117 research outputs found

    Information Analysis for Steganography and Steganalysis in 3D Polygonal Meshes

    Get PDF
    Information hiding, which embeds a watermark/message over a cover signal, has recently found extensive applications in, for example, copyright protection, content authentication and covert communication. It has been widely considered as an appealing technology to complement conventional cryptographic processes in the field of multimedia security by embedding information into the signal being protected. Generally, information hiding can be classified into two categories: steganography and watermarking. While steganography attempts to embed as much information as possible into a cover signal, watermarking tries to emphasize the robustness of the embedded information at the expense of embedding capacity. In contrast to information hiding, steganalysis aims at detecting whether a given medium has hidden message in it, and, if possible, recover that hidden message. It can be used to measure the security performance of information hiding techniques, meaning a steganalysis resistant steganographic/watermarking method should be imperceptible not only to Human Vision Systems (HVS), but also to intelligent analysis. As yet, 3D information hiding and steganalysis has received relatively less attention compared to image information hiding, despite the proliferation of 3D computer graphics models which are fairly promising information carriers. This thesis focuses on this relatively neglected research area and has the following primary objectives: 1) to investigate the trade-off between embedding capacity and distortion by considering the correlation between spatial and normal/curvature noise in triangle meshes; 2) to design satisfactory 3D steganographic algorithms, taking into account this trade-off; 3) to design robust 3D watermarking algorithms; 4) to propose a steganalysis framework for detecting the existence of the hidden information in 3D models and introduce a universal 3D steganalytic method under this framework. %and demonstrate the performance of the proposed steganalysis by testing it against six well-known 3D steganographic/watermarking methods. The thesis is organized as follows. Chapter 1 describes in detail the background relating to information hiding and steganalysis, as well as the research problems this thesis will be studying. Chapter 2 conducts a survey on the previous information hiding techniques for digital images, 3D models and other medium and also on image steganalysis algorithms. Motivated by the observation that the knowledge of the spatial accuracy of the mesh vertices does not easily translate into information related to the accuracy of other visually important mesh attributes such as normals, Chapters 3 and 4 investigate the impact of modifying vertex coordinates of 3D triangle models on the mesh normals. Chapter 3 presents the results of an empirical investigation, whereas Chapter 4 presents the results of a theoretical study. Based on these results, a high-capacity 3D steganographic algorithm capable of controlling embedding distortion is also presented in Chapter 4. In addition to normal information, several mesh interrogation, processing and rendering algorithms make direct or indirect use of curvature information. Motivated by this, Chapter 5 studies the relation between Discrete Gaussian Curvature (DGC) degradation and vertex coordinate modifications. Chapter 6 proposes a robust watermarking algorithm for 3D polygonal models, based on modifying the histogram of the distances from the model vertices to a point in 3D space. That point is determined by applying Principal Component Analysis (PCA) to the cover model. The use of PCA makes the watermarking method robust against common 3D operations, such as rotation, translation and vertex reordering. In addition, Chapter 6 develops a 3D specific steganalytic algorithm to detect the existence of the hidden messages embedded by one well-known watermarking method. By contrast, the focus of Chapter 7 will be on developing a 3D watermarking algorithm that is resistant to mesh editing or deformation attacks that change the global shape of the mesh. By adopting a framework which has been successfully developed for image steganalysis, Chapter 8 designs a 3D steganalysis method to detect the existence of messages hidden in 3D models with existing steganographic and watermarking algorithms. The efficiency of this steganalytic algorithm has been evaluated on five state-of-the-art 3D watermarking/steganographic methods. Moreover, being a universal steganalytic algorithm can be used as a benchmark for measuring the anti-steganalysis performance of other existing and most importantly future watermarking/steganographic algorithms. Chapter 9 concludes this thesis and also suggests some potential directions for future work

    Sensor Data Integrity Verification for Real-time and Resource Constrained Systems

    Full text link
    Sensors are used in multiple applications that touch our lives and have become an integral part of modern life. They are used in building intelligent control systems in various industries like healthcare, transportation, consumer electronics, military, etc. Many mission-critical applications require sensor data to be secure and authentic. Sensor data security can be achieved using traditional solutions like cryptography and digital signatures, but these techniques are computationally intensive and cannot be easily applied to resource constrained systems. Low complexity data hiding techniques, on the contrary, are easy to implement and do not need substantial processing power or memory. In this applied research, we use and configure the established low complexity data hiding techniques from the multimedia forensics domain. These techniques are used to secure the sensor data transmissions in resource constrained and real-time environments such as an autonomous vehicle. We identify the areas in an autonomous vehicle that require sensor data integrity and propose suitable water-marking techniques to verify the integrity of the data and evaluate the performance of the proposed method against different attack vectors. In our proposed method, sensor data is embedded with application specific metadata and this process introduces some distortion. We analyze this embedding induced distortion and its impact on the overall sensor data quality to conclude that watermarking techniques, when properly configured, can solve sensor data integrity verification problems in an autonomous vehicle.Ph.D.College of Engineering & Computer ScienceUniversity of Michigan-Dearbornhttp://deepblue.lib.umich.edu/bitstream/2027.42/167387/3/Raghavendar Changalvala Final Dissertation.pdfDescription of Raghavendar Changalvala Final Dissertation.pdf : Dissertatio

