169,239 research outputs found

    Validating Technology-Organization Environment (TOE) framework in web 2.0 adoption in supply chain management

    Get PDF
    The second stage of Internet revolution has started with Web 2.0, which allows users to generate and develop the content without code. Web 2.0 not only change the way individual use internet but also tremendously transformed business activities. The primary aims of this study are (a) to validate the TOE framework in understanding Web 2.0 adoption in an organizational context, and (b) measuring the importance of each variable from the different industry perspective. This study developed a conceptual model based on the Technology-Organization-Environment (TOE) framework. A Webbased structured questionnaire was developed to collect primary data. With three months effort, this study managed to get 205 respondents from Malaysian manufacturing and service industry. Multiple regression and Dominance analysis were applied to understand the effect of the TOE framework on Web 2.0 adoption and predicting the importance of each factor form different industries perspective respectively. Multiple regression results confirmed that all the factors are important for Web 2.0 adoption, however, the technological characteristic is the most important determinant for Web 2.0 adoption. Moreover, dominance analysis showed very interesting results that relative advantage is not important for the service industry but top management support is the utmost importance. Similarly, results also indicated that top management support plays important role in Web 2.0 adoption for the fewer experience companies pertaining to internet usage. This study is one of the very few that provides insightful information regarding the effect of the TOE on Web 2.0 adoption in the supply chain management system. This study would be the guideline for the managers of both the manufacturing and service industry in order to implement the Web 2.0 in their supply chain system

    PERANCANGAN APLIKASI DASHBOARD WMS BERBASIS WEB SERVICE DENGAN MENGGUNAKAN TEKNOLOGI .NET WEB SERVICE DAN PHP

    Get PDF
    ABSTRACT Designing WMS Dashboard application based on Web Service using .NET Web Service Technology and PHP. Ryan Permana NIM M3108120. Program of Diploma III Faculty of Mathematics and Natural Science Sebelas Maret University.2011 Warehouse is a storage media in a Supply Chain Network. Warehouse Management System needs an item inventory, configuration saving method of an item, integration among warehouses, and a warehouse finances. All of the aspects must be well arranged, in order to avoid warehouses’s work performance decrease that can affect to supply chain profit. To avoid the supply chain from losses, a warehouses need a system that can help to maintain and manage all of warehouse’s variables. One of system that can implemented is WMS Dashbaord. WMS Dashboard is an application that can show the datas from warehouses realtime and with high accuration. WMS Dashboard’s services are made by using ASP.NET Web Service Technology which use SOAP protocol and WSDL interface so it can be used for multi platform system to system communication which using HTTP protocol. The database of WMS Dashboard is made by using MS SQL Server DBMS which has fully compatibility with other applications that made by .NET Framework. Object oriented PHP is need to made the application for client side. WSDL of WMS dashboard application consist of 56 services. The Web Service services has been integrated with WMS Dashboard Application which based on PHP, so it would be accessed easily, and it can be used to help maintain and manage the Warehouse System variables. Keywords : WMS Dashboard, ASP .NET Web Service, MS SQL, Object Oriented PHP Perancangan Aplikasi Dashboard Wms Berbasis Web Service Dengan Menggunakan Teknologi .Net Web Service Dan PHP. Ryan Permana NIM M3108120. Program Diploma III Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sebelas Maret.2011 Gudang adalah sarana penyimpanan stock barang dalam sebuah rantai supply (Supply chain). System manajemen dalam pergudangan memerlukan adanya inventaris barang masuk dan keluar, pengaturan metode penyimpanan barang, integrasi antar gudang serta pengaturan keuangan gudang. Seluruh aspek tersebut harus diatur dengan baik, sebab bila tidak kinerja gudang akan menurun dapat dapat berujung kepada meruginya rantai supply.Untuk mencegah terjadinya kerugian maka dibutuhkan sebuah sistem yang dapat membantu dalam pengawasan dan pengelolaan variable- variable yang ada dalam sistem pergudangan. Salah satu sistem yang dapat diterapkan adalah Sistem Dashboard Manajemen Pergudangan atau biasa disebut sebagai Warehouse Management System Dashboard (WMS-Dashboard). WMS Dashboard adalah sebuah aplikasi yang dapat menampilkan data dari variable- variable yang ada dalam gudang secara realtime dengan tingkat keakuratan yang tinggi. Service untuk aplikasi WMS Dashboard dibuat dengan menggunakan teknologi ASP.NET Web Service yang menggunakan protokol SOAP dan menggunakan interface WSDL sehingga dapat digunakan untuk komunikasi antar system dengan platform yang berbeda- beda melalui protokol HTTP. Database untuk service aplikasi WMS Dashboard menggunakan DBMS MS SQL Server yang mendukung intergasi dengan aplikasi- aplikasi yang dibuat dengan .NET Framework. Aplikasi WMS Dashboard untuk bagian clientnya dibuat dengan menggunakan bahasa pemrograman PHP dengan menggunaan metode pemrograman berbasis objek. Telah dibuat WSDL untuk Web Service aplikasii WMS Dashboard dengan layanan sebanyak 56 service. Layanan- layanan pada Web Service tersebut telah diintegrasikann dengan aplikasi WMS Dashboard yang berbasis PHP, sehingga mudah untuk diakses dan dapat digunakan untuk membantu dalam pengawasan dan manajemen variable- variable yang ada dalam sistem pergudangan. Kata kunci : WMS Dashboard, ASP .NET Web Service, MS SQL, PHP berbasis Objek

