage, which is used in conjunction with temperature and precipitation
to drive evaporation and groundwater recharge. Evaporation from the soil tank
equals the potential evaporation if the relative soil moisture storage is above a certain
fraction, while below that fraction a linear reduction is applied. The response routine
consists of connected shallow and deep groundwater storage terms and simulates
runoff by summing up three linear outflow equations representing peak, intermediate
and base flow. The routing routine delivers simulated runoff to the catchment outlet
based on a triangular weighting function in the routing routine.

Catchments can be separated into different elevation and vegetation zones as
well as into subbasins in HBV. In this study, however, catchments were disaggregated
using only different elevation zones to reduce problems of over-parameterization.
Calculations were performed separately for each elevation zone according to
catchment for the snow and soil-moisture routines. Groundwater storage was treated
as a lumped representation for each catchment. The version of HBV used in this
study, HBV-light [18], corresponds to a slightly modified version of HBV-6. HBV-light
uses a warming-up period of normally one year to set state variable values according
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to the preceding meteorological conditions and parameter sets. A more detailed
description of HBV-light can be found in [18].

2.3. Calibration

The HBV-light model was applied to the 27 catchments using a daily time step.
Each catchment was separated into elevation zones of 200 m, which cover at least
5 percent of the area of their respective catchment. Elevation zones covering less
than 5 percent of the catchment area were merged with neighboring elevation zones.
Rainfall and temperature data were compiled for the different elevation zones with
a lapse rate of 10 percent/100 m and 0.6 ˝C/100 m, respectively. The long-term
monthly potential evaporation data were linearly interpolated to daily values and
corrected by using the deviations of the temperature to its long-term mean.

For all catchments, the first three years of input data measurements were used
for the “warming-up” of the model to estimate the initial state variables. The
rest of the data were divided into two equal time periods (14 years) covering
the hydrological years (1 October through 30 September) from 1983 to 1996 and
from 1996 to 2009. Each time period served both as calibration and validation
period; when using the first time period for calibration the second time period was
used for validation, and vice versa. This approach to calibration, validation, and
parameterization allows us to consider distributions of parameter values derived
from multiple independent realizations of the model, providing a generally robust
evaluation. To address parameter uncertainty and equifinality [38], each calibration
was repeated 100 times (here called calibration trials), which because of the random
elements of the Genetic Algorithm and Powell optimization (GAP, [39]) used for
calibration, resulted in 100 different parameterizations. The feasible parameter value
ranges were defined based on previous studies (Table 2) [40].

We considered seven different objective functions for calibration, which
consisted of either single or combined statistical criteria evaluating the fit between
observed and simulated values (Tables 3 and 4) to assess the influence of an objective
function on the value of the simulated ecological indicators. The objective functions
were chosen to represent different statistical aspects of streamflow. The combinations
of criteria were defined to evaluate different aspects simultaneously; for example,
combination 2 (C2) included Reff, MARE, Spearman, and Volume Error (see Table 3
for a description of the criteria). Reff and MARE are sensitive to peaks and low
flows, respectively, and therefore help evaluate performance with respect to extreme
discharge values. Volume Error expresses how well the model predicts overall runoff
volume for the simulation period, whereas the Spearman rank coefficient reflects the
model’s success in replicating the overall timing and magnitude of discharge. Each
objective function was used to calibrate the model for each time period, resulting
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in 14 simulated time series (seven objective functions for two different calibration
periods) of streamflow for each catchment modeled.

Table 2. Parameter ranges used during the Genetic Algorithm and Powell
optimization (GAP) calibrations within HBV-light. (˝C, degrees Celsius; mm,
millimeter; D, day).

Parameter Explanation Minimum Maximum Unit

Snow Routine

TT Threshold temperature ´2 2.5 ˝C
CFMAX Degree-day factor 0.5 10 mm¨ ˝C´1¨D´1

SFCF Snowfall correction factor 0.5 1.2 -
CFR Refreezing coefficient 0 0.1 -

CWH Water holding capacity 0 0.2 -

Soil Routine

FC Maximum storage in soil box 100 550 mm

LP Threshold for reduction of evaporation
(relative storage in the soil box) 0.3 1 -

BETA Shape coefficient 1 5 -

Response Routine

PERC Maximal flow from upper to lower box 0 4 mm¨D´1

UZL Maximal storage in the soil upper zone 0 70 mm

K0 Recession coefficient (upper
box, upper outflow) 0.1 0.5 D´1

K1 Recession coefficient (upper
box, lower outflow) 0.01 0.2 D´1

K2 Recession coefficient (lower box) 0.00005 0.1 D´1

Routing Routine

MAXBAS Routing, length of weighting function 1 5 D

Table 3. Definitions criteria used in objective functions for the automatic calibration
trials using the Genetic Algorithm and Powell optimization (GAP) algorithm.

Criterion Description Definition

Reff Model efficiency 1´
ř

pQobs´Qsimq
2

ř

pQobs´Qobsq
2

LogReff Efficiency for log(Q) 1´
ř

plnQobs´lnQsimq
2

ř

plnQobs´lnQobsq
2

Lindström Lindström measure Re f f ´ 0.1 |
ř

pQobs´Qsimq|
ř

pQobsq

MARE Measure based on the Mean
Absolute Relative Error (1) 1´ 1

n
ř |Qobs´Qsim|

Qobs

Spearman Spearman rank correlation (2)
ř

pRobs´RobsqpSsim´Ssimq
b

ř

pRobs´Robsq
2

b

ř

pSsim´Ssimq
2

VolumeError Volume error 1´ |
ř

pQobs´Qsimq|
ř

pQobsq

(1) Where n is the number of days; (2) Where Robs and Ssim are the ranks of Qobs and
Qsim, respectively.
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Table 4. The three combination objective functions used during the Genetic
Algorithm and Powell optimization (GAP) calibrations within HBV-light. The
criteria were weighted equally in each case. See Table 3 for a more detailed
specification of each of the criteria.

Combined Objective Function Criteria

C1 Reff, LogReff, VolumeError
C2 Reff, MARE, Spearman, VolumeError
C3 Spearman, VolumeError

2.4. Evaluation

The choice of the SFCs is based on studies of Knight et al. [6], which identified
12 specific streamflow characteristics, from a larger suite identified in Knight et al. [41],
as most appropriate indicators for fish species richness in the study area (Table 5).
All SFCs were computed using the simulated runoff of each catchment that was
calibrated with one of the seven objective functions and for the two different
calibration and validation time periods. The value of each streamflow characteristic
was determined for both time periods based on the measurement data. All indices
were computed using the free EflowStats R-Package [42].

For each objective function, 100 calibration trials were accomplished per
catchment for both periods (1983–1996 and 1996–2009), producing 100 independently
optimized parameter sets per catchment per simulation period. For each objective
function and streamflow characteristic, the sources of uncertainty in the results were
analyzed. The spread reflects both differences in behavior among the 27 catchments
and uncertainty among the parameter sets, but the relative importance of these two
sources of variability is not uniform. The variability because of differences between
catchments was analyzed by computing the medians of the streamflow characteristics
over the 100 runs per catchment. To be able to compare the median values,
normalization was carried out by dividing the median values by the corresponding
observed flow characteristic value. For analyzing the spread resulting from parameter
uncertainty, the ranges over 100 runs per catchment were divided by the range over
the median values of the different catchments. The spread because of parameter
uncertainty was compared to the variation between the different catchments.

To quantify the performance of objective functions in representing the different
flow characteristics, Spearman rank correlation coefficients and Nash-Sutcliffe
efficiencies (NSEs) were computed between the (median) simulated and observed
flow characteristic values of the 27 different catchments. Where NSE of
1.0 corresponds to identical flow characteristic values between simulated and
observed runoff time series for each catchment, a Spearman rank correlation
coefficient of 1.0 only requires the order of observed and simulated flow characteristic
values to be the same.
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Table 5. Definition of streamflow characteristics used in this study (adapted and
modified from Knight et al., 2014 and Thomson and Archfield, 2014) (mm/day,
millimeters per day; -, no units; %, percent).

Streamflow Characteristic Abbreviation Description Units

Magnitude

Mean annual runoff MA41 Annual mean daily streamflow mm/day

Maximum October runoff MH10 Mean maximum October streamflow
across the period of record mm/day

Lowest 15% of daily runoff Flowperc 85% exceedance of daily mean
streamflow for the period of record mm/day

Rate of streamflow
recession RA7

Median change in log of streamflow
for days in which the change is
negative across the period of record

mm/day

Ratio

Average 30-day maximum
runoff DH13

Mean annual maximum of a 30-day
moving average streamflow divided
by the median for the entire record

–

Stability of runoff TA1
Measure of the constancy of a flow
regime by dividing daily flows into
predetermined flow classes

–

Frequency

Frequency of moderate
floods FH6

Average number of high-flow events
per year that are equal to or greater
than three times the median annual
flow for the period of record

number/year

Frequency of moderate
floods FH7

Average number of high-flow events
per year that are equal to or greater
than three times the median annual
flow for the period of record

number/year

Variability

Variability of March runoff MA26
Standard deviation for March
streamflow divided by the mean
streamflow for March

–

Variability in high-flow
pulse duration DH16

100 times the standard deviation for
the yearly average high-flow pulse
durations (daily flow greater than the
75th percentile) divided by the mean
of the yearly average high pulse
durations

%

Variability of low-flow
pulse count FL2

100 times the standard deviation for
the average number of yearly
low-flow pulses (daily flow less than
the 25th percentile) divided by the
mean low-flow pulse counts

%

Date

Timing of annual minimum
runoff TL1 Julian date of annual minimum flow

occurrence Julian day

3. Results

The model efficiencies that could be achieved for the different catchments varied
from 0.64 to 0.91 (calibration) and 0.61 to 0.90 (validation), indicating reasonably
good runoff simulation with the calibrated HBV-light model. As an example of
the performance of the simulations with regard to the streamflow characteristics,
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the results for two indices (DH16 (variability in high-flow pulse duration) and
MA41 (mean annual runoff)) for one catchment (03455000) are shown in Figure 2.
Each plot contains 28 boxplots (one for each combination of an objective function,
time period and calibration or validation). Each of the boxplots is based on 100
streamflow characteristic values obtained by using the 100 different parameter sets
per catchment for the simulations. In both cases, there were clear deviations of
the flow characteristics computed from the simulated time series compared to the
observed runoff series as indicated by the red lines (red line represents observed SFC
value). The streamflow characteristic DH16 was largely underestimated, especially
for period 1 (1983–1996) (Figure 2a). The spread among the 100 different simulations
was considerably larger for period 2 (1996–2009) than for period 1. For SFCs such
as MA41 (Figure 2b), the performance differences in predicting the streamflow
characteristic were prominent between the four combinations of calibration and
validation periods.
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Figure 2. Boxplots for catchment 4 (03455000) and (a) streamflow characteristic
DH16 (Variability in high-flow pulse duration); (b) streamflow characteristic MA41
(Mean annual runoff). Cal1 and Cal2 are calibration of period 1, respectively period
2, whereas Val1 and Val2 are validation of period 1, respectively period 2.

The agreement between observed and simulated flow characteristics varied
considerably among the different catchments (Figure 3). Each plot contains
28 boxplots (one for each combination of an objective function, time period and
calibration or validation). Each boxplot is based on 27 values (one value per
catchment), which were normalized by dividing the median streamflow characteristic
value based on simulated runoff by the corresponding streamflow characteristic value
computed based on the observed runoff time series. The spread between the different
catchments is much smaller for the streamflow characteristic MA41 (mean annual
runoff) than for the other flow characteristics. Except for the criteria LogReff and
MARE, MA41 was reproduced well for both calibration periods, whereas values were
slightly underestimated when being validated on period 1 and slightly overestimated
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when validated on period 2. Both MA41 (mean annual runoff) and MH10 (maximum
October runoff) were reproduced less well for parameter sets derived by calibration
based on the criteria LogReff and MARE, both of which are more sensitive to low
flow conditions than the other criteria.

The distribution of the 27 relative ranges (per catchment—Dividing the range
over the 100 runs per catchment by the range over the 27 median catchment values)
is a measure for the consistency over the different catchments (Figure 4). While for
some cases there was a low variation (indicated by narrow distributions of relative
range), for many cases a considerable variation was observed. For calibrations based
on the Nash-Sutcliffe efficiency, for instance, the median relative range varied from
around 0.1 for MA41 (mean annual runoff) to above 1 for FL2 (variability of low-flow
pulse count).
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Figure 3. Normalized median flow characteristic values for five different flow
characteristics: (a) DH16 (Variability in high-flow pulse duration); (b) FL2
(Variability of low-flow pulse count); (c) MA41 (Mean annual runoff); (d) MH10
(Maximum October runoff) and (e) TA1 (Stability of runoff). Each color corresponds
to an objective function. Per objective function, the four boxplots represent (from
left to right) calibration period 1 (Cal1), validation period 1 (Val1), calibration period
2 (Cal2) and validation period 2 (Val2). Each boxplot is based on 27 normalized
median flow characteristic values, one value for each of the 27 catchments.
Medians were computed over 100 runs per catchment. Normalization was
carried out by dividing the median values by the corresponding observed flow
characteristic value.
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both the different streamflow characteristics and the different objective functions. While only plots with 

flow characteristics calculated for the first calibration period are shown, results were similar for the other 

calibration and validation periods. The performance for all streamflow characteristics and all combinations 
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Figure 4. Relative ranges as a measure for parameter uncertainty for streamflow
characteristics (a) DH16 (Variability in high-flow pulse duration); (b) FL2
(Variability of low-flow pulse count); (c) MA41 (Mean annual runoff); (d) MH10
(Maximum October runoff) and (e) TA1 (Stability of runoff). Each color corresponds
to an objective function. Per objective function, the four boxplots represent (from
left to right) calibration period 1 (Cal1), validation period 1 (Val1), calibration period
2 (Cal2) and validation period 2 (Val2). Each boxplot is based on 27 values, one value
for each of the 27 catchments. Relative ranges were computed by dividing the range
over the 100 runs per catchment by the range over the 27 median catchment values.
Note that the Mean annual runoff (MA41) has been plotted on a different scale.