    Robust feature-based 3D mesh segmentation and visual mask with application to QIM 3D watermarking

    Get PDF
    The last decade has seen the emergence of 3D meshes in industrial, medical and entertainment applications. Many researches, from both the academic and the industrial sectors, have become aware of their intellectual property protection arising with their increasing use. The context of this master thesis is related to the digital rights management (DRM) issues and more particularly to 3D digital watermarking which is a technical tool that by means of hiding secret information can offer copyright protection, content authentication, content tracking (fingerprinting), steganography (secret communication inside another media), content enrichment etc. Up to now, 3D watermarking non-blind schemes have reached good levels in terms of robustness against a large set of attacks which 3D models can undergo (such as noise addition, decimation, reordering, remeshing, etc.). Unfortunately, so far blind 3D watermarking schemes do not present a good resistance to de-synchronization attacks (such as cropping or resampling). This work focuses on improving the Spread Transform Dither Modulation (STDM) application on 3D watermarking, which is an extension of the Quantization Index Modulation (QIM), through both the use of the perceptual model presented, which presents good robustness against noising and smoothing attacks, and the the application of an algorithm which provides robustness noising and smoothing attacks, and the the application of an algorithm which provides robustness against reordering and cropping attacks based on robust feature detection. Similar to other watermarking techniques, imperceptibility constraint is very important for 3D objects watermarking. For this reason, this thesis also explores the perception of the distortions related to the watermark embed process as well as to the alterations produced by the attacks that a mesh can undergo

    Exploiting Spatio-Temporal Coherence for Video Object Detection in Robotics

    Get PDF
    This paper proposes a method to enhance video object detection for indoor environments in robotics. Concretely, it exploits knowledge about the camera motion between frames to propagate previously detected objects to successive frames. The proposal is rooted in the concepts of planar homography to propose regions of interest where to find objects, and recursive Bayesian filtering to integrate observations over time. The proposal is evaluated on six virtual, indoor environments, accounting for the detection of nine object classes over a total of ∼ 7k frames. Results show that our proposal improves the recall and the F1-score by a factor of 1.41 and 1.27, respectively, as well as it achieves a significant reduction of the object categorization entropy (58.8%) when compared to a two-stage video object detection method used as baseline, at the cost of small time overheads (120 ms) and precision loss (0.92).</p

    Data Hiding and Its Applications

    Get PDF
    Data hiding techniques have been widely used to provide copyright protection, data integrity, covert communication, non-repudiation, and authentication, among other applications. In the context of the increased dissemination and distribution of multimedia content over the internet, data hiding methods, such as digital watermarking and steganography, are becoming increasingly relevant in providing multimedia security. The goal of this book is to focus on the improvement of data hiding algorithms and their different applications (both traditional and emerging), bringing together researchers and practitioners from different research fields, including data hiding, signal processing, cryptography, and information theory, among others

    A Method for Determining the Shape Similarity of Complex Three-Dimensional Structures to Aid Decay Restoration and Digitization Error Correction

    Get PDF
    none5noThis paper introduces a new method for determining the shape similarity of complex three-dimensional (3D) mesh structures based on extracting a vector of important vertices, ordered according to a matrix of their most important geometrical and topological features. The correlation of ordered matrix vectors is combined with perceptual definition of salient regions in order to aid detection, distinguishing, measurement and restoration of real degradation and digitization errors. The case study is the digital 3D structure of the Camino Degli Angeli, in the Urbino’s Ducal Palace, acquired by the structure from motion (SfM) technique. In order to obtain an accurate, featured representation of the matching shape, the strong mesh processing computations are performed over the mesh surface while preserving real shape and geometric structure. In addition to perceptually based feature ranking, the new theoretical approach for ranking the evaluation criteria by employing neural networks (NNs) has been proposed to reduce the probability of deleting shape points, subject to optimization. Numerical analysis and simulations in combination with the developed virtual reality (VR) application serve as an assurance to restoration specialists providing visual and feature-based comparison of damaged parts with correct similar examples. The procedure also distinguishes mesh irregularities resulting from the photogrammetry process.openVasic I.; Quattrini R.; Pierdicca R.; Frontoni E.; Vasic B.Vasic, I.; Quattrini, R.; Pierdicca, R.; Frontoni, E.; Vasic, B

    Information embedding and retrieval in 3D printed objects

    Get PDF
    Deep learning and convolutional neural networks have become the main tools of computer vision. These techniques are good at using supervised learning to learn complex representations from data. In particular, under limited settings, the image recognition model now performs better than the human baseline. However, computer vision science aims to build machines that can see. It requires the model to be able to extract more valuable information from images and videos than recognition. Generally, it is much more challenging to apply these deep learning models from recognition to other problems in computer vision. This thesis presents end-to-end deep learning architectures for a new computer vision field: watermark retrieval from 3D printed objects. As it is a new area, there is no state-of-the-art on many challenging benchