44 research outputs found

    Enhancements to the Open Access Spectral Band Adjustment Factor Online Calculation Tool for Visible Channels

    Get PDF
    With close to 40 years of satellite observations, from which, cloud, land-use, and aerosol parameters can be measured, inter-consistent calibrations are needed to normalize retrievals across satellite records. Various visible-sensor inter-calibration techniques have been developed that utilize radiometrically stable Earth targets, e.g., deep convective clouds and desert/polar ice pseudo-invariant calibration sites. Other equally effective, direct techniques for intercalibration between satellite imagers are simultaneous nadir overpass comparisons and ray-matched radiance pairs. Combining independent calibration results from such varied techniques yields robust calibration coefficients, and is a form of self-validation. One potential source of significant error when cross-calibrating satellite sensors, however, are the often small but substantial spectral discrepancies between comparable bands, which must be accounted for. As such, visible calibration methods rely on a Spectral Band Adjustment Factor (SBAF) to account for the spectral-response function- induced radiance differences between analogous imagers. The SBAF is unique to each calibration method as it is a function of the Earth-reflected spectra. In recent years, NASA Langley pioneered the use of SCIAMACHY-, GOME-2-, and Hyperion-retrieved Earth spectra to compute SBAFs. By carefully selecting hyperspectral footprints that best represent the conditions inherent to an inter-calibration technique, the uncertainty in the SBAF is greatly reduced. NASA Langley initially provided the Global Space-based Inter-calibration System processing and research centers with online SBAF tools, with which users select conditions to best match their calibration criteria. This article highlights expanded SBAF tool capabilities for visible wavelengths, with emphasis on the use of the spectral range filtering for the purpose of separating scene conditions for the channel that the SBAF is needed based on the reflectance values of other bands. In other words, spectral filtering will enable better scene-type selection for bands where scene determination is difficult without information from other channels, which should prove valuable to users in the calibration community

    Extreme Case of Spectral Band Difference Correction Between the OSIRIS-REX-NAVCAM2 and DSCOVR-EPIC Imagers

    Get PDF
    Earth-viewed images acquired during a recent asteroid intercept mission present a unique opportunity for radiometric calibration of visible imagers onboard a space exploration probe. Measurements from the CERES consistent DSCOVR-EPIC imager act as a reference in providing spatially, temporally, and angularly matched radiance values for deriving OSIRIS-REx-NavCam sensor calibration gains. The calibration is accomplished using an optimized all-sky tropical ocean ray-matching technique, which employs complex pixel remapping, navigation correction, and angular geometry consideration. Of critical consideration in this specific inter-calibration event is the extreme difference in spectral response function (SRF) width between the NavCam and EPIC imagers, which could cause a rather large bias. The NASA-LaRC SCIAMACHY based online spectral band adjustment factor (SBAF) calculation tool provides an empirical solution to such potential spectral-difference-induced biases through a high spectral- resolution hyper spectral convolution approach. The adjustments produced from this tool can effectively reduce the calibration gain bias of NavCam2 by nearly 6%, thereby adjusting the NavCam2 sensor to within 3.2% of its prelaunch calibration. These results highlight the capability of the SBAF tool to account for exceptionally disparate SRFs

    Cross-Calibration of AQUA-MODIS and NPP-VIIRS Reflective Solar Bands for a Seamless Record of CERES Cloud and Flux Properties

    Get PDF
    The CERES measured shortwave and longwave fluxes rely on the cloud properties derived using the coincident observations from the accompanying high-resolution MODIS and VIIRS imagers. The calibration consistency is required between MODIS and VIIRS radiances to ensure that the CERES provided cloud property retrievals are temporally consistent. This paper presents multiple approaches of cross-calibrating the spectrally comparable reflective solar bands (RSB) of Aqua-MODIS and NPP- VIIRS, and estimates the radiometric biases for individual band pair. The inter-comparison is performed between the Aqua-MODIS collection 6.1 level 1B and NPP-VIIRS Land PEATE V1 datasets. Radiometric biases up to 3% were estimated bet een the MODIS and VIIRS radiances for visible bands

    Assessing the Calibration Differences in the Reflective Solar Bands of Terra MODIS and Landsat-7 Enhanced Thematic Mapper Plus

    Get PDF
    Long-term data records obtained from Earth observing sensors depend not only onthe calibration accuracy of individual sensors but also on the consistency across instruments andplatforms. Hence, sensor calibration intercomparison plays a vital role for a better understandingof various science products. The Moderate Resolution Imaging Spectroradiometer (MODIS)and enhanced thematic mapper plus (ETM+) on the Terra and Landsat 7 platforms have operatedsuccessfully since their launch, collecting measurements in the reflective solar and infrared partsof the spectrum. Terra MODIS has employed a reflectance-based calibration since beginning itsmission. In the case of ETM+, a radiance-based calibration was employed until recent years,when a reflectance-based calibration was introduced. Being in the AM constellation with lessthan 30 min difference in overpass times, near-simultaneous Earth scene measurements can beeffectively used to assess the calibration differences between the spectrally matching bands ofthese two instruments. The pseudoinvariant calibration sites (PICS) in the North African desertare widely used for on-orbit calibration and validation of satellite sensors. Four PICS from thisregion have been employed to assess the multitemporal reflectance differences. Correction forbidirectional reflectance, spectral response function mismatch, and impacts of atmosphericwater-vapor have been incorporated to provide an assessment of the long-term stability ofeach spectral band and reflectance differences amongst them. Results indicate that the spectralbands of both instruments show a long-term stability to within 2% from 2000 to 2017. Thetop-of-atmosphere reflectances between the two instruments postcorrection agree to within 4%.Also included in this paper is a detailed discussion of various parameters contributing to theuncertainties of this cross-calibration. The techniques presented in this paper can be furtherextended to perform similar intercomparison between Landsat 8 Operational Land Imager, AquaMODIS, and Suomi-NPP VIIRS

    The Calibration of the DSCOVR EPIC Multiple Visible Channel Instrument Using MODIS and VIIRS as a Reference

    Get PDF
    The Deep Space Climate Observatory (DSCOVR), launched on 11 February 2015, is a satellite positioned near the Lagrange-1 (L1) point, carrying several instruments that monitor space weather, and Earth-view sensors designed for climate studies. The Earth Polychromatic Imaging Camera (EPIC) onboard DSCOVR continuously views the sun-illuminated portion of the Earth with spectral coverage in the UV, VIS, and NIR bands. Although the EPIC instrument does not have any onboard calibration abilities, its constant view of the sunlit Earth disk provides a unique opportunity for simultaneous viewing with several other satellite instruments. This arrangement allows the EPIC sensor to be inter-calibrated using other well-characterized satellite instrument reference standards. Two such instruments with onboard calibration are MODIS, flown on Aqua and Terra, and VIIRS, onboard Suomi-NPP. The MODIS and VIIRS reference calibrations will be transferred to the EPIC instrument using both all-sky ocean and deep convective clouds (DCC) ray-matched EPIC and MODIS/VIIRS radiance pairs. An automated navigation correction routine was developed to more accurately align the EPIC and MODIS/VIIRS granules. The automated navigation correction routine dramatically reduced the uncertainty of the resulting calibration gain based on the EPIC and MODIS/VIIRS radiance pairs. The SCIAMACHY-based spectral band adjustment factors (SBAF) applied to the MODIS/ VIIRS radiances were found to successfully adjust the reference radiances to the spectral response of the specific EPIC channel for over-lapping spectral channels. The SBAF was also found to be effective for the non-overlapping EPIC channel 10. Lastly, both ray-matching techniques found no discernable trends for EPIC channel 7 over the year of publically released EPIC data