Agreement among the different streamflow characteristics and the different
objective functions varied considerably (Figure 5). Comparison of streamflow
characteristics based on observed runoff series against the medians of those obtained
from simulated time series allows evaluating the agreement in relation to the
variation between catchments. These scatter plots show that the agreement varied
considerably among both the different streamflow characteristics and the different
objective functions. While only plots with flow characteristics calculated for the
first calibration period are shown, results were similar for the other calibration
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and validation periods. The performance for all streamflow characteristics and all
combinations of calibration/validation periods were evaluated using the Spearman
rank correlation coefficients (Table 6), which evaluates how well the relative ranking
of the indices between the catchments is captured, and the model efficiencies (Table 7),
which evaluate how well the exact values were predicted. Typically, the values were
similar for periods 1 and 2, when the parameterizations obtained by calibration for
the respective period were used, resulting in a median difference of 0.015 for the
Spearman Rank correlation and 0.0855 for NSE. In general, results are expected to be
poorer for the validation period in comparison to the calibration period; however,
for the respective validation periods the values were only slightly lower (median
difference of ´0.0215 (Spearman) and ´0.029 (NSE)). This indicates that results
were similar for the two periods and were similar when looking at the validation
periods. The average median percent error for estimated streamflow characteristics
was almost always less than zero, indicating that the objective functions used for
model calibration typically underestimated each of the 12 streamflow characteristics
being evaluated (Table 8).
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Figure 5. Scatterplots for the streamflow characteristics (a) DH16 (Variability in
high-flow pulse duration); (b) FL2 (Variability of low-flow pulse count); (c) MA41
(Mean annual runoff); (d) MH10 (Maximum October runoff) and (e) TA1 (Stability
of runoff) for calibration period 1. The points represent the median value of all
100 calibration trials in each catchment based on single criteria objective functions
(left column) and multi-criteria objective functions (right column).

270



Table 6. Spearman rank correlation coefficients between objective functions
(horizontal) and streamflow characteristics (vertical) based on observed respective
simulated streamflow (for each group of four values: upper ´ left = calibration
period 1 (Cal1), upper ´ right = validation period 2 (Val2), lower ´ left = validation
period 1 (Val1), lower ´ right = calibration period 2 (Cal2)). Colors are ranging
from white (for a Spearman rank correlation of 0) to dark green (for a Spearman
rank correlation of 1).

Reff LogReff Lindström MARE C1 C2 C3

MA41
0.973 0.978 0.930 0.927 0.980 0.983 0.919 0.918 0.980 0.981 0.947 0.928 0.981 0.986
0.957 0.991 0.929 0.947 0.961 0.998 0.926 0.950 0.961 1.000 0.952 0.979 0.962 1.000

MH10
0.930 0.831 0.874 0.853 0.916 0.837 0.834 0.829 0.941 0.837 0.958 0.874 0.918 0.898
0.960 0.940 0.862 0.868 0.958 0.934 0.822 0.829 0.957 0.918 0.942 0.903 0.885 0.933

Flowperc 0.796 0.978 0.810 0.986 0.790 0.961 0.814 0.979 0.808 0.980 0.810 0.983 0.685 0.867
0.778 0.985 0.808 0.996 0.781 0.980 0.804 0.996 0.803 0.995 0.806 0.996 0.683 0.897

RA7
0.736 0.724 0.877 0.885 0.726 0.735 0.888 0.896 0.870 0.873 0.851 0.892 0.696 0.797
0.756 0.836 0.930 0.930 0.719 0.775 0.848 0.902 0.878 0.919 0.880 0.917 0.744 0.789

DH13
0.977 0.938 0.974 0.948 0.971 0.908 0.960 0.960 0.981 0.945 0.976 0.945 0.926 0.691
0.955 0.866 0.976 0.937 0.955 0.877 0.964 0.957 0.971 0.910 0.978 0.885 0.871 0.573

TA1
0.972 0.929 0.968 0.943 0.977 0.906 0.947 0.974 0.968 0.884 0.960 0.899 0.875 0.766
0.936 0.956 0.933 0.966 0.952 0.942 0.884 0.936 0.958 0.948 0.942 0.964 0.904 0.924

FH6
0.943 0.851 0.916 0.906 0.935 0.875 0.728 0.863 0.953 0.916 0.900 0.921 0.569 0.663
0.926 0.888 0.853 0.931 0.931 0.898 0.634 0.855 0.942 0.930 0.901 0.919 0.498 0.613

FH7
0.948 0.933 0.881 0.889 0.949 0.935 0.810 0.887 0.967 0.945 0.965 0.952 0.688 0.563
0.927 0.951 0.842 0.889 0.941 0.960 0.763 0.805 0.945 0.967 0.944 0.967 0.480 0.520

MA26
0.849 0.917 0.789 0.906 0.855 0.920 0.704 0.858 0.894 0.923 0.903 0.915 0.631 0.856
0.752 0.932 0.699 0.894 0.782 0.935 0.672 0.829 0.821 0.933 0.831 0.928 0.381 0.769

DH16
0.534 0.645 0.443 0.662 0.503 0.673 0.402 0.471 0.510 0.745 0.525 0.683 0.145 0.482
0.429 0.549 0.421 0.654 0.410 0.514 0.346 0.645 0.526 0.659 0.511 0.650 0.094 0.518

FL2
0.521 0.443 0.740 0.628 0.609 0.449 0.734 0.703 0.709 0.602 0.684 0.668 0.755 0.594
0.548 0.617 0.659 0.604 0.579 0.659 0.641 0.626 0.672 0.711 0.620 0.695 0.616 0.628

TL1
0.477 0.394 0.643 0.520 0.471 0.347 0.612 0.753 0.603 0.330 0.531 0.428 0.574 0.418
0.407 0.112 0.646 0.546 0.418 0.065 0.623 0.777 0.497 0.362 0.531 0.201 0.600 0.280

4. Discussion

In the absence of observed data, environmental flow studies necessarily rely
on some form of streamflow estimation to model the response of aquatic ecology to
alteration of the streamflow regime. Knight et al. [23] and Murphy et al. [8] raised
the question of validity and began evaluation of model accuracies for predicting
known ecologically-relevant streamflow characteristics. Murphy et al. [8] and
Shrestha et al. [9] highlight that typical calibration approaches, often focused on
daily, monthly, or annual mean values, are inadequate when predicting more
subtle aspects of the flow regime. An increasing body of work is making use
of statistical modeling approaches to address hydrologic and hydro-ecological
questions [5,7,43–45]. However, as already stated by Murphy et al. [8] and
Shrestha et al. [9], runoff models have advantages as well as limitations, particularly in
regard to developing streamflow time series reflecting land cover, human population,
or climatic projections. As such, runoff models should be closely evaluated to better
understand if the calibration approaches and predictive accuracies yield results
amenable to their end use.
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Table 7. Nash-Sutcliffe efficiencies between objective functions (horizontal) and
streamflow characteristics (vertical) based on observed respective simulated
streamflow (for each group of four values: upper ´ left = calibration period
1 (Cal1), upper ´ right = validation period 2 (Val2), lower ´ left = validation period
1 (Val1), lower ´ right = calibration period 2 (Cal2)). Colors are ranging from white
(for Nash-Sutcliffe efficiencies of 0 or lower) to dark green (for a Nash-Sutcliffe
efficiency of 1).

Reff LogReff Lindström MARE C1 C2 C3

MA41
0.917 0.936 0.840 0.881 0.936 0.933 0.584 0.626 0.946 0.939 0.922 0.927 0.949 0.930
0.858 0.967 0.746 0.835 0.900 0.993 0.490 0.554 0.914 0.999 0.875 0.965 0.916 1.000

MH10
0.848 0.820 ´0.627 0.570 0.841 0.796 ´3.942 ´1.220 0.820 0.871 0.796 0.879 ´1.630 0.663
0.859 0.934 ´0.931 0.332 0.874 0.926 ´5.692 ´2.258 0.848 0.926 0.756 0.850 ´1.367 0.667

Flowperc 0.416 0.749 0.611 0.837 0.356 0.660 0.647 0.960 0.463 0.680 0.614 0.804 0.170 0.477
0.484 0.868 0.569 0.967 0.491 0.820 0.465 0.966 0.538 0.848 0.591 0.939 0.373 0.669

RA7
0.209 0.281 0.071 0.193 0.279 0.370 ´0.420 ´0.284 ´0.043 ´0.063 ´0.229 ´0.197 ´9.226 ´7.224
´0.628 ´0.230 0.369 0.385 ´0.608 ´0.277 0.156 0.186 0.276 0.252 0.190 0.231 ´5.173 ´4.088

DH13
0.372 ´0.164 0.884 0.472 ´0.601 ´1.895 0.910 0.858 0.797 0.522 0.770 0.874 ´7.603 ´20.044
0.638 0.427 0.919 0.748 0.437 ´0.030 0.814 0.914 0.902 0.813 0.672 0.817 ´4.235 ´14.891

TA1
0.898 0.432 0.856 0.882 0.829 0.108 0.672 0.803 0.918 0.477 0.886 0.749 0.502 -1.020
0.863 0.912 0.718 0.845 0.892 0.926 0.548 0.685 0.881 0.974 0.839 0.953 0.806 0.705

FH6
0.709 0.628 ´1.354 ´0.967 0.660 0.559 ´7.331 ´4.461 0.513 0.502 0.210 0.282 ´3.781 ´5.629
0.714 0.622 ´0.788 ´0.465 0.717 0.612 ´4.768 ´3.426 0.736 0.680 0.533 0.522 ´2.536 ´4.020

FH7
0.746 0.756 ´0.440 ´1.246 0.585 0.600 ´0.752 ´1.837 0.769 0.725 0.842 0.820 ´13.413 ´22.837
0.813 0.826 0.290 ´0.242 0.801 0.820 ´0.260 ´0.612 0.912 0.930 0.932 0.954 ´9.425 ´11.728

MA26
0.618 0.849 0.080 0.033 0.582 0.832 ´0.418 ´1.114 0.789 0.882 0.848 0.872 ´4.116 ´4.256
0.331 0.862 0.184 0.320 0.324 0.886 0.178 ´0.513 0.500 0.894 0.564 0.878 ´1.898 ´2.343

DH16
´3.044 ´0.329 ´3.375 0.050 ´3.323 ´0.307 ´0.463 ´0.371 ´3.727 ´0.006 ´2.768 0.192 ´3.474 ´0.562
´0.937 ´0.182 ´2.056 0.186 ´1.012 ´0.234 ´1.025 0.006 ´1.535 ´0.092 ´1.562 0.119 ´2.785 ´0.309

FL2
0.118 ´1.176 ´0.469 ´1.557 0.201 ´0.931 ´0.556 ´1.448 ´0.266 ´0.827 ´0.167 ´1.773 0.139 ´0.948
´0.040 ´1.198 ´0.530 ´1.841 0.056 ´1.123 ´0.759 ´1.703 ´0.203 ´0.409 ´0.132 ´1.246 -0.104 ´1.018

TL1
´0.376 ´4.676 ´0.211 ´3.016 ´0.310 ´5.502 ´0.361 ´2.672 ´0.017 ´4.483 ´0.196 ´4.053 ´0.023 ´2.708
´0.505 ´4.322 ´0.250 ´3.892 ´0.518 ´4.338 ´0.557 ´2.218 ´0.400 ´4.503 ´0.489 ´5.932 0.021 ´3.529

Table 8. Median percent error for streamflow characteristics by model objective
function for calibration period 1 (Cal1).

Objective
Function MA41 MH10 RA7 TA1 DH13 FH7 FH6 FL2 MA26 DH16 TL1 E85

Average
Median Error

(Percent)

Lindström ´0.6 ´1.8 ´25.0 ´15.2 ´18.1 ´23.0 ´12.0 16.8 9.1 ´20.8 3.7 19.1 ´5.6
LogReff ´9.5 ´20.0 ´50.0 7.7 ´9.5 ´37.5 ´27.0 26.9 ´7.3 ´10.0 4.8 15.2 ´9.7
MARE ´18.9 ´44.0 ´57.1 25.0 ´7.4 ´44.4 ´41.4 28.2 ´19.6 9.9 5.5 ´7.3 ´14.3

Reff ´2.5 ´2.1 ´18.2 ´10.8 ´14.7 ´20.0 ´12.0 17.5 9.8 ´20.2 4.2 9.8 ´4.9
C1 0.0 ´4.8 ´50.0 ´7.7 ´13.1 ´19.0 ´14.1 28.6 4.9 ´19.7 3.4 29.9 ´5.1
C2 ´0.8 ´10.6 ´42.9 0.0 ´7.5 ´14.0 ´18.2 17.7 2.2 ´16.4 4.0 13.2 ´6.1
C3 0.0 ´24.5 ´44.4 ´18.9 ´18.9 ´69.3 ´37.6 23.6 ´28.1 ´12.5 3.4 24.1 ´16.9

Average
Median
Percent

Error

´4.6 ´15.4 ´41.1 ´2.8 ´12.7 ´32.5 ´23.2 22.8 ´4.2 ´12.8 4.1 14.9 –

While the HBV-light model was used in this study, there is little reason to
assume that results would be discernibly different if another calibrated runoff model
were used. Partly this reflects the fact that most mechanistic runoff models are
fundamentally similar in concept and application, using more or less the same or
similar routines. Fundamentally, if calibration is used, the simulated series are fitted
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to the observed series according to some objective function, and regardless of the
specific model being used, this fit does not ensure agreement in all possible aspects
of the hydrograph shape.

The accuracy of prediction and appropriateness of calibration is important in
the context of environmental flow application as error of predicting flow-regime
components will be translated and probably amplified as error in estimating
ecological response. A given approach to model calibration will lead to accurate
prediction of the runoff with regard to the used objective function measure, however
accurate prediction of other aspects may be lacking. For example, Knight et al. [41]
(Figure 2) published linear functions representing the 80th quantile upper-bound
relationship of specialized insectivore scores to three streamflow characteristics (TA1,
FH6, and RA7; see Table 5 for definitions). Following Murphy et al. [8], we use
these relations to evaluate the accuracy of streamflow characteristic predictions as
well as predicted ecological response based on the seven calibration approaches
discussed herein for a single model (catchment 03488000). Using the equations
from Knight et al. [41] and simulated streamflow presented in this paper, values of
insectivore scores varied from 0.49 to 0.87 for RA7, 0.53 to 0.8 for TA1, and 0.58 to
0.84 for FH6 (Table 9; Figure 6). While median percent difference error for estimated
specialized insectivore score for RA7 was a modest 8.2 percent under the estimate
using observed data, individual departures from the observed values ranged from
´19.7 to 42.6 percent for RA7, ´13.1 to 31.1 percent for TA1, and ´10.8 to 29.2
percent for FH6. Model results in this example are similar to those for a regional
regression model reported by Murphy et al. [8] (9 percent difference for streamflow
characteristic and 16 percent over estimation for insectivore score using HBV-light.
Results presented here are considerably different than those for a rainfall-runoff
model example from Murphy et al. [8], showing 90 percent overestimated for the
same ecological score.

The objective functions used for model calibration resulted overall in an
underprediction of the 12 streamflow characteristics being evaluated (Table 8). The
general underprediction of the flow characteristics is a result similar to that seen
in Murphy et al. [8] where a TOPMODEL application calibrated on mean annual
flow was evaluated in the context of predicting the same streamflow characteristics.
The median errors presented here are within plus-or-minus 30 percent of observed
values, proposed by Kennard et al. [46] as an acceptable band of uncertainty, for
8 to 12 streamflow characteristics (out of 12) depending on the objective function
(Figure 7, Table 8). This is in stark contrast to the rainfall runoff model evaluated in
Murphy et al. [8] ) where 13 of 19 streamflow characteristics were outside this band.
While similar patterns are seen in overall model results, the calibration approaches
evaluated in this paper appear to have provided more accurate estimates across the
flow regime as defined by these characteristics. These results can be attributed both
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to the use of 100 parameter sets, which resulted in more robust flow characteristic
estimations, and the use of different objective functions. Parameter uncertainty
was substantial for many streamflow characteristics depending on which objective
function was used. Despite this, high model efficiencies could still be achieved
in many cases when using the median of 100 calibration trials as a more robust
prediction for streamflow characteristics.

Table 9. Comparison of selected streamflow characteristics based on simulated and
observed streamflow time series for a single model location (site 13 (03488000))
and calibration period 1 (Cal1). (TA1, RA7, and FH6, defined in Table 5;
values in parentheses represent the specialized insectivore score using the
associated streamflow characteristic value based on linear equations presented
in Knight et al. [41], Figure 2; hydro, percent error for streamflow characteristic
derived from simulated and observed streamflow time series; eco, percent error
for specialized insectivore score based on streamflow characteristic derived from
simulated and observed streamflow time series).

Objective Function
(see Table 3 for

Definitions)

RA7 Percent
Error TA1 Percent

Error FH6 Percent
Error

Simulated Observed Hydro/Eco Simulated Observed Hydro/Eco Simulated Observed Hydro/Eco

Lindström 0.14
(0.49) 27.3/´19.7 0.4 (0.55) ´16.7/´9.8 13 (0.59) 13.4/´9.2

LogReff 0.1 (0.66) ´9.1/8.2 0.67 (0.75) 39.6/23 10.08 (0.7) ´12/7.7

MARE 0.06
(0.83)

0.11
(0.61)

´45.5/36.1 0.73 (0.8)

0.48
(0.61)

52.1/31.1 6.62 (0.84)

11.46
(0.65)

´42.2/29.2

Reff 0.125
(0.55) 13.6/´9.8 0.41 (0.56) ´14.6/´8.2 13.38 (0.58) 16.8/´10.8

C1 0.12
(0.57) 9.1/´6.6 0.43 (0.57) ´10.4/´6.6 12.92 (0.59) 12.7/´9.2

C2 0.09 (0.7) ´18.2/14.8 0.57 (0.68) 18.8/11.5 12.38 (0.62) 8/´4.6

C3 0.05
(0.87) ´54.5/42.6 0.38 (0.53) ´20.8/´13.1 6.54 (0.84) ´42.9/29.2
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Figure 6. Example of an ecological flow application by comparison of estimated
values for three streamflow characteristics for site 13 (03488000) (Table 1, Figure 1)
and calibration period 1 (Cal1). (a) Constancy; (b) Frequency of moderate flooding
(number per year) and (c) Rate of streamflow recession (log of flow units per day).
Black triangles represent model estimated values based on the seven objective
functions. Green triangle represents streamflow characteristics based on observed
data. Values for RA7 (Rate of streamflow recession) were multiplied by negative
1 to convert values to those in the original analysis. Thin black lines represent
80th percentile quantile regression lines based on the 33 data point (grayed) in the
background used by Knight et al. [41]. (Figure modified from Knight et al. [41]).
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Figure 7. Minimum, maximum, and median percent errors according to objective
function and streamflow characteristic for calibration period 1 (Cal1). Each vertical
bar is based on the median error for the 27 catchments. The gray band in the
center of the figure represents ˘30 percent difference [46] Vertical bars with arrows
indicate the maximum percent error exceeded the axis scale.
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While the low average median percentage error would indicate a good
performance with regard to the estimated flow characteristics, the scatter plots
and computed Nash-Sutcliffe efficiencies and Spearman rank correlations reveal a
slightly different picture. Spearman rank correlations were rather high for many of
the objective functions and streamflow characteristics. For many of those objective
function and flow characteristic combinations, however, Nash-Sutcliffe efficiencies
were much lower. This shows that, although a clear bias might be observed in
the predicted streamflow characteristic values, the order between the catchments
was preserved quite well. In practice it might be more important to determine
how well the flow characteristics are reproduced relative to the variation among
catchments in the region than to determine the relative error value. When evaluating
the scatter plots (Figure 5), low values of the Nash-Sutcliffe efficiencies indicated
that the represented variability was relatively low, and the low Spearman rank
correlations indicated that some flow characteristics that were not similar on a
ranking scale were estimated correctly for the different catchments.

Considering individual streamflow characteristics, a pattern in predictive
accuracy is evident. Most notably, streamflow characteristics that reflect average
conditions (MA41, MA26, TA1, and TL1) were predicted quite well, with average
median percent errors ranging from 2.8 to 4.6 percent absolute (Table 8). However, for
some of these characteristics, especially TL1, the relative variation of the simulated
values among the catchments were rather poor (Tables 6 and 7). Aspects of
the hydrograph representative of high-flow conditions (MH10, FH7, FH6, DH13,
DH16, and RA7) were underpredicted consistently (between 12.7 and 41.1 percent),
with individual model calibrations underpredicting values up to 70 percent under
observed. Low-flow characteristics were overpredicted (FL2 and E85) by 22.8 and
14.9 percent respectively. This appears to indicate that the model, regardless of
calibration, may be retaining water during high-flow periods and allowing it to
release during low-flow periods. The considerable underprediction of RA7 (rate
of streamflow recession) indicates that higher flow events receded at a slower rate,
which is suggestive of water stored in groundwater, and subsequently abundant
groundwater discharge. The underprediction of RA7 and overprediction of low-flow
characteristics are complementary.

MA41 (mean annual runoff) was predicted extremely well, particularly when
using those calibrations where the objective function included the volume error
as criterion, which is expected as this criterion is equivalent to the mean annual
runoff. Predictions of MA41 also performed quite well when calibrated using the
Nash-Sutcliffe efficiency. This performance might be attributed to the sensitivity
of the Nash-Sutcliffe efficiency for high flows, which could reduce the error in
the estimation of mean annual runoff. As noted by Murphy et al. [8], inclusion of
ecological flow characteristics as criteria in calibrations may yield better simulations.

276



5. Conclusions

The accuracy of simulated runoff resulting from seven objective functions was
evaluated in this paper by comparing streamflow characteristics based on observed
and predicted streamflow time series. While the ultimate goal is to produce the
most accurate simulated streamflow time series at ungauged catchments based on
the transfer of calibrated parameter sets from gauged to ungauged catchments, the
comparison in this study addresses an important part of the total uncertainty, namely
the uncertainty related to the prediction accuracy specific streamflow characteristics
that were not part of the calibration routine. The primary conclusion is that good
model performance in terms of objective functions, such as the frequently used
Nash-Sutcliffe model efficiency, does not ensure that all flow characteristics computed
from these simulations will correspond to those derived from observed runoff. This is
an important consideration that is often overlooked by users of model output who use
simulated time series for various analyses, supporting resource allocation decisions,
or establishing flow policy. While expecting simulated runoff series to agree with
the observed in all possible aspects is unreasonable, this analysis serves as a further
reminder of the substantial errors possible, using ecological flow characteristics as
the example.

Two novel approaches were used in this study. First, we evaluated the
effectiveness of seven objective functions for simulating streamflow time series
and subsequent streamflow characteristic calculations. This allowed for critical
examination of the importance of the objective function choice, as results differed
substantially among objective functions. Results indicate there was no single
best calibration strategy, but not surprisingly, different strategies provided better
predictions for different streamflow characteristics. However, there was some
indication that the combined objective functions, which evaluate the runoff
simulations in different aspects, might be generally more suitable across a range
of flow characteristics. Second, parameter uncertainty was explicitly considered
by using the combination of 100 different equally possible parameter sets for each
calibration trial instead of the typical single optimal calibrated parameter set. Our
results confirmed the value of this approach by showing that different parameter
sets can be similar with respect to the objective function used (similarity between the
Nash-Sutcliffe for example) but differ greatly with respect to other characteristics.
We demonstrated that using only one parameter set could result in substantial
uncertainties, which can be reduced by using the values based on several parameter
sets as more robust estimation.

More research is needed to determine which objective functions are most
useful to ensure acceptable simulations of ecological flow characteristics, or other
regime-defining characteristics. One suitable approach beyond the objective
functions used in this paper might be to include streamflow characteristics of
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particular interest as objective functions in the calibration. This corresponds to
the suggestion to include various hydrological signatures as diagnostic tools [47].
The fact that simulation-based flow characteristics varied largely depending upon
which objective functions were used indicates that there is a considerable potential
to improve model calibrations by considering specific flow characteristics when
evaluating model performance during calibration. While it can be expected that
performances improve when a certain streamflow characteristic is explicitly included
in the objective function, it is less clear which criteria should be included to
ensure acceptable simulations for calculation of streamflow characteristics in general.
Further research is therefore motivated to explore which criteria to include in the
objective function to obtain streamflow simulations that preserve as many streamflow
characteristics as possible.
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Modeling of Soil Water and Salt Dynamics
and Its Effects on Root Water Uptake in
Heihe Arid Wetland, Gansu, China
Huijie Li, Jun Yi, Jianguo Zhang, Ying Zhao, Bingcheng Si, Robert Lee Hill,
Lele Cui and Xiaoyu Liu

Abstract: In the Heihe River basin, China, increased salinity and water shortages
present serious threats to the sustainability of arid wetlands. It is critical to
understand the interactions between soil water and salts (from saline shallow
groundwater and the river) and their effects on plant growth under the influence
of shallow groundwater and irrigation. In this study, the Hydrus-1D model was
used in an arid wetland of the Middle Heihe River to investigate the effects of
the dynamics of soil water, soil salinization, and depth to water table (DWT) as
well as groundwater salinity on Chinese tamarisk root water uptake. The modeled
soil water and electrical conductivity of soil solution (ECsw) are in good agreement
with the observations, as indicated by RMSE values (0.031 and 0.046 cm3¨ cm´3 for
soil water content, 0.037 and 0.035 dS¨m´1 for ECsw, during the model calibration
and validation periods, respectively). The calibrated model was used in scenario
analyses considering different DWTs, salinity levels and the introduction of preseason
irrigation. The results showed that (I) Chinese tamarisk root distribution was greatly
affected by soil water and salt distribution in the soil profile, with about 73.8% of
the roots being distributed in the 20–60 cm layer; (II) root water uptake accounted
for 91.0% of the potential maximal value when water stress was considered, and for
41.6% when both water and salt stress were considered; (III) root water uptake was
very sensitive to fluctuations of the water table, and was greatly reduced when the
DWT was either dropped or raised 60% of the 2012 reference depth; (IV) arid wetland
vegetation exhibited a high level of groundwater dependence even though shallow
groundwater resulted in increased soil salinization and (V) preseason irrigation
could effectively increase root water uptake by leaching salts from the root zone. We
concluded that a suitable water table and groundwater salinity coupled with proper
irrigation are key factors to sustainable development of arid wetlands.