    A reference architecture for the collaborative planning modelling process in multi-tier supply chain networks: a Zachman-based approach

    Full text link
    A prominent and contemporary challenge for supply chain (SC) managers concerns the coordination of the efforts of the nodes of the SC in order to mitigate unpredictable market behaviour and satisfy variable customer demand. A productive response to this challenge is to share pertinent market-related information, on a timely basis, in order to effectively manage the decision-making associated with the SC production and transportation planning processes. This paper analyses the most well-known reference modelling languages and frameworks in the collaborative SC field and proposes a novel reference architecture, based upon the Zachman Framework (ZF), for supporting collaborative plan- ning (CP) in multi-level, SC networks. The architecture is applied to an automotive supply chain configuration, where, under a collaborative and decentralised approach, improvements in the service levels for each node were observed. The architecture was shown to provide the base discipline for the organisation of the processes required to manage the CP activity.The authors thanks the support from the project 'Operations Design and Management in Global Supply Chains (GLOBOP)' (Ref. DPI2012-38061-C02-01), funded by the Ministry of Science and Education of Spain, for the supply chain environment research contribution.Hernández Hormazábal, JE.; Lyons, AC.; Poler, R.; Mula, J.; Goncalves, R. (2014). A reference architecture for the collaborative planning modelling process in multi-tier supply chain networks: a Zachman-based approach. Production Planning and Control. 25(13-14):1118-1134. https://doi.org/10.1080/09537287.2013.808842S111811342513-14Al-Mutawah, K., Lee, V., & Cheung, Y. (2008). A new multi-agent system framework for tacit knowledge management in manufacturing supply chains. Journal of Intelligent Manufacturing, 20(5), 593-610. doi:10.1007/s10845-008-0142-0Baïna, S., Panetto, H., & Morel, G. (2009). New paradigms for a product oriented modelling: Case study for traceability. Computers in Industry, 60(3), 172-183. doi:10.1016/j.compind.2008.12.004Berasategi, L., Arana, J., & Castellano, E. (2011). A comprehensive framework for collaborative networked innovation. Production Planning & Control, 22(5-6), 581-593. doi:10.1080/09537287.2010.536628Chan, H. K., & Chan, F. T. S. (2009). A review of coordination studies in the context of supply chain dynamics. International Journal of Production Research, 48(10), 2793-2819. doi:10.1080/00207540902791843Chen, D., Doumeingts, G., & Vernadat, F. (2008). Architectures for enterprise integration and interoperability: Past, present and future. Computers in Industry, 59(7), 647-659. doi:10.1016/j.compind.2007.12.016Choi, Y., Kang, D., Chae, H., & Kim, K. (2006). An enterprise architecture framework for collaboration of virtual enterprise chains. The International Journal of Advanced Manufacturing Technology, 35(11-12), 1065-1078. doi:10.1007/s00170-006-0789-7Choi, Y., Kim, K., & Kim, C. (2005). A design chain collaboration framework using reference models. The International Journal of Advanced Manufacturing Technology, 26(1-2), 183-190. doi:10.1007/s00170-004-2262-9COLQUHOUN, G. J., BAINES, R. W., & CROSSLEY, R. (1993). A state of the art review of IDEFO. International Journal of Computer Integrated Manufacturing, 6(4), 252-264. doi:10.1080/09511929308944576Danilovic, M., & Winroth, M. (2005). A tentative framework for analyzing integration in collaborative manufacturing network settings: a case study. Journal of Engineering and Technology Management, 22(1-2), 141-158. doi:10.1016/j.jengtecman.2004.11.008Derrouiche, R., Neubert, G., Bouras, A., & Savino, M. (2010). B2B relationship management: a framework to explore the impact of collaboration. Production Planning & Control, 21(6), 528-546. doi:10.1080/09537287.2010.488932Dudek, G., & Stadtler, H. (2005). Negotiation-based collaborative planning between supply chains partners. European Journal of Operational Research, 163(3), 668-687. doi:10.1016/j.ejor.2004.01.014Gruat La Forme, F.-A., Genoulaz, V. B., & Campagne, J.-P. (2007). A framework to analyse collaborative performance. Computers in Industry, 58(7), 687-697. doi:10.1016/j.compind.2007.05.007Gutiérrez Vela, F. L., Isla Montes, J. L., Paderewski Rodríguez, P., Sánchez Román, M., & Jiménez Valverde, B. (2007). An architecture for access control management in collaborative enterprise systems based on organization models. Science of Computer Programming, 66(1), 44-59. doi:10.1016/j.scico.2006.10.005Hernández, J. E., Poler, R., Mula, J., & Lario, F. C. (2010). The Reverse Logistic Process of an Automobile Supply Chain Network Supported by a Collaborative Decision-Making Model. Group Decision and Negotiation, 20(1), 79-114. doi:10.1007/s10726-010-9205-7Hernández, J. E., J. Mula, R. Poler, and A. C. Lyons. 