    A Consistent EPIC Visible Channel Calibration using VIIRS and MODIS as a Reference

    Get PDF
    The Earth Polychromatic Imaging Camera (EPIC) aboard the Deep Space Climate Observatory (DSCOVR) satellite constantly images the sunlit disk of Earth from the Lagrange-1 (L1) point in 10 spectral channels spanning the UV, VIS, and NIR spectrums. Recently, the DSCOVR EPIC team has publicly released version 2 dataset, which has implemented improved navigation, stray-light correction, and flat-fielding of the CCD array. The EPIC 2-year data record must be well-calibrated for consistent cloud, aerosol, trace gas, land use and other retrievals. Because EPIC lacks onboard calibrators, the observations made by EPIC channels must be calibrated vicariously using the coincident measurements from radiometrically stable instruments that have onboard calibration systems. MODIS and VIIRS are best-suited instruments for this task as they contain similar spectral bands that are well-calibrated onboard using solar diffusers and lunar tracking. We have previously calibrated the EPIC version 1 dataset by using EPIC and VIIRS angularly matched radiance pairs over both all-sky ocean and deep convective clouds (DCC). We noted that the EPIC image required navigations adjustments, and that the EPIC stray-light correction provided an offset term closer to zero based on the linear regression of the EPIC and VIIRS ray-matched radiance pairs. We will evaluate the EPIC version 2 navigation and stray-light improvements using the same techniques. In addition, we will monitor the EPIC channel calibration over the two years for any temporal degradation or anomalous behavior. These two calibration methods will be further validated using desert and DCC invariant Earth targets. The radiometric characterization of the selected invariant targets is performed using multiple years of MODIS and VIIRS measurements. Results of these studies will be shown at the conference

    Calibration of the DSCOVR EPIC Visible and NIR Channels Using MODIS Terra and Aqua Data and EPIC Lunar Observations

    Get PDF
    The unique position of the Deep Space Climate Observatory (DSCOVR) Earth Polychromatic Imaging Camera (EPIC) at the Lagrange 1 point makes an important addition to the data from currently operating low orbit Earth observing instruments. EPIC instrument does not have an onboard calibration facility. One approach to its calibration is to compare EPIC observations to the measurements from polar orbiting radiometers. Moderate Resolution Imaging Spectroradiometer (MODIS) is a natural choice for such comparison due to its well-established calibration record and wide use in remote sensing. We use MODIS Aqua and Terra L1B 1km reflectances to infer calibration coefficients for four EPIC visible and NIR channels: 443 nm, 551 nm, 680 nm and 780 nm. MODIS and EPIC measurements made between June 2015 and June 2016 are employed for comparison. We first identify favorable MODIS pixels with scattering angle matching temporarily collocated EPIC observations. Each EPIC pixel is then spatially collocated to a subset of the favorable MODIS pixels within 25 km radius. Standard deviation of the selected MODIS pixels as well as of the adjacent EPIC pixels is used to find the most homogeneous scenes. These scenes are then used to determine calibration coefficients using a linear regression between EPIC counts/sec and reflectances in the close MODIS spectral channels. We present thus inferred EPIC calibration coefficients and discuss sources of uncertainties. The Lunar EPIC observations are used to calibrate EPIC O2 absorbing channels (688 nm and 764 nm) assuming that there is a small difference between moon reflectances separated by approx.10 nm in wavelength provided the calibration factors of the red (680 nm) and near-IR (780 nm) are known from comparison between EPIC and MODIS

    Suomi NPP VIIRS DNB and RSB M Bands Detector-To-Detector and HAM Side Calibration Differences Assessment Using a Homogenous Ground Target

    Get PDF
    Near-nadir observations of the Libya 4 site from the S-NPP VIIRS Day-Night Band (DNB) and Moderate resolution Bands (M bands) are used to assess the detector calibration stability and half-angle mirror (HAM) side differences. Almost seven years of Sensor Data Records products are extracted from the Libya 4 site center over an area of 3232 pixels. The mean values of the radiance from individual detectors per HAM side are computed separately. The comparison of the normalized radiance between detectors indicates that the detector calibration differences are wavelength dependent and the differences have been slowly increasing with time for short wavelength bands, especially for M1-M4. The maximum annual average differences between DNB detectors are 0.77% in 2017 at HAM-A. For the M bands, the maximum detector differences in 2017 are 1.7% for M1, 1.8% for M2, 1.3% for M3, 1.2% for M4, 0.67% for M5, 0.75% for M7, 0.57% for M8, 13% for M9, 0.63% for M10, and 0.66% for M11. The average HAM side A to B difference in 2017 are 0.00% for DNB, 0.22% for M1, 0.17% for M2, 0.15% for M3, 0.09% for M4, -0.07% for M5, 0.02% for M7, 0.01% for M8, 1.4% for M9, 0.01% for M10, and 0.03% for M11. Results for M6 are not available due to the signal saturation and M9 results are not accurate because of the low reflectance from the desert site and the strong atmospheric absorption in this channel. The results in this study help scientists better understand each detectors performance and HAM side characteristics. Additionally, they provide evidence and motivation for future VIIRS calibration improvements

    Classification of North Africa for Use as an Extended Pseudo Invariant Calibration Sites (Epics) for Radiometric Calibration and Stability Monitoring of Optical Satellite Sensors

    Get PDF
    An increasing number of Earth-observing satellite sensors are being launched to meet the insatiable demand for timely and accurate data to help the understanding of the Earth’s complex systems and to monitor significant changes to them. The quality of data recorded by these sensors is a primary concern, as it critically depends on accurate radiometric calibration for each sensor. Pseudo Invariant Calibration Sites (PICS) have been extensively used for radiometric calibration and temporal stability monitoring of optical satellite sensors. Due to limited knowledge about the radiometric stability of North Africa, only a limited number of sites in the region are used for this purpose. This work presents an automated approach to classify North Africa for its potential use as an extended PICS (EPICS) covering vast portions of the continent. An unsupervised classification algorithm identified 19 “clusters” representing distinct land surface types; three clusters were identified with spatial uncertainties within approximately 5% in the shorter wavelength bands and 3% in the longer wavelength bands. A key advantage of the cluster approach is that large numbers of pixels are aggregated into contiguous homogeneous regions sufficiently distributed across the continent to allow multiple imaging opportunities per day, as opposed to imaging a typical PICS once during the sensor’s revisit period. In addition, this work proposes a technique to generate a representative hyperspectral profile for these clusters, as the hyperspectral profile of these identified clusters are mandatory in order to utilize them for performing cross-calibration of optical satellite sensors. The technique was used to generate the profile for the cluster containing the largest number of aggregated pixels. The resulting profile was found to have temporal uncertainties within 5% across all the spectral regions. Overall, this technique shows great potential for generation of representative hyperspectral profiles for any North African cluster, which could allow the use of the entire North Africa Saharan region as an extended PICS (EPICS) dataset for sensor cross-calibration. Furthermore, this work investigates the performance of extended pseudo-invariant calibration sites (EPICS) in cross-calibration for one of Shrestha’s clusters, Cluster 13, by comparing its results to those obtained from a traditional PICS-based cross-calibration. The use of EPICS clusters can significantly increase the number of cross-calibration opportunities within a much shorter time period. The cross-calibration gain ratio estimated using a cluster-based approach had a similar accuracy to the cross-calibration gain derived from region of interest (ROI)-based approaches. The cluster-based cross-calibration gain ratio is consistent within approximately 2% of the ROI-based cross-calibration gain ratio for all bands except for the coastal and shortwave-infrared (SWIR) 2 bands. These results show that image data from any region within Cluster 13 can be used for sensor crosscalibration. Eventually, North Africa can be used a continental scale PICS
    corecore