Reprinted from Water. Cite as: Li, H.; Yi, J.; Zhang, J.; Zhao, Y.; Si, B.; Hill, R.L.;
Cui, L.; Liu, X. Modeling of Soil Water and Salt Dynamics and Its Effects on Root
Water Uptake in Heihe Arid Wetland, Gansu, China. Water 2015, 7, 2382–2401.
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1. Introduction

In arid and semi-arid wetlands, salinity and water scarcity are two serious and
chronic environmental problems threatening the ecosystem [1]. In the Heihe River
basin, China, wetlands are now often experiencing extended periods of high soil
salinization levels and associated water availability problems due to the impacts of
high evaporative conditions, poor surface drainage, human population pressures,
and the associated changes in land use [2,3]. Soil salinity limits plant growth [4]
and negatively influences soil quality [5,6], resulting in the change of community
structure, density, and growth status. Wetland areas decreased by 42% from 1975
to 2010 within the middle Heihe River basin [7]. Reed marsh areas decreased
from 597.8 ha in the late 1990s to the current 492 ha, and that the reed plant
height and reed stem were reduced by 25% and 4%, respectively [8]. Owing to
the changes in water availability, land desiccation, and salinization, the vegetation
has shifted from hydrophytes towards halophytes, psammophytes, xerophytes and
super-xerophytes [9]. Meanwhile, soil salinization has caused clogging of soil pores
and channels for water flow that has resulted in a considerable reduction in soil
permeability, soil porosity, and soil hydraulic conductivity [10]. Consequently, before
developing reliable countermeasures, it is important to evaluate the interactions
between soil water and salts and their impacts on plant water use, based on factors
such as the groundwater quality, the water table, and the plant tolerance to salinity.

In an arid climate where rainfall is very limited, shallow groundwater plays a
key role in ecosystem functions. Therefore, it is particularly important to understand
the effects of the depth to the water table (DWT) and groundwater quality on root
zone water contents, salinity, and plant water use. Jolly et al. [1] concluded that
in arid/semiarid environments, where the surface water regime was vulnerable to
rainfall variability, the persistence of wetlands can be dependent, either completely
or partially, on the contributions from groundwater. Ayars et al. [11] reported that the
potential for meeting crop water needs from shallow groundwater ranged up to 50%
of the total irrigation. Crops like alfalfa and forage grasses exhibit more continuous
water uptake patterns for their long growing seasons and robust root systems [12].
However, most of these previous studies have focused on farmland with few of them
giving consideration to wetlands, especially in arid environments [1].

The interactions between the soil water, salt, shallow groundwater, and root
water uptake are complex and influenced by numerous factors. Evaluating the
interactions of these factors through field research is difficult and time-consuming.
In addition, salt variation is often small and is not easily detectable in a single growth
season. Simulation models that integrate the soil water movement, solute transport,
and plant water uptake provide information that otherwise cannot be obtained from
field experiment [13]. Since the 1970s, many numerical solutions were developed
to describe water and solute transport [14–16]. Most of these models are based on
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the solutions to the Richards equation for water flow and the convection-dispersion
equation (CDE) for solute transport [17]. However, accurate predictions of these
models rely on precise measurement of hydraulic characteristics [18]. For some
parameters (e.g., α, n and l in the van Genuchten-Mualem function [19,20]), however,
it is difficult to measure hydraulic characteristics at the plot scale. Numerous
studies have indicated that the laboratory measured hydraulic parameters and/or
parameters derived from pedotransfer functions, in combination with inverse
optimization algorithms are an effective approach for improving the description of
unsaturated hydraulic functions [4,17,21].

In this study, a widely used model Hydrus-1D [22], which simulates
one-dimensional transport of water, heat, and multiple solutes in variably saturated
media, was adopted to simulate the soil water flow, solute transport and root water
uptake in an arid wetland with shallow saline groundwater. Our objectives were:
(I) to test the feasibility of the Hydrus-1D model approach in simulating water flow
and solute transport with observed data; (II) to characterize the interactions between
soil water, salt, and groundwater and their effects on Chinese tamarisk root water
uptake and root distribution, and (III) to conduct scenario analyses for the soil water,
salt dynamics and root water uptake under different conditions. In addition, the
long term salinity trends under different DWTs and groundwater salinities (ECgw)
were investigated.

2. Materials and Methods

2.1. Study Area

The study area is located at Pingchuan town, in the Middle Heihe River basin,
Gansu, China (39˝201 N, 100˝061 E). The landform is representative of a riparian
wetland covered with Chinese tamarisk, which is the dominant plant community in
this area and in the study area served as a shelter forest. Soil electrical conductivities
(soil/water ratio of 1/5, EC1:5) ranged between 1.51 and 26.72 dS¨m´1. The DWT
ranged from 0.47 m in the rainy fall to 1.44 m in the dry winter. The salinity of
the shallow groundwater varied between 2.0 and 4.0 dS¨m´1. The climate is a
continental arid temperate zone with annual average precipitation of 116.7 mm from
1965 to 2010 with about 60% of the precipitation received during July–September.
The annual average potential evaporation is 2366 mm¨year´1. The annual average
temperature is 7.6 ˝C, and the lowest and highest temperatures are about ´27 ˝C in
January and 39.1 ˝C in July, respectively [23]. Soil was formed from alluvial deposits
with a silty loam texture (Table 1).
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Table 1. Soil physical properties and calibrated parameters at the study area.

Soil Layer (cm) 0–15 15–25 25–55 55–65 65–100 100–150

Texture Silt Loam Silt Loam Silt Loam Silt Loam Silt Loam Coarse Sand

Clay (%) 11 10 11 13 16 -
Silt (%) 54 65 66 64 56 -

Sand (%) 35 25 23 23 28 100
Bulk

density(g¨ cm´3)
1.2 1.35 1.42 1.44 1.44 1.42

θr (cm3¨ cm´3) 0.093 0.08 0.075 0.071 0.079 0.051
θs(cm3¨ cm´3) 0.543 0.493 0.502 0.462 0.534 0.376
α (cm´1) 0.019 0.028 0.032 0.033 0.035 0.034

n 2.06 1.70 1.50 1.36 1.71 4.43
l 0.5 0.5 0.5 0.5 0.5 0.5

Ks (cm¨ d´1) 2.5 10.6 24.7 6.7 34.0 1428.0
λ (cm) 16.8 19.5 48.2 29.1 10.8 124.0

Note: The particle size limits were 0.05 to 2 mm for sand, 0.05–0.002 mm for silt and
<0.002 mm for clay. θr, residual water content; θs, saturated water content; α, reciprocal
value of air entry pressure; n, the smoothness of pore size distribution; l, pore connectivity
parameter; Ks, saturated hydraulic conductivity; and λ, dispersivity.

2.2. Measurements

Field data were collected during two growing seasons of Chinese tamarisk (2 May
to 27 October 2012 and 2013). Soil water content was measured using a Neutron
Moisture Meter (NMM, L520-D, Nanjing, China) every 5 days with a depth interval
of 10 cm down to 100 cm. Soil salinity based on the soil diluted extract method
(soil/water ratio of 1/5, EC1:5) was measured every 15 days with a measurement
interval of 10 cm down to 90 cm. A shallow monitoring well was installed in the
vicinity of the neutron probe to measure DWT every 5 days. The groundwater
electrical conductivity (ECgw) was measured every 15 days. At the beginning of
the experiment, undisturbed soil samples (diameter, 5 cm, height 5 cm) from five
representative layers were collected for the laboratory measurement of soil bulk
density (BD), texture, saturated hydraulic conductivity (Ks) and water content (θs).
The BD was calculated from the volume-mass relationship for each core sample.
Soil texture was determined using the pipette sampling method [24]. Ks values of
the undisturbed soil cores were determined using a falling head method [25]. The
soil cores were first saturated from the bottom and then submerged in water for
24 h. After weighing, the saturated soil samples were dried at 105 ˝C to constant
mass, and their mass-based saturated soil water content was determined. θs values
were determined by multiplying saturated mass-based soil water content with BD.
In addition, root distribution was measured using a root auger (Eijkelkamp, The
Netherlands), and soil cores were sampled in 10 cm depth increments. Root biomass
was obtained by washing away soil particles, oven-dried and weighed (Figure 1).
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Figure 1. Graphical representation of (a) the root distribution of Chinese tamarisk 

measured at the start of the 2012 growing season and (b) the average value of soil water (θ) 

and ECsw during the 2012 growing season. 

2.3. Model Simulation  

2.3.1. Soil Water Flow and Solute Transport 

Simulations of soil water flow and solute transport were performed with Hydrus-1D [22]. This 

program numerically solves the Richards equation for water flow and uses advection-dispersion 

equations (CDE) for heat and solute transport in variably saturated porous media. Variably-saturated 

water flow is described using the Richards’ equation: = (ℎ) ℎ + 1 − ( , ) (1)

where θ is soil water content (L3·L−3), t is time (T), z is the vertical space coordinate (L), K is the 

hydraulic conductivity (L·T−1), h is the pressure head (L), S is the sink term accounting for root water 

uptake (L3·L−3·T−1). The unsaturated soil hydraulic properties were described using the van 

Genuchten-Mualem functional relationships [19,20]: 

θ(h) = θ + θ − θ(1 + |αℎ| ) ℎ < 0θ ℎ ≥ 0 (2)

K(h) = [1 − (1 − / ]  (3)= θ − θθ − θ  (4)

where θr and θs are the residual and saturated water contents (L3·L−3), respectively. Ks (L·T−1) is the 

saturated hydraulic conductivity, α, (L−1) and n represent the empirical shape parameters, m = 1 − 1/n;  

l is the pore connectivity parameter, which is taken as 0.5 [20]. Se is the effective saturation. 

0

0

0

0

0

0

0

0

0

0

0

0

0 1 2 3 4 5

 

 

root dry weight (g)

 root dry weight

a)

0.25 0.30 0.35 0.40 0.45
100

90

80

70

60

50

40

30

20

10

0

 θ 

 

pr
of

il
e 

de
pt

h 
(c

m
)

θ (cm3 cm-3)

b)

0 100 200 300 400

 EC
sw

EC
sw

 (dS/m)

0–10

10–20

20–30

30–40

40–50

50–60

60–70

70–80

80–90

90–100

100–110

110–120

Pr
of

ile
 d

ep
th

 (c
m

)

Figure 1. Graphical representation of (a) the root distribution of Chinese tamarisk
measured at the start of the 2012 growing season and (b) the average value of soil
water (θ) and ECsw during the 2012 growing season.

2.3. Model Simulation

2.3.1. Soil Water Flow and Solute Transport

Simulations of soil water flow and solute transport were performed with
Hydrus-1D [22]. This program numerically solves the Richards equation for water
flow and uses advection-dispersion equations (CDE) for heat and solute transport in
variably saturated porous media. Variably-saturated water flow is described using
the Richards’ equation:

Bθ

Bt
“
B

Bz

„

K phq
ˆ

Bh
Bz
` 1

˙

´ S pz, tq (1)

where θ is soil water content (L3¨L´3), t is time (T), z is the vertical space coordinate
(L), K is the hydraulic conductivity (L¨T´1), h is the pressure head (L), S is the
sink term accounting for root water uptake (L3¨L´3¨T´1). The unsaturated soil
hydraulic properties were described using the van Genuchten-Mualem functional
relationships [19,20]:

θ phq “

$

&

%

θr `
θs´θr

p1`|αh|nq
m h ă 0

θs h ě 0
(2)

K phq “ KsSl
er1´

´

1´ S1{m
e

ı2
(3)
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Se “
θ´ θr

θs ´ θr
(4)

where θr and θs are the residual and saturated water contents (L3¨L´3), respectively.
Ks (L¨T´1) is the saturated hydraulic conductivity, α, (L´1) and n represent the
empirical shape parameters, m = 1 ´ 1/n; l is the pore connectivity parameter, which
is taken as 0.5 [20]. Se is the effective saturation.

2.3.2. Solute Transport

The partial differential equations governing equilibrium one-dimensional
solute transport under transient flow in variably-saturated medium is defined in
Hydrus-1D as:

BθC
Bt

“
B

Bz

ˆ

θD
BC
Bz

˙

´
BvθC
BZ

(5)

where C is the solute concentration of the liquid phase (M¨L´3). D is the dispersion
coefficient (L2¨T´1), and v is the average pore water velocity (L¨T´1). The dispersion
coefficient is defined as (ignoring molecular diffusion):

D “ λv (6)

where λ is dispersivity (L). The dispersivity is viewed as a material constant
independent of the flow rate. Since v is obtained from the numerical solution of
the water flow model (the water flux q divided by θ), dispersivity is the only solute
transport parameter needed for solving the CDE equation.

2.3.3. Root Water Uptake

The potential transpiration rate, Tp (L¨T´1), is spread in the root zone according
to the normalized root density distribution function, β (z, t) (L´1). The actual root
water uptake, S, is obtained from the potential root water uptake (i.e., potential
transpiration) Sp, through multiplication with a stress response function α(h, hϕ, z, t)
accounting for water and osmotic stresses [26,27] as follows:

S ph, hϕ,z, tq “ α ph, hϕ,z, tq Sp pz, tq “ α ph, hϕ,z, tqβ pz, tq Tp ptq (7)

where stress response function α(h, hϕ, z, t) is a dimensionless function of the soil
water (h) and osmotic (hϕ) pressure heads (0 ď α ď1). Sp(z, t) and S(h, hϕ, z, t) are
the potential and actual volumes of water removed from a unit volume of soil per
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unit of time (L3¨L´3¨T´1), respectively. The actual transpiration rate, Ta (L¨T´1), is
then obtained by integrating Equation (7) over the root domain LR:

Ta “

ż

LR

S ph, hϕ,z, tq dz “ Tp

ż

LR

α ph, hϕ,z, tqβ pz, tq dz (8)

We further assumed that the effects of water and salinity were multiplicative [28]:
α(h, hϕ) = α(h) α(hϕ), so that different stress response functions could be used. Root
water uptake due to water stress was described using the model introduced by
Feddes et al. [26]:

αh “

$

’

’

’

’

’

&

’

’

’

’

’

%

0, h ą h1, h ď h4
h´h1
h2´h1

, h2 ă h ď h4

1, h3 ă h ď h2
h´h4
h3´h4

, h4 ă h ď h3

(9)

where root water uptake is assumed to be zero close to saturation (i.e., wetter than
the “anaerobiosis point”, h1). For h < h4 (the wilting point pressure head), root water
uptake is also completely stressed. Root water uptake is considered to be at the
potential rate when pressure heads range from h2 to h3, and when pressure head
values are between h1 and h2 (or h3 and h4), root water uptake increases (or decreases)
linearly with h.

Hydrus-1D assumes h3 is a function of Tp and allows users to specify two
different Tp (Tp1 and Tp2) and h3 (h3-1 and h3-2), respectively. The calculation
equations are:

h3 “

$

’

’

&

’

’

%

h3´1 `
ph3´2´h3´1q

pTp1´TP2qpTp1´Tpq
Tp2 ă Tp ă Tp1

h3´2 Tp ă Tp2

h3´1 Tp ą Tp1

(10)

Root water uptake due to osmotic stress was described with an S-shaped
function developed by van Genuchten, 1987 [28]:

αϕ “
1

1`
´

hϕ
hϕ50

¯p (11)

where p represents experimental constants. The exponent p was found to be
approximately 3 when only salinity stress data was applied [28]. The parameter hϕ50

represents the pressure head at which the water extraction rate is reduced by 50%
during conditions of negligible water stress.
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In Hydrus-1D, EC is expressed as electrical conductivity of soil solution (ECsw).
Alternatively, we measured EC1:5 and converted it into the saturated paste extracts
(ECe) using the following relationship where ECe = (2.46 + 3.03 θsp

´1) EC1:5, where
θsp is the water content of the saturated paste (θsp Kg¨Kg´1) [29]. Then ECe values
are converted into ECsw by the following equation [30]:

ECsw “ ECe
BD ¨ SP
100 ¨ θ

“ ECe
θs

θ
(12)

where SP is the saturation percentage (the water content of the saturated soil-paste,
expressed on a dry-weight basis), BD is the bulk density (g¨ cm´3) and θs is the
saturated soil water content (L3¨L´3).

Furthermore, Hydrus-1D uses the following relationship to convert ECsw to
osmotic pressure head (cm):

hϕ “ ´3.8106ECsw ` 0.5072 (13)

The equation is very similar to the relationship reported by the US Salinity
Laboratory Staff (1954) [31] for estimating the osmotic pressure of soil solutions from
EC measurements (hϕ = ´3.7188 ECsw).

2.4. Initial and Boundary Condition

Initial conditions were set in the model with measured soil water contents
and electrical conductivities on 2 May 2012. At the soil surface, an atmospheric
boundary condition was specified using the daily data of precipitation and reference
crop evapotranspiration (ET0) obtained from the Linze Station (2 km away from the
site). Daily values of the ETp were calculated using the reference evapotranspiration
(ET0) via Penman-Monteith method [32] multiplying by a crop coefficient of the
investigated Chinese tamarisk. The crop coefficient was estimated from fraction of
ground cover and plant height [33], that is, crop coefficient for the middle season is
1.05, increased from 0.55 to 1.05 linearly in the first 10 days of plant development
and decreased from 1.05 to 0.55 linearly in the last seven days of plant defoliation.
Then, ETp was divided into potential evaporation (Ep) and potential transpiration
(Tp) according to Beer’s Law:

Ep ptq “ ETp ptq ¨ exp´k¨LAIptq (14)

Tp ptq “ ETp ptq ´ Ep ptq (15)

where k is an extinction coefficient set to be 0.463 and LAI is the leaf area index. The
model was used to directly calculate actual E and T given the soil moisture conditions
and the root water uptake functions. LAI values were measured during different
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stages of the growing season using a LI-COR area meter (Model LI-3100C, LI-COR
Environmental and Biotechnology Research Systems, Lincoln, Nebraska), and were
linearly interpolated between the measurement dates. At the bottom, variable
pressure head and concentration boundary conditions were specified for water flow
and solute transport using the measured water table depths and groundwater EC,
respectively. For solute transport, we assumed that the rain water was free of solutes
and implemented a no flux boundary condition at the soil surface. The boundary
conditions used in the calibration and validation processes are shown in Figure 2.
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Figure 2. Dynamics of potential evapotranspiration, precipitation, depth to water
table (DWT) and groundwater electric conductivity (ECgw).

2.5. Model Calibration and Validation

In this study, the Hydrus-1D model was calibrated using site-specific boundary
conditions and measured water contents, θ, and electrical conductivities, ECsw

values during 2012. Saturated water content (θs) and hydraulic conductivity
(Ks) were determined from the soil cores taken as stated above. The other
van Genuchten-Mualem parameters were estimated via Rosetta pedotransfer
functions [34] using the particle size distribution and bulk density dataset. For initial
values of solute transport parameters in the root zone (0–100 cm), the dispersivity (λ)
was set to an average value (8.9) based on 67 soils with silt loam textures according
to Vanderborght and Vereecken [35]. Based on aquifer materials, thickness, and
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hydraulic conductivity, the dispersivity of the aquifer was fixed as 124 cm according
to Gelhar et al. [36].

The parameters of the Feddes model were synthesized based on Moayyad [37]
with Grinevskii [38]: h1 = ´0.1 cm, h2 = ´2 cm, h3-1 = ´80 cm, h3-2 = ´250 cm,
h4 = ´15,000 cm. Without consideration of the water stress (i.e., reset the Feddes
model parameters to make water stress vanish), parameters of the S-shaped function
developed by van Genuchten were fitted as: hϕ50 = 326.4 cm, p = 3. Root distribution
was specified according to measured root dry weight distribution along the soil
profile (Figure 1).

In Hydrus, inverse parameter estimation employed a relatively simple,
gradient-based, local optimization approach based on the Marquardt-Levenberg
method [39]. In this case, inverse solutions were used to optimize soil hydraulic
and solute transport parameters simultaneously using the observed data, initial
conditions, initial estimates, and boundary conditions. That is, α, n and λ

in the five upper soil layers were fitted first since Hydrus could optimize 15
parameters at a time. θr was the last parameter estimated. Then, the model was
validated with the observed data of the 2013 growing season without changing the
calibrated parameters.

The agreement between the predicted and observed data was evaluated by root
mean square error (RMSE) and coefficient of determination (R2):

RMSE “

d

řN
i“1 pOi ´ Piq

2

N ´ 1
(16)

R2 “ 1´
řN

i“1 pPi ´Oiq
2

řN
i´1

`

Oi ´O
˘2 (17)

where Oi and Pi are the ith values of observed and predicted values, respectively,
and O is the average of observed values. N is the number of observations.

2.6. Simulation Scenarios

In order to understand the impacts of groundwater change on plant water use,
we simulated root water uptake under different DWTs and ECgw conditions. Taking
the data of 2012 as the reference, eight DWT (i.e., DWT would either raise or drop
15%, 30%, 45% and 60% based on the 2012 reference depth, respectively) and eight
ECgw (i.e., ECgw would either increase or decrease 15%, 30%, 45% and 60% based on
the 2012 reference value, respectively) were assumed in this process (Table 2).

In addition, to evaluate long-term salinity trends, a long-term time series
analysis was conducted considering the fluctuations of DWT and ECgw in relation to
2012 base values. Firstly, using the LARS-WG weather generator [40] and historical
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meteorological data from 1954 to 2012, we generated 30 years of weather data
which had the same statistical characteristics as the historical data. Then, soil
salinization risks were assessed using the generated long-term time series data
for three water levels (DWT is 60, 100 (average water level of 2012) and 140 cm)
and three groundwater electrical conductivities (ECgw is 1.75, 3.75 (average ECgw

of 2012) and 5.75 dS¨m´1). The initial value of ECsw was taken as 3.75 dS¨m´1

for different water tables and 107.25 dS¨m´1 (average root zone ECsw of 2012) for
different ECgw, respectively.

Salt normally accumulated before the plant germination in our studied area (i.e.,
the dry and cold winter time). In order to elucidate the impacts of artificial watering
on soil water, salt dynamics, and to determine how to alleviate salt stress on the
arid wetlands, we evaluated the influence of a preseason irrigation event applied at
the initial stages of plant growth starting on 2 May 2012. To account for irrigation
amounts ranging from 1 to 80 cm, eighty Hydrus simulation scenarios were run. All
simulation scenarios are listed in Table 2.

Table 2. Simulation scenarios performed in this study.

Main Scenarios Scenarios in Detail

Root water uptake
predictions

Depth to water table raise 15% of the 2012 reference depth, DWT+15%
Depth to water table raise 30% of the 2012 reference depth, DWT+30%
Depth to water table raise 45% of the 2012 reference depth, DWT+45%
Depth to water table raise 60% of the 2012 reference depth, DWT+60%
Depth to water table drop 15% of the 2012 reference depth, DWT-15%
Depth to water table drop 30% of the 2012 reference depth, DWT-30%
Depth to water table drop 45% of the 2012 reference depth, DWT-45%
Depth to water table drop 60% of the 2012 reference depth, DWT-60%
Groundwater electrical conductivity increase 15% of the 2012
reference value, ECgw+ 15%
Groundwater electrical conductivity increase 30% of the 2012
reference value, ECgw+ 30%
Groundwater electrical conductivity increase 45% of the 2012
reference value, ECgw+ 45%
Groundwater electrical conductivity increase 60% of the 2012
reference value, ECgw+ 60%
Groundwater electrical conductivity decrease 15% of the 2012
reference value, ECgw´ 15%
Groundwater electrical conductivity decrease 30% of the 2012
reference value, ECgw´ 30%
Groundwater electrical conductivity decrease 45% of the 2012
reference value, ECgw´ 45%
Groundwater electrical conductivity decrease 60% of the 2012
reference value, ECgw´ 60%

Long term (30 years)
salinity trends

Depth to water table is 60 cm, DWT = 60 cm
Depth to water table is 100 cm, DWT = 100 cm
Depth to water table is 140 cm, DWT = 140 cm
Groundwater electrical conductivity is 1.75 dS/m, ECgw = 1.75 dS/m
Groundwater electrical conductivity is 3.75 dS/m, ECgw = 3.75 dS/m
Groundwater electrical conductivity is 5.75 dS/m, ECgw = 5.75 dS/m

Preseason
irrigation strategy

A human irrigation (irrigation amount range from 1 to 80 cm) applied at
the initial stages of plant growth (2 May 2012).
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3. Results and Discussion

3.1. Model Calibration and Validation

There was good agreement between observed and simulated soil water contents
and salt contents as indicated by the smaller RMSE and higher R2 values. Calibration
periods resulted in RMSE = 0.031 cm3¨ cm´3 and R2 = 0.88 for soil water and
RMSE = 0.037 dS¨m´1 and R2 = 0.92 for ECsw. Validation period resulted in
RMSE = 0.046 cm3¨ cm´3 and R2 = 0.82 for soil water and RMSE = 0.035 dS¨m´1

and R2 = 0.95 for ECsw. These results demonstrated that despite the considerable
demands on input data, Hydrus-1D was an effective tool for evaluating water and
solute transport [41–43] and would be acceptable in performing scenario simulations.
The calibrated parameters are shown in Table 1. There was generally very good
agreement between the simulated and measured soil water contents, though there
are some discrepancies. It is not possible to specifically identify the causes of the
discrepancies, but they might be partially attributable to preferential flow caused
by macropores and cracks [44,45], spatial heterogeneity and observation errors [46],
and the locally occurring chemical processes, such as adsorption-desorption, and
proportional root uptake [22], and precipitation/dissolution reactions in soils [47].

3.2. Soil Water and Salt Dynamics and Their Effects on Root Water Uptake of Tamarisk

The roots of Chinese tamarisk are primarily distributed in the 20–60 cm soil layer,
accounting for 73.76% of total dry weight (Figure 1a) with the maximum values
(35.55%) at the 30–40 cm soil depth. This distribution may be partially attributed
to a large salt accumulation near the soil surface that is unfavorable to root growth
(Figure 1b). The accumulation of salts has primarily been caused by high atmospheric
demands that caused water movement towards the soil surface from the shallow
saline groundwater. Since the groundwater has high salinity levels, salts are also
transported with the water and accumulated in the root zone. In addition, scarce
rainfall and poor surface drainage have also been shown to contribute to this process
in arid regions [48]. Our results are consistent with the reports of Li et al. [49], who
found that root growth of tamarisk seemed to be repressed when the salinity (EC1:5)
was greater than 6 dS¨m´1. Similarly, although the deeper soil layer contains little
salt, shallow water table results in relatively high water contents and small values of
aeration porosity. These conditions may limit root growth, respiration, and water
uptake. Therefore, the optimum depth observed for plant growth was between 20 to
60 cm, because of the salt stress near the soil surface, and the saturation and anaerobic
conditions below the 60 cm soil depth (Figure 3). Therefore, the long-term effects of
water and salt stress caused Chinese tamarisk to develop its root system in the most
suitable strata.
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Figure 3. Measured and simulated soil water and ECsw in both calibration and
validation period during the growing season of Chinese tamarisk.

Dynamics of the profiled water contents were primarily attributable to the
natural precipitation, evapotranspiration, and location of the water table. In general,
soil water contents increased from the surface layer to the bottom layer because
of a shallow water table. The soil moisture at the 20–60 cm strata remained
relatively constant during the growing season and served as a soil moisture buffer
layer (Figures 1 and 3). Because of the shallow groundwater tables, the soil
moisture fluctuated dramatically for the 80–100 cm layer and ranged from 0.33
to 0.53 cm3¨ cm´3 (Figure 3). Similarly, due to the relatively limited precipitation
and large quantity of evaporation during 2012, the EC fluctuated intensively with
ECsw values ranging from 207.1 to 448.4 dS¨m´1 in the surface layer. Meanwhile,
EC decreased from the surface layer to the bottom layer because of the intensive
evaporation, poor surface drainage, and negligible precipitation (Figures 1 and 3).

Because of the sparse vegetative cover that was effected by water and salinity
stresses, cumulative evaporation reached 149 mm during the growing season.
Accordingly, the migration of salt with intensive evapotranspiration was thought to
be the main cause for soil salinization in this area. Infiltration was only 91 mm during
the 2012 growing season that was less than both evaporation and transpiration
(Figure 4). Furthermore, rainfall infiltration could dissolve large quantities of soluble
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salts from the upper layer. Though precipitation in this region is unable to provide
sufficient water for plant growth, cumulative upward soil water flux attributable to
groundwater charge reached 216 mm during the growing season of 2012. Further,
compared with the infiltration water from the upper boundary, the recharged water
from the groundwater has a low salt concentration and can be easily utilized by
plant roots. Therefore, the groundwater plays a critical role in the maintenance
of Chinese tamarisk growth and water supplements. These observations are in
agreement with Morris and Collopy [50], who reported that more than half the
tree water uptake (Eucalyptus Camaldulensis and Casuarina cunninghamiana) was
drawn from the groundwater. Satchithanantham et al. [51] found that during the dry
mid-season, when the ET was at its peak, the groundwater supplied up to 92% of
the water for consumptive use by potatoes. Ayars et al. [11] observed that almost
100% of the consumptive use by alfalfa was supplied by contributions from the
shallow groundwater.
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Figure 4. Cumulative water flux during the growing season of 2012.

Root water uptake reached 91.0% of its potential maximal value when water
stress was considered and only 41.6% of that amount when both water and salt
stress conditions were taken into consideration (Figure 5). This phenomenon has
been attributed to the vast quantities of soluble salts that results in decreased
solute potentials and increased ion toxicity [52]. These types of observations have
resulted in assessments of salt stress being the dominating factor affecting root water
uptake in arid riparian wetlands [1]. Therefore, there is a pressing need to develop
appropriate management measures to reduce the impacts of water and salt stresses
on Chinese tamarisk.
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Figure 5. Cumulative root water uptake under different stress conditions. Note: 

sum(rRoot), potential cumulative root water uptake; sum(vRoot)-w, cumulative root water 

uptake under water stress only; sum(vRoot)-ws, cumulative root water uptake under 

coupled water and salt stress. 

3.3. Scenario Simulations 

3.3.1. Root Water Uptake Predictions 

As indicated by Figure 6, cumulative root water uptake is more sensitive to fluctuations of water 

table than ECgw. Root water uptake reached the maximum values of 136.6 mm when DWT was at the 

2012 reference depth (CK), then decreased gradually as the water table rose. Cumulative root water 

uptake only reached 72.5 mm when DWT dropped 60% (DWT − 60%). This reduction in root water 

uptake was mainly because excessive shallow water table caused water stress in the root zone. 

Similarly, the cumulative root water uptake declined dramatically when the DWT increased from the 

2012 reference depth to DWT + 60%. The cumulative root water uptake only reached 118.6 mm when 

DWT increased 60%. These simulation results suggest that either too shallow or too deep a water table 

will have dramatic impacts on the root water uptake. Contrary to the effects of groundwater table, root 

water uptake exhibited almost no change within the assumed range of ECgw values. This relative lack of 

response may be partially attributed to a high degree of salt tolerance for this plant. For example, in many 

riparian systems of the southwestern United States, increased salinity caused by changes in water flow, 

have favored salt-tolerant tamarisk and greatly reduced the recruitment and growth of native  

Figure 5. Cumulative root water uptake under different stress conditions. Note:
sum(rRoot), potential cumulative root water uptake; sum(vRoot)-w, cumulative
root water uptake under water stress only; sum(vRoot)-ws, cumulative root water
uptake under coupled water and salt stress.

3.3. Scenario Simulations

3.3.1. Root Water Uptake Predictions

As indicated by Figure 6, cumulative root water uptake is more sensitive to
fluctuations of water table than ECgw. Root water uptake reached the maximum
values of 136.6 mm when DWT was at the 2012 reference depth (CK), then decreased
gradually as the water table rose. Cumulative root water uptake only reached
72.5 mm when DWT dropped 60% (DWT ´ 60%). This reduction in root water
uptake was mainly because excessive shallow water table caused water stress in the
root zone. Similarly, the cumulative root water uptake declined dramatically when
the DWT increased from the 2012 reference depth to DWT + 60%. The cumulative root
water uptake only reached 118.6 mm when DWT increased 60%. These simulation
results suggest that either too shallow or too deep a water table will have dramatic
impacts on the root water uptake. Contrary to the effects of groundwater table, root
water uptake exhibited almost no change within the assumed range of ECgw values.
This relative lack of response may be partially attributed to a high degree of salt
tolerance for this plant. For example, in many riparian systems of the southwestern
United States, increased salinity caused by changes in water flow, have favored
salt-tolerant tamarisk and greatly reduced the recruitment and growth of native
salt-sensitive riparian species [53,54]. In addition, salt accumulation in the root zone
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is a slow process and the change of ECgw may not result in obvious increases of root
zone salinity within a single year which will be discussed in the following section
(Section 3.3.2).
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3.3.2. The Long-Term Salinization Trends

To assess long-term salinity trends, Hydrus-1D was combined with a stochastic
weather generator LARS-WG to evaluate the long term changes of soil salinity
under different water tables and ECgw. Figure 7a illustrates that soil salinization
increased year by year with a saline shallow ground water (ECgw = 3.75 dS¨m´1).
In general, root zone ECsw increased with the upward movement of water table
whereas the amplitude of the ECsw decreased with the elevation of the water table.
Average root zone ECsw after 30 years were 62.30, 57.34 and 47.15 dS¨m´1 when
DWT was at a depth of 60, 80 and 100 cm, respectively. These results indicated that
a shallow water table contributed to increased soil salinization although the same
conditions promoted root water uptake. Ibrakhimov et al. [55] found that elevated
groundwater levels resulted in increased soil salinization by the annual addition of
3.5–14 t/haof salts depending on groundwater salinity. Xie et al. [4] reported that
there is a contradiction between available water, salt stress, and reed water uptake
with variations in DWT. Similarly, root zone ECsw increased with the increased ECgw,
values of 142.08, 177.53, and 210.55 dS¨m´1 when accompanying ECgw values were
1.75, 3.75, and 5.75 ds¨m´1 after 30 years, respectively (Figure 7b). The results
indicated that soil salinization conditions will deteriorate continuously without
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human intervention and highlighted the importance of preventing human induced
ECgw increases that would occur from subsurface irrigation drainage from farmland.Water 2015, 7 2396 
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Figure 7. Temporal changes in soil salinity in averaged root zone as affected by (a) water 

table and (b) groundwater electrical conductivity. 
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3.3.3. Preseason Irrigation Strategy

Preseason irrigation increased root water uptake significantly. Compared with
no irrigation, root water uptake increased 4.5%, 40.2%, 79.3%, 100.6% and 115.4%
when the irrigation amounts were 10, 20, 30, 40 and 50 cm, respectively (Figure 8).
These results indicated that root water uptake generally increased with increased
irrigation quantities when irrigation amounts ranged from 10 to 50 cm. However,
root water uptake increased only 2 mm (from 294 to 296 mm) when the irrigation
quantities increased from 50 to 80 cm, and demonstrated that irrigation quantities
less than 50 cm were sufficient to promote tamarisk root water uptake (Figure 9b).
Note that cumulative root water uptake displayed a decreased trend when the
irrigation quantities were less than 6 cm and indicated that although a small quantity
of irrigation increased the root zone water content to some extent, it was not sufficient
for the salt to be effectively leached out of the root zone. Furthermore, the irrigated
water cannot be easily used by the plant roots because of the water contained a
large amount of soluble salts that were dissolved from the upper soil layer. This
observation implied that the precipitation in the region is not beneficial for plants
and even threatens plant growth, since single precipitation events are normally less
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than 6 cm. The increased root water uptake resulting from fresh water irrigation
was mainly because sufficient quantities of water from the upper boundary layers
can leach salts below the root zone and effectively alleviate salt stress (Figure 9b).
Because these salts can re-accumulate as a result of evaporation (Figure 9a), repeated
irrigation is needed. The average root zone ECsw dropped rapidly below 52.5, 27.7,
and 13.7 dS¨m´1 in 15 days when the irrigation quantities were 20, 40, and 60 cm,
respectively. Therefore, irrigation before the growing season is essential, but too
small or too large a quantity of irrigation is not advisable. In our case, 30–40 cm of
preseason irrigation was reasonable.Water 2015, 7 2397 
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The advantages of artificial irrigation to maintain plant growth has also been
addressed by other researchers. Holland et al. [56] observed that a two-fold to
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five-fold increase in plant water potential and a three-fold to six-fold increase in
Eucalyptus camaldulensis water consumption in three to four months after watering
in the riparian region. Xie et al. [4] reported that irrigation clearly increased
reed water use, especially when irrigation quantities were higher than 3 cm¨d´1.
Askri et al. [57] demonstrated that in order to increase date palm water use, high
irrigation frequencies and shallow groundwater are needed to maintain high water
content and low salinity in the root zone. Therefore, we would suggest it would be
beneficial to have artificial irrigation to maintain the sustainable development of the
arid riparian wetlands.

4. Conclusions

In this study, soil water and salt dynamics and their effects on Tamarisk root water
uptake were characterized by coupling measured data with simulation scenarios in
the Heihe riparian wetland, China. The Hydrus-1D model simulations of soil water
and salt dynamics matched the observed data fairly well during both the calibration
and validation periods as indicated by smaller RMSE and higher R2 values, which
demonstrated the feasibility of using the model under different simulation scenarios.

Chinese tamarisk extends its root system into the most suitable strata with
73.6% of the total root system distributed in the 20–60 cm soil layer because of
the long-term effects of water and salt stress. Groundwater is the main water source
for Chinese tamarisk in the study area. Cumulative root water uptake only accounted
for 41.6% of the potential value under the joint influences of water and salt stress.
This result indicated the necessity of human interventions to alleviate water and
salt stress. Furthermore, root water uptake was most sensitive to the fluctuations
of water table levels. Too deep or too shallow a groundwater table was found to
severely repress root water uptake. Shallow groundwater was found to result in
increased soil salinization, especially when the groundwater contains a large amount
of salts (high ECsw). Preseason irrigation has the potential to leach salt out of the root
zone and maintain the ECsw at a reduced level during the growing season which
would result in increased water uptake. Cumulative root water uptake increased
when irrigation quantities were initially increased. Further increases in irrigation
quantities diminished the increased rate of root water uptake.

Irrigation before the growing season is necessary, but the irrigation quantities
should be taken into consideration. This study provided insights into soil water
and salt redistribution and their effects on plant water use, and should help in the
establishment of improved management practices for arid riparian wetlands.
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Development of a Prototype Web-Based
Decision Support System for
Watershed Management
Dejian Zhang, Xingwei Chen and Huaxia Yao

Abstract: Using distributed hydrological models to evaluate the effectiveness of
reducing non-point source pollution by applying best management practices (BMPs)
is an important support to decision making for watershed management. However,
complex interfaces and time-consuming simulations of the models have largely
hindered the applications of these models. We designed and developed a prototype
web-based decision support system for watershed management (DSS-WMRJ), which
is user friendly and supports quasi-real-time decision making. DSS-WMRJ is based
on integrating an open-source Web-based Geographical Information Systems (Web
GIS) tool (Geoserver), a modeling component (SWAT, Soil and Water Assessment
Tool), a cloud computing platform (Hadoop) and other open source components and
libraries. In addition, a private cloud is used in an innovative manner to parallelize
model simulations, which are time consuming and computationally costly. Then, the
prototype DSS-WMRJ was tested with a case study. Successful implementation and
testing of the prototype DSS-WMRJ lay a good foundation to develop DSS-WMRJ
into a fully-fledged tool for watershed management. DSS-WMRJ can be easily
customized for use in other watersheds and is valuable for constructing other
environmental decision support systems, because of its performance, flexibility,
scalability and economy.

Reprinted from Water. Cite as: Zhang, D.; Chen, X.; Yao, H. Development of a
Prototype Web-Based Decision Support System for Watershed Management. Water
2015, 7, 780–793.

1. Introduction

Climate change, population growth and unreasonable exploitation of water
resources have caused environmental deterioration, the unavailability of freshwater
and an imbalance between supply and demand to a global extent, thus seriously
affecting the sustainable development and utilization of water resources. At present,
more than 1.2 billion people and 60% of global basins lie at the edge of water
resource shortage [1]. How to relieve or eliminate the deterioration of the water
environment and realize the sustainable utilization of water resource have become
common concerns of and challenges for humankind. Scientific and effective tools
are urgently needed to fulfill the purpose of the sustainable utilization of water
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resource. The decision support system for watershed management (DSS-WM)
is one of the representative management tools and plays an important role in
watershed management.