2013. “Collaborative Planning in Multi-Tier Supply Chains Supported by a Negotiation-Based Mechanism and Multi-Agent System.”Group Decision and Negotiation Journal. doi:10.1007/s10726-013-9358-2.Jardim-Goncalves, R., Grilo, A., Agostinho, C., Lampathaki, F., & Charalabidis, Y. (2013). Systematisation of Interoperability Body of Knowledge: the foundation for Enterprise Interoperability as a science. Enterprise Information Systems, 7(1), 7-32. doi:10.1080/17517575.2012.684401Kampstra, R. P., Ashayeri, J., & Gattorna, J. L. (2006). Realities of supply chain collaboration. The International Journal of Logistics Management, 17(3), 312-330. doi:10.1108/09574090610717509Kim, W., Chung, M. J., Qureshi, K., & Choi, Y. K. (2006). WSCPC: An architecture using semantic web services for collaborative product commerce. Computers in Industry, 57(8-9), 787-796. doi:10.1016/j.compind.2006.04.007Ku, K.-C., Kao, H.-P., & Gurumurthy, C. K. (2007). Virtual inter-firm collaborative framework—An IC foundry merger/acquisition project. Technovation, 27(6-7), 388-401. doi:10.1016/j.technovation.2007.02.010LEE, J., GRUNINGER, M., JIN, Y., MALONE, T., TATE, A., YOST, G., & OTHER MEMBERS OF THE PIF WORKING GROUP. (1998). The Process Interchange Format and Framework. The Knowledge Engineering Review, 13(1), 91-120. doi:10.1017/s0269888998001015Lee, J., Chae, H., Kim, C.-H., & Kim, K. (2009). Design of product ontology architecture for collaborative enterprises. Expert Systems with Applications, 36(2), 2300-2309. doi:10.1016/j.eswa.2007.12.042Liu, J., Zhang, S., & Hu, J. (2005). A case study of an inter-enterprise workflow-supported supply chain management system. Information & Management, 42(3), 441-454. doi:10.1016/j.im.2004.01.010Marques, D. M. N., & Guerrini, F. M. (2011). Reference model for implementing an MRP system in a highly diverse component and seasonal lean production environment. Production Planning & Control, 23(8), 609-623. doi:10.1080/09537287.2011.572469Mula, J., Peidro, D., & Poler, R. (2010). The effectiveness of a fuzzy mathematical programming approach for supply chain production planning with fuzzy demand. International Journal of Production Economics, 128(1), 136-143. doi:10.1016/j.ijpe.2010.06.007Murata, T. (1989). Petri nets: Properties, analysis and applications. Proceedings of the IEEE, 77(4), 541-580. doi:10.1109/5.24143Noran, O. (2003). An analysis of the Zachman framework for enterprise architecture from the GERAM perspective. Annual Reviews in Control, 27(2), 163-183. doi:10.1016/j.arcontrol.2003.09.002Olorunniwo, F. O., & Li, X. (2010). Information sharing and collaboration practices in reverse logistics. Supply Chain Management: An International Journal, 15(6), 454-462. doi:10.1108/13598541011080437Recker, J., Rosemann, M., Indulska, M., … Green, P. (2009). Business Process Modeling- A Comparative Analysis. Journal of the Association for Information Systems, 10(04), 333-363. doi:10.17705/1jais.00193Rodriguez, K., & Al-Ashaab, A. (2005). Knowledge web-based system architecture for collaborative product development. Computers in Industry, 56(1), 125-140. doi:10.1016/j.compind.2004.07.004Romero, F., Company, P., Agost, M.-J., & Vila, C. (2008). Activity modelling in a collaborative ceramic tile design chain: an enhanced IDEF0 approach. Research in Engineering Design, 19(1), 1-20. doi:10.1007/s00163-007-0040-zSandberg, E. (2007). Logistics collaboration in supply chains: practice vs. theory. The International Journal of Logistics Management, 18(2), 274-293. doi:10.1108/09574090710816977Spekman, R. E., & Carraway, R. (2006). Making the transition to collaborative buyer–seller relationships: An emerging framework. Industrial Marketing Management, 35(1), 10-19. doi:10.1016/j.indmarman.2005.07.002Stevens, W. P., Myers, G. J., & Constantine, L. L. (1974). Structured design. IBM Systems Journal, 13(2), 115-139. doi:10.1147/sj.132.0115Ulieru, M. (2000). A multi-resolution collaborative architecture for web-centric global manufacturing. Information Sciences, 127(1-2), 3-21. doi:10.1016/s0020-0255(00)00026-8Van der Aalst, W. M. P. (1999). Formalization and verification of event-driven process chains. Information and Software Technology, 41(10), 639-650. doi:10.1016/s0950-5849(99)00016-6Zachman, J. A. (1987). A framework for information systems architecture. IBM Systems Journal, 26(3), 276-292. doi:10.1147/sj.263.0276Zapp, M., Forster, C., Verl, A., & Bauernhansl, T. (2012). A Reference Model for Collaborative Capacity Planning Between Automotive and Semiconductor Industry. Procedia CIRP, 3, 155-160. doi:10.1016/j.procir.2012.07.028Zeng, Y., Wang, L., Deng, X., Cao, X., & Khundker, N. (2012). Secure collaboration in global design and supply chain environment: Problem analysis and literature review. Computers in Industry, 63(6), 545-556. doi:10.1016/j.compind.2012.05.00

    PERANCANGAN APLIKASI DASHBOARD WMS BERBASIS WEB SERVICE DENGAN MENGGUNAKAN TEKNOLOGI .NET WEB SERVICE DAN PHP

    Get PDF
    Warehouse Management System needs an item inventory, configuration saving method of items, integration among warehouses, and warehouse finance control. All of the aspects must be well arranged, in order to avoid warehouses’s work performance decrease that can affect to supply chain profit. To avoid the supply chain from losses, a warehouses need a system that can help to maintain and manage all of warehouse’s variables. A system that can implemented is WMS Dashboard. WMS Dashboard is an application that can show the warehouse’s data realtime and with high accuration. WMS Dashboard’s services are made by using ASP.NET Web Service Technology which use SOAP protocol and WSDL interface so it support multi platform system to system communication which using HTTP protocol. The database of WMS Dashboard is made by using MS SQL Server DBMS which has fully compatibility with other applications that made by .NET Framework. Object oriented PHP is need to made the application for client side. WSDL of WMS dashboard application consist of 56 services. The services has been integrated with WMS Dashboard Application which based on PHP, so it would be accessed easily, and it can be used to help maintain and manage the Warehouse System variables

    Conceptual Framework for Managing Uncertainty in a Collaborative Agri-Food Supply Chain Context

    Full text link
    [EN] Agri-food supply chains are subjected to many sources of uncertainty. If these uncertainties are not managed properly, they can have a negative impact on the agri-food supply chain (AFSC) performance, its customers, and the environment. In this sense, collaboration is proposed as a possible solution to reduce it. For that, a conceptual framework (CF) for managing uncertainty in a collaborative context is proposed. In this context, this paper seeks to answer the following research questions: What are the existing uncertainty sources in the AFSCs? Can collaboration be used to reduce the uncertainty of AFSCs? Which elements can integrate a CF for managing uncertainty in a collaborative AFSC? The CF proposal is applied to the weather source of uncertainty in order to show its applicability.The first author acknowledges the partial support of the Program of Formation of University Professors of the Spanish Ministry of Education, Culture, and Sport (FPU15/03595). The other authors acknowledge the partial support of the Project 691249, RUC-APS: Enhancing and implementing Knowledge based ICT solutions within high Risk and Uncertain Conditions for Agriculture Production Systems, funded by the EU under its funding scheme H2020-MSCA-RISE-2015.Esteso-Álvarez, A.; Alemany Díaz, MDM.; Ortiz Bas, Á. (2017). Conceptual Framework for Managing Uncertainty in a Collaborative Agri-Food Supply Chain Context. IFIP Advances in Information and Communication Technology. 506:715-724. https://doi.org/10.1007/978-3-319-65151-4_64S715724506Taylor, D.H., Fearne, A.: Towards a framework for improvement in the management of demand in agri-food supply chains. Supply Chain Manag. Int. J. 11, 379–384 (2006)Matopoulos, A., Vlachopoulou, M., Manthou, V., Manos, B.: A conceptual framework for supply chain collaboration: empirical evidence from the agri-food industry. Supply Chain Manag. Int. J. 12, 177–186 (2007)Ahumada, O., Villalobos, J.R.: Application of planning models in the agri-food supply chain: a review. Eur. J. Oper. Res. 196, 1–20 (2009)Tsolakis, N.K., Keramydas, C.A., Toka, A.K., Aidonis, D.A., Iakovou, E.T.: Agrifood supply chain management: a comprehensive hierarchical decision-making framework and a critical taxonomy. Biosyst. Eng. 120, 47–64 (2014)van der Vorst, J.G., Da Silva, C.A., Trienekens, J.H.: Agro-industrial supply chain management: Concepts and applications. FAO (2007)Borodin, V., Bourtembourg, J., Hnaien, F., Kabadie, N.: Handling uncertainty in agricultural supply chain management: a state of the art. Eur. J. Oper. Res. 254, 348–359 (2016)van der Vorst, J.G.A.J., Beulens, A.J.M.: Identifying sources of uncertainty to generate supply chain redesign strategies. Int. J. Phys. Distrib. Logist. Manag. 32, 409–430 (2000)Klosa, E.: A concept of models for supply chain speculative risk analysis and management. J. Econ. Manag. 12, 45–59 (2013)Samson, S., Reneke, J.A., Wiecek, M.M.: A review of different perspectices on uncertainty and risk and an alternative modeling paradigm. Reliab. Eng. Syst. Saf. 94, 558–567 (2009)Backus, G.B.C., Eidman, V.R., Dijkhuizen, A.A.: Farm decision making under risk and uncertainty. Neth. J. Agric. Sci. 45, 307–328 (1997)van der Vorst, J.G.: Effective food supply chains; Generating, modelling and evaluating supply chain scenarios. (2000)Amorim, P., Günther, H.O., Almada-Lobo, B.: Multi-objective integrated production and distribution planning of perishable products. Int. J. Prod. Econ. 138, 89–101 (2012)Amorim, P., Meyr, H., Almeder, C., Almada-Lobo, B.: Managing perishability in production-distribution planning: a discussion and review. Flex. Serv. Manuf. 25, 389–413 (2013)Costa, C., Antonucci, F., Pallottino, F., Aguzzi, J., Sarria, D., Menesatti, P.: A review on agri-food supply chain traceability by means of RFID technology. Food Bioprocess Technol. 6, 353–366 (2013)Pahl, J., Voss, S.: Integrating deterioration and lifetime constraints in production and supply chain planning: a survey. Eur. J. Oper. Res. 238, 654–674 (2014)Grillo, H., Alemany, M.M.E., Ortiz, A.: A review of Mathematical models for supporting the order promising process under Lack of Homogeneity in product and other sources of uncertainty. Comput. Ind. Eng. 91, 239–261 (2016)Zwietering, M.H., van’t Riet, K.: Modelling of the quality of food: optimization of a cooling chain. In: Management Studies and the Agri-business: Management of Agri-chains, Wageningen, The Netherlands, pp. 108–117 (1994)Akkerman, R., Farahani, P., Grunow, M.: Quality, safety and sustainability in food distribution: a review of quantitative operations management approaches and challenges. Spectrum 32, 863–904 (2010)Apaiah, R.K., Hendrix, E.M.T., Meerdink, G., Linnemann, A.R.: Qualitative methodology for efficient food chain design. Trends Food Sci. Technol. 16, 204–214 (2005)Lehmann, R.J., Reiche, R., Schiefer, G.: Future internet and the agri-food sector: State-of-the-art in literature and research. Comput. Electron. Agric. 89, 158–174 (2012)Kusumastuti, R.D., van Donk, D.P., Teunter, R.: Crop-related harvesting and processing planning: a review. Int. J. Prod. Econ. 174, 76–92 (2016)Dreyer, H.C., Strandhagen, J.O., Hvolby, H.H., Romsdal, A., Alfnes, E.: Supply chain strategies for speciality foods: a Norwegian case study. Prod. Plan. Control 27, 878–893 (2016)Baghalian, A., Rezapour, S., Farahani, R.Z.: Robust supply chain network design with service level against disruptions and demand uncertainties: a real-life case. Eur. J. Oper. Res. 227, 199–215 (2013)Aggarwal, S., Srivastava, M.K.: Towards a grounded view of collaboration in Indian agri-food supply chains: a qualitative investigation. Br. Food J. 115, 1085–1106 (2016)Teimoury, E., Nedaei, H., Ansari, S., Sabbaghi, M.: A multi-objective analysis for import quota policy making in a perishable fruit and vegetable supply chain: a system dynamics approach. Comput. Electron. Agric. 93, 37–45 (2013)Opara, L.U.: Traceability in agriculture and food supply chain: a review of basic concepts, technological implications, and future prospects. J. Food Agric. Environ. 1, 101–106 (2003)Kruize, J.W., Wolfert, S., Goense, D., Scholten, H., Beulens, A., Veenstra, T.: Integrating ICT applications for farm business collaboration processes using Fl Space. In: 2014 Annual SRII Global Conference, pp. 232–240. IEEE (2014)Oriade, C.A., Dillon, C.R.: Developments in biophysical and bioeconomic simulation of agricultural systems: a review. Agric. Econ. 17, 45–58 (1997)Camarinha-Matos, L.M., Afsarmanesh, H.: Collaborative networks: value creation in a knowledge society. In: Wang, Kesheng, Kovacs, G.L., Wozny, Michael, Fang, Minglun (eds.) PROLAMAT 2006. IIFIP, vol. 207, pp. 26–40. Springer, Boston, MA (2006). doi: 10.1007/0-387-34403-9_4Prima Dania, W.A., Xing, K., Amer, Y.: Collaboration and sustainable agri-food supply chain: a literature review. MATEC Web Conf. 58 (2016)Simatupang, T.M., Sridharan, R.: The collaborative index: a measure for supply chain collaboration. Int. J. Phys. Distrib. Logist. Manag. 35, 44–62 (2005)Fischer, C., Hartmann, M., Reynolds, N., Leat, P., Revoredo-Giha, C., Henchion, M., Albisu, L.M., Gracia, A.: Factors influencing contractual choice and sustainable relationships in European agri-food supply chains. Eur. Rev. Agric. Econ. 36, 541–569 (2009

    Supply chain optimization towards personalizing web services

    Get PDF
    Personalization, which has the ultimate goal of satisfying user’s requests, can be perceived in terms of QoS measurement. As one of the means for the success of Semantics Web, many techniques have been effectively used in modeling and developing web service personalization. However, most of these methodologies relied heavily on detailed implicit and explicit information supply by users during initial and subsequent interactions with the systems. We propose in this paper a novel approach using the supply chain management (SCM) technique in personalizing web services as against the conventional notion of applying SCM only to product manufacturing. Our user-model based framework uses multi-agent system (MAS) components in taking requests from users and working towards their satisfaction including seeking for additional information outside the system as the need arises. Only basic stereotype information furnished by potential users at initial contact is required for personalization during subsequent interactions with the system. The system is adaptive and aimed at high quality autonomous information services where users are successfully presented preferred web services with minimum information request

    A novel framework for the use of workflow system in the integration of supply chain tiers

    Get PDF
    The global competition has imposed challenges to supply chain integration, mainly, during the process of obtain information to make demand management decisions. This paper proposes an integrated framework for data collection, analysis and results dissemination in the supply chain management (SCM), contributing to research and alternatives for \u201cThe Bullwhip Effect\u201d issue. In this sense, it is necessary to discuss the integration of supply chain management, Enterprise Resources Planning (ERP) functionality and others systems, to enlarge this scope to the total supply chain players. The ERP web-based tool and Workflow Systems (WS) can contribute to solve issues related to supply chain management. Starting from a detailed analysis of the research background regarding current SCM definitions and integration problems, Information Technology and Communication (ITC) development and WS in order to map and ensure flow fluency; the paper proposes a model to increase the overall integrations and an application in a case study for supporting the decisions that are aligned with the company\u2019s strategic objectives. This paper is divided in: research background; proposed model of the SC integration; case study, conclusions and future research
    • …
    corecore