Driven by the latest advancements of information and communication
technologies, hydrologic sciences and other disciplines, there is booming research
on watershed management using hydrological models. For example, distributed
hydrological and hydrodynamic models, such as SWAT (Soil and Water Assessment
Tool), HSPF (Hydrological Simulation Program Fortran), AGNPS (agricultural
non-point source pollution model) and WASP (Water Quality Analysis Simulation
Program), are all geared with management modules for the simulation and evaluation
of management effects on flow, sediment and nutrients [2–6]. Although great
achievements have been gained by these models, the complex model structures
and interfaces have impeded their applications by inexperienced users. Besides, the
time-consuming and computationally costly procedures of model simulations have
further hindered the application of these models, especially under circumstances
where real-time or quasi-real-time support for decision-making is required.

To overcome the aforementioned shortcomings, hydrologists and environmental
scientists have designed and invented many dedicated DSS-WMs to assist with
watershed management. Similar to other environmental DSS, these DSS-WMs
usually consist of a decision-making information database and user interfaces
and models [7–9]. According to the operational environments, DSS-WMs can be
divided into desktop-based and web-based. Desktop-based DSS-WMs usually
provide intuitive wizard style interfaces, which eliminate the complexity of the
models. For example, under the impetus of the MULINO (Multi-sectoral, Integrated
and Operational DSS) project, Mysiak et al. [10] developed mDSS (a decision
support system for water resource management that has been developed under
the European research project, MULINO) for optimizing the management of water
resources by integrating hydrological models with multiple-criteria evaluation
procedures. Cau and Paniconi [11] linked SWAT and mDSS to assess four alternatives,
including intensive agriculture and dairy farming and treated wastewater for
irrigation. Hipel et al. [12] designed and developed the GMCR II (graph model for
conflict resolution) for conflict resolution over multiple stakeholders in controlling
water pollutions.

It is a general trend to turn to the Internet as a platform for software solutions,
and so is DSS-MWs. Rao et al. [13] developed a prototype web-based DSS based
on a commercial Web GIS (Web-based Geographical Information Systems) tool,
ArcIMS (Arc Internet Map Server), and a hydrological model, SWAT. Additionally,
the prototype was then applied to a small watershed, Panhandle in Oklahoma,
targeted at aiding a better management plan. Model parallel simulation and a cloud
computing platform were not attempted in their work. Zeng et al. [14] constructed a
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web-based decision-making system by integrating the ArcGIS Engine, the distributed
hydrological model, Hydrologic Engineering Center’s Hydrologic Modeling System
(HEC-HMS), genetic algorithm (GA) and artificial neural network (ANN). HEC-HMS
was applied to the prediction of runoff; ANN was used to predict the city water
resources demand; GA was used to achieve the goal of distributing water resources
among the regions of the city. Sun [15] migrated a web-based DSS to a public cloud,
which is an extension of web-based solutions.

Throughout the development of DSSs for watershed management, great
achievements have been made by integrating models and other technologies
for better watershed management. However, there are still some inadequacies,
such as: (1) Most integrated models are conceptual or empirical models, and
distributed hydrological ones are few; (2) More DSSs for watershed management are
desktop-based, while the web-based ones are still rare; and (3) The performance of
the systems are not well explained or evaluated, which is a key factor to achieve the
goal of real-time decision support.

Our objectives in this study are to design and develop a web-based decision
support system for watershed management (DSS-WMRJ), which is user friendly and
supports quasi-real-time decision making. We build the DSS-WMRJ by integrating
an open source Web GIS tool (Geoserver), a modeling component (SWAT, Soil
and Water Assessment Tool), a cloud computing platform (Hadoop) and other
open source components and libraries. In addition, a private cloud is used in an
innovative manner to parallelize the model simulations, which are time consuming
and computationally costly. The successful implementation and testing of the
prototype DSS-WMRJ shows that it is able to fulfill the goal of quasi-real-time decision
support and provide intuitive interfaces.

2. System Design

2.1. Architecture of Decision Support System for Watershed Management (DSS-WMRJ)

To meet the requirements of availability, stability, interoperability and portability,
a systematic architecture of four tiers, including the presentation, proxy, application
and database and model, is considered (Figure 1).

The presentation tier provides a graphic user interface, which is accessible
via the browsers of many devices, for users to perform system management, map
operations, spatial and attribute information retrieval, watershed management,
and so on. The map viewer is achieved by the Openlayers component, which
communicates with map services to retrieve the grid or vector map through
Asynchronous JavaScript and XML (AJAX) and to render the map in the browser.
Thus, it provides operation experience approximate to a desktop GIS tool.
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FusionCharts is the only commercial software used for presenting the watershed
management results, due to its dynamic and excellent chart functionalities.Water 2015, 7 783 
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Figure 1. The system architecture of decision support system for watershed
management (DSS-WMRJ). WFS/WFS-T, Web Feature Service/Web Feature
Service-Transaction; WMS, Web Map Service; WCS, Web Coverage Service.

The open-source component Nginx is used as the proxy tier, which lies between
the presentation and application tiers and acts as a communication agent for these
two tiers. The deployment and configuration of Nginx is easy, while it provides
useful functionalities, such as load balancing, failover, access control, logging,
monitoring, etc. When the system exceeds the workload limit of the system, the
system administrator can add more background services and a simple configuration
of Nginx to scale up the system. Therefore, the proxy tier is very important for
enhancing the performance and improving the stability of the system.

The application tier consists of two components: map service and watershed
management services. Both components adopt the Service-Oriented Architecture
(SOA). The map services component uses an open source Web GIS tool (Geoserver),
which is in compliance with the Open Geospatial Consortium (OGC) standards, such
as Web Map Service (WMS), Web Feature Service/Web Feature Service-Transaction
(WFS/WFS-T) and Web Coverage Service (WCS). The watershed management
services provide functionalities, such as planning and BMP identification. These
components are standard compliant and service oriented, making them scalable
and interoperable.

308



The database and model tier is located on the bottom of the architecture. This tier
consists of databases and model simulation services. The databases store and manage
attribute data, spatial data and map tiles via a spatial database, an object-relational
database and a file system. The spatial data are stored in the PostGreSQL database
with the use of the PostGIS library, which adds support for the use and management
of geographic objects. Spatial and other regular indices are created for every map
layer stored in the spatial database to increase the speed of retrieval. Map tiles are
pre-generated and stored in the map tile repository. This will accelerate the mapping
processes, as WMS can directly deliver the caching map tiles to the client when a map
request is sent to it. In addition, the model simulation service is a key component of
the DSS-WMRJ, which guarantees quasi-real-time decision making by parallelizing
model simulations on a private cloud. A detailed description of the model simulation
service is given in the next section.

2.2. Model Simulation Service

The decision making procedures usually require a great many model
simulations, for example, when an uncertainty analysis is required in the decision
making as the model input, the structure and parameters contain various degree of
uncertainty or when evaluating the environmental effect of combinations of different
management measures, which may themselves involve different configurations
(making the decision making procedures very time consuming and computationally
costly). Therefore, a fast model simulation is the key factor of DSS-WMRJ to achieve
real-time or quasi-real-time decision making.

An open-source cloud computing platform (Hadoop) is used to parallelize
model simulations in order to accelerate the simulation procedures. Hadoop is
an implementation of the Google MapReduce algorithm [16,17]. It consists of
two components: the Hadoop Distributed File System (HDFS) and the distributed
computation framework (MapReduce). HDFS is a robust distributed file system,
which is able to read and write data in parallel over a large number of machines
and achieves much higher throughput than traditional technologies. This feature is
very useful to process mass model simulation results. MapReduce is a distributed
computing framework that consists of the JobTracker and the TaskTrackers. It
provides two important application programming interfaces (APIs): Mapper and
Reducer. With these interfaces, developers can quickly write efficient parallel codes.
Hadoop parallelizes tasks as follows: (1) Clients submit a job to the JobTracker, which
is the master of the MapReduce framework; (2) The JobTracker then divides the
submitted job into task sets and distributes these task sets to TaskTrackers; and (3)
the tasks in the assigned set are further distributed to Mapper or Reducer, which
then executes the task.
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To achieve SWAT parallel simulations on a Hadoop cluster, developers must
implement the aforementioned APIs of MapReduce, and co-operation among the
presentation tier, application service and model simulation service is needed. Figure 2
shows the procedures of paralleling SWAT simulations. These procedures are
summarized as follows: (1) A user is prompted for certain specific inputs that pertain
to management practices and submits these inputs to the application service; (2) The
application service translates the inputs into parameter sets of the SWAT model
and distributes these parameter sets to the model simulation service; (3) The model
simulation service parallelizes the model simulations, which involves operations,
such as model input file editing, model executing, simulation result extracting and
saving results to the HDFS; (4) When the submitted job is finished, the application
service gathers all simulation results in the HDFS and generates a statistic report,
which is XML-based, and delivers it to the presentation tier; and (5) Finally, the
presentation tier renders the report through its chart component.Water 2015, 7 785 
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3. Case Study and DSS-WMRJ Test

3.1. Model Setup

The SWAT model [18,19] is a semi-distributed, continuous, watershed-scale
hydrological model that was developed by the Agricultural Research Service of the
United States Department of Agriculture (USDA-ARS) to simulate the quantity and
quality of surface water and groundwater. It not only deeply depicts the physical
hydrological cycle, but also considers the impact of human activities, such as land
use change, water conservancy facilities, agriculture management practices and other
environment protecting facilities (e.g., vegetation filter strips and grassed waterways)
on the hydrological processes.

Jinjiang basin with an area of 5629 km2 is selected as the test watershed for
which to implement and evaluate the DSS-WMRJ. ArcSWAT, one of the graphical user
interface procedures for SWAT, is used to delineate Jinjiang basin [20]. The basin is
divided into 99 subbasins based on the DEM data and with a threshold area of 3000 ha.
The subbasins are subdivided into HRUs, which represent homogeneous soil and
land use according to the soil type, land use and topographic slope, with threshold
values of 5%, 20% and 20%, respectively, resulting in 886 HRUs. Additionally, the
watershed model is set to run in daily mode. The SWAT has been calibrated based
on water discharge data, but not calibrated for sediment and nutrients, because of
the insufficient monitoring data.

3.2. System Implementation

According to the design scheme of DSS-WMRJ, a prototype of DSS-WMRJ was
established by incorporating the hydrological model of an experimental watershed.
Figure 3 is the GUI of the prototype of DSS-WMRJ. The left column provides the
functionalities of the system and layer management. The system functionalities
control the privileges of users, and the layer management controls the switching on
or off of layers. The right column provides watershed management functionalities
and some general map-related functionalities, such as map roaming, zoom in/out,
overview map, and so on.

For a prototype of DSS-WMRJ, we only developed a tool to evaluate the soil
and water conservation effect of a vegetation filter strip (VFS-Tool), which is a
widely-used conservation practice to remove agricultural and urban pollutants before
they reach nearby water bodies by establishing a strip of dense vegetative filter
around the upslope pollutant sources. The interfaces of the VFS-Tool (Figure 4) are
intuitive and easy to use. Users just need to click the tool icon in the toolbar, enter or
select certain specific inputs that pertain to VFS and submit these inputs to the server.
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3.3. Performance Tests

The model simulation service is a key component of DSS-WMRJ that directly
determines the achievement of real-time or quasi real-time decision making. The
performance of this component is tested and evaluated. To perform the tests, one
management scenario was used, which established VFSs around two kinds of HRUs
(whose land use type is orchard or urban with a slope greater than two degrees)
with varying ratios of field area to filter strip area (from 10 to 100 at an interval of
five; Figure 4). The management scenario generated a total of 92 model simulations,
which needed 110.4 min to finish if running the model in series, as each simulation
took about 1.2 min. We will not go into the details about the pollution-reduction
effect of VFSs, as our main objective here was to demonstrate the performance of
the model simulation service. To evaluate the scalability of the model simulation
service, the management scenario was performed in a Hadoop cluster (private cloud)
with different number “of TaskTrackers (from one to eight), and each TaskTracker
was allowed to perform four tasks simultaneously. These TaskTrackers are virtual
machines on two physical servers. The configurations of the virtual machines are
identical, and so are the physical ones, with the configuration details being listed
in Table 1.

Table 1. The configurations of virtual and physical machines.

Virtual Machines Physical Machines

4 logical processors
Model name: Intel(R) Xeon(R)

CPU E5520 @ 2.27 GHz
CPU MHz: 2,261.060 RAM: 4 GB

OS: 64-bit Red Hat Enterprise Linux 5.4

2 physical processors
4 cores for each physical processor

16 logical processors
Model name: Intel(R) Xeon(R)

CPU E5520 @ 2.27 GHz
CPU MHz: 2,261.060

RAM: 16 GB
VM management software: VMware ESXi 4.1

Figure 5 shows the results of the tests. The simulation time decreased as the
number of TaskTrackers increased from one to eight. When eight TaskTrackers were
used, the simulation time reached the lowest point (about 4.4 min). The number of
TaskTrackers and the number of tasks in each TaskTracker are the major factors that
affect the performance of the model simulation service (other factors are ignorable).
As the task number in each TaskTracker was set to a constant value of four, the
number of TaskTrackers becomes the only determinant factor that is negatively
and nonlinearly proportional to the simulation time. Thus, we chose the inverse
first order equation to generate a fit curve of the simulation time vs. the number
of TaskTrackers (Figure 5). According to the trend of the fit curve, we believe
that the lowest simulation time that could be achieved is about 2.14 min by using
23 TaskTrackers, as the simulation job cannot further parallelize beyond this number.
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We also evaluated our model simulation service of DSS-WMRJ by comparing it
with a widely-used SWAT auto-calibration tool (SWAT-CUP), which operates on a
PC (Table 1). SWAT-CUP took 97.9 min to finish 92 simulations (not including
the post-processing to gather information in order to generate a management
report), while our service only took 4.4 min when running on eight TaskTrackers
(each allowed four tasks running simultaneously). Although it is not a stringent
comparison, as these two tools run on different environments, it still provided
some convincing results that our model simulation service substantially reduced
the execution time by parallelizing the model simulations on Hadoop clusters
and, therefore, is able to support decision making with a reasonable amount of
simulation time.

4. Discussion

The most outstanding features of DSS-WMRJ are its quasi-real-time decision
making support, intuitive and wizard-style interfaces and excellent scalability. The
implementation and test results showed that DSS-WMRJ can meet the goals of
achieving intuitive and concise interfaces and supporting real-time or quasi real-time
decision making. Besides, it is scalable, as the users just need to add more computing
machines to the Hadoop cluster to scale up the system and achieve the goal of
reducing the model simulation time. Other components of DSS-WMRJ, such as
the map service and watershed management components, can also be scaled up by
deploying machines and a simple configuration of Nginx.
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Building on open source software and libraries is another valuable feature of
DSS-WMRJ worthy of note (except the commercial chart component FusionCharts,
due to its dynamic and excellent chart functionalities, but this component can be
replaced by an open-source one). This feature makes it economic, as software
license costs and other costs are not a factor, making it applicable to other
watersheds. However, open-source software has some disadvantages, such as a
lack of rapid building-up of tools and technology support, which is usually available
for commercial software. Under joint efforts of the open-source community, the gap
between open source and commercial software is increasingly narrowing.

Our DSS-WMRJ also has some other advantages. For example, it is accessible
at any time and from anywhere by using a browser via the Internet or Intranet;
and it is beneficial for information sharing and cooperation between individuals
or institutions; thus, these will prompt users to participate in the decision making
processes. It is easy to maintain and upgrade, as the system is deployed on the
server. Besides, the web-based nature makes it easy to scale up and adopt for a cloud
environment. However, there are some disadvantages, too. Compared with the
desktop-based DSS-WM, it is more difficult to develop the web-based application, as
it involves more languages and technologies, and other details need to be carefully
considered, such as communications between browsers and servers.

As indicated by many studies and practices, stakeholders have significant
impacts on the success of developing IT projects or facilities. This is especially
so in situations when the funders and users are different individuals or not even
in the same organization. As stakeholders may have different interests, it is very
important to identify and involve these stakeholders at an early stage of the system
implementation. In our case, we have three major groups of stakeholders: The
funders, watershed managers and public users, all focusing on different aspects of the
DSS-WMRJ. The funders are concerned more about the effectiveness of DSS-WMRJ;
the watershed mangers are focussed on the conciseness of the interface and the
efficiencies; while the public users worry about the ease of information sharing. To
fulfill these requirements, technologies, such as Web GIS, distributed models and
cloud technologies, and the agile software development methodology were adopted
in the development of DSS-WMRJ, to promote adaptive planning, evolutionary
development, early delivery and to encourage rapid and flexible responses to changes.
We are currently at an initial stage of the development cycle, and the prototype of
DSS-WMRJ that we provided is mainly for the purpose of demonstrating to and
communicating with stakeholders, stimulating them to provide more specific and
accurate system demands. Therefore, the proposed prototype is not a fully functional
one; nevertheless, the DSS-WMRJ will evolve into a fully-fledged tool.

In the future versions, DSS-WMRJ will be improved by a continuous enriching
of the watershed management functionalities. The performance of DSS-WMRJ will
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be focused on, as well. For example, large hydrological models may take hours
for a single execution, and this inevitably impedes the goal of real-time decision
making support. This problem cannot be solved by simply paralleling the model
simulations. It is important to reduce the model’s execution time, so as to achieve
the goal of real-time decision making. The hydrological processes at HRUs (the most
process-intensive parts) and the sub-basin level are independent of each other by
design in the modeling concept of SWAT. These processes at HRUs and sub-basins
are traditionally computed in a serial manner by a single computer, which requires
much computing time. Thus, parallelizing the calculation procedures for HRUs and
sub-basins should be effective at reducing the simulation time, as proven by the
studies of Yalew et al. [21] and Wu et al. [22], by using grid computing. Another
possible solution to reduce the simulation time of SWAT is to divide the single
and large SWAT watershed models into smaller ones and route them from the
headwater basins to the terminal basin, then parallelize the calculation procedures
of the headwater basins. Recently, Sun et al. [23] developed three metamodels
(model reduction) to support real-time decision making regarding activities relative
to surface water quality in a coastal watershed in Texas, USA. They approximated
the SWAT model by a reduced order model in order to speed up the running time in
the web environment. We would like to evaluate these two methods in our cloud
environment and analyze the trade-offs for them.

Effect of management practices (such as EVFS) are not evaluated in our initial
prototype of DSS-WMRJ. Many other studies [24–27] have already proven these
management practices to be effective. We will also evaluate the incorporation of
management practices in our future version of DSS-WMRJ with a well-calibrated
SWAT watershed model. In addition, Hadoop technology is available via Amazon’s
Elastic MapReduce and Microsoft’s HDInsight, thus making it possible to migrate
DSS-WMRJ to a public cloud. We will evaluate the model simulation service with
one of these public services.

5. Conclusions

A user-friendly and quasi-real-time prototype of DSS-WMRJ was developed
by seamlessly integrating an open-source Web GIS tool, Geoserver, a modeling
component, SWAT, a cloud computing platform, Hadoop, and other open-source
components and libraries. Due to its flexible and innovative features, DSS-WMRJ has
some advantages over other decision support systems for watershed management:
(1) Quasi-real-time decision making is obtained by utilizing cloud computing
technology; (2) An intuitive and user-friendly GUI is provided, which largely
enhances the user experience; and (3) It is very economic, as the DSS-WMRJ was
almost entirely built on open-source software, and this feature lends to it great
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prospects of being applied to other watersheds. This is also valuable and informative
for building other environmental DSSs.

However, as a prototype of DSS-WMRJ, there are some inadequacies (e.g.,
the nutrient components of SWAT were not well calibrated and evaluated, due to
insufficient monitoring data, and limited management options and functionalities
were implemented), and thus, continuous improvement is necessary. In the next
version of DSS-WMRJ, more management practices will be incorporated, and the
model simulation time will be further reduced by modifying the structure of the
SWAT model. We will also evaluate DSS-WMRJ with a well calibrated (including the
runoff, sediment and nutrients) model and evaluate the model simulation service
with a public cloud, such as Amazon’s cloud services.

Acknowledgments: The study was financially supported by the Key Specialized Program of
Public Research Institutes of Fujian (Grant No. 2013R04) and the National Natural Science
Foundation of China (No. 50979015). We wish to thank the reviewers and editors for their
kind and constructive comments.

Author Contributions: Xingwei Chen had the basic idea of the present work and coordinated
the research group. Dejian Zhang contributed in designing, developing and testing the
prototype web-based decision support system for watershed management and applying it to
the case study. Dejian Zhang initiated the manuscript writing, Huaxia Yao made improvements
to the English writing.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Karimi, P.; Bastiaanssen, W.G.M.; Molden, D. Water accounting plus (wa plus )—A
water accounting procedure for complex river basins based on satellite measurements.
Hydrol. Earth Syst. Sci. 2013, 17, 2459–2472.

2. Chung, E.-S.; Lee, K.S. Prioritization of water management for sustainability
using hydrologic simulation model and multicriteria decision making techniques.
J. Environ. Manag. 2009, 90, 1502–1511.

3. Qi, H.H.; Altinakar, M.S. Vegetation buffer strips design using an optimization approach
for non-point source pollutant control of an agricultural watershed. Water Resour. Manag.
2011, 25, 565–578.

4. Wool, T.A.; Davie, S.R.; Rodriguez, H.N. Development of three-dimensional
hydrodynamic and water quality models to support total maximum daily load decision
process for the neuse river estuary, north carolina. J. Water Res. Pl-Asce 2003, 129,
295–306.

5. Park, Y.S.; Park, J.H.; Jang, W.S.; Ryu, J.C.; Kang, H.; Choi, J.; Lim, K.J. Hydrologic
response unit routing in swat to simulate effects of vegetated filter strip for south-korean
conditions based on vfsmod. Water 2011, 3, 819–842.

317



6. Kim, Y.-J.; Kim, H.-D.; Jeon, J.-H. Characteristics of water budget components in paddy
rice field under the asian monsoon climate: Application of hspf-paddy model. Water
2014, 6, 2041–2055.

7. Matthies, M.; Giupponi, C.; Ostendorf, B. Preface—Environmental decision support
systems: Current issues, methods and tools. Environ. Model. Softw. 2007, 22, 123–127.

8. McIntosh, B.S.; Ascough, J.C.; Twery, M.; Chew, J.; Elmahdi, A.; Haase, D.; Harou, J.J.;
Hepting, D.; Cuddy, S.; Jakeman, A.J.; et al. Environmental decision support systems
(EDSS) development—Challenges and best practices. Environ. Model. Softw. 2011, 26,
1389–1402.

9. Cortes, U.; Sanchez-Marre, M.; Ceccaroni, L.; Roda, I.R.; Poch, M. Artificial intelligence
and environmental decision support systems. Appl. Intell. 2000, 13, 77–91.

10. Mysiak, J.; Giupponi, C.; Rosato, P. Towards the development of a decision support
system for water resource management. Environ. Model. Softw. 2005, 20, 203–214.

11. Cau, P.; Paniconi, C. Assessment of alternative land management practices using
hydrological simulation and a decision support tool: Arborea agricultural region,
sardinia. Hydrol. Earth Syst. Sci. 2007, 11, 1811–1823.

12. Hipel, K.W.; Fang, L.; Kilgour, D.M. Decision support systems in water resources and
environmental management. J. Hydrol. Eng. 2008, 13, 761–770.

13. Rao, M.; Fan, G.; Thomas, J.; Cherian, G.; Chudiwale, V.; Awawdeh, M. A web-based
GIS decision support system for managing and planning USDA’s conservation reserve
program (CRP). Environ. Model. Softw. 2007, 22, 1270–1280.

14. Zeng, Y.; Cai, Y.; Jia, P.; Jee, H. Development of a web-based decision support system
for supporting integrated water resources management in Daegu city, South korea.
Expert Syst. Appl. 2012, 39, 10091–10102.

15. Sun, A. Enabling collaborative decision-making in watershed management using
cloud-computing services. Environ. Model. Softw. 2013, 41, 93–97.

16. Lam, C. Hadoop in Action, 1st ed.; Manning Publications Co.: Stamford, CT, USA,
2010; p. 336.

17. White, T. Hadoop: The Definitive Guide, 2nd ed.; O’Reilly Media: Sebastopol, CA, USA,
2009; p. 625.

18. Arnold, J.G.; Fohrer, N. SWAT2000: Current capabilities and research opportunities in
applied watershed modelling. Hydrol. Process. 2005, 19, 563–572.

19. Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling
and assessment part I: Model development1. JAWRA 1998, 34, 73–89.

20. Wang, L.; Chen, X.W. Runoff simulation with calibration and validation of three station
in Jinjiang river basin. Sci. Soil Water Conserv. 2007, 5, 21–26. (In Chinese)

21. Yalew, S.; van Griensven, A.; Ray, N.; Kokoszkiewicz, L.; Betrie, G.D. Distributed
computation of large scale SWAT models on the grid. Environ. Model. Softw. 2013,
41, 223–230.

22. Wu, Y.P.; Li, T.J.; Sun, L.Q.; Chen, J. Parallelization of a hydrological model using the
message passing interface. Environ. Model. Softw. 2013, 43, 124–132.

318



23. Sun, A.Y.; Miranda, R.M.; Xu, X. Development of multi-metamodels to support surface
water quality management and decision making. Environ. Earth Sci. 2015, 73, 423–434.

24. Chu, T.-W.; Lin, Y.-C.; Shirmohammadi, A.; Huang, Y.-C. BMP evaluation for nutrient
control in a subtropical reservoir watershed using SWAT model. In Proceedings of the
2013 the International Conference on Remote Sensing, Environment and Transportation
Engineering; (Rsete 2013). Gahegan, M.N., Xiong, N., Eds.; Atlantis Press: Paris, France,
2013; Volume 31, pp. 914–917.

25. Liu, R.; Zhang, P.; Wang, X.; Wang, J.; Yu, W.; Shen, Z. Cost-effectiveness and cost-benefit
analysis of BMPs in controlling agricultural nonpoint source pollution in China based on
the SWAT model. Environ. Monit. Assess. 2014, 186, 9011–9022. PubMed]

26. Giri, S.; Nejadhashemi, A.P.; Woznicki, S.; Zhang, Z. Analysis of best management
practice effectiveness and spatiotemporal variability based on different targeting
strategies. Hydrol. Process. 2014, 28, 431–445.

27. Dechmi, F.; Skhiri, A. Evaluation of best management practices under intensive irrigation
using swat model. Agric. Water Manag. 2013, 123, 55–64.

319

http://www.ncbi.nlm.nih.gov/pubmed/25236958




 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 
 

 

MDPI AG 

Klybeckstrasse 64 

4057 Basel, Switzerland 

Tel. +41 61 683 77 34 
Fax +41 61 302 89 18 

http://www.mdpi.com/ 

Water Editorial Office 

E-mail: water@mdpi.com 

http://www.mdpi.com/journal/water 

 

 

http://www.mdpi.com/journal/water
http://www.mdpi.com/journal/water
http://www.mdpi.com/journal/water




MDPI AG 
Klybeckstrasse 64 
4057 Basel 
Switzerland

Tel: +41 61 683 77 34 
Fax: +41 61 302 89 18

www.mdpi.com Basel • Beijing • Wuhan • Barcelona ISBN 978-3-03842-212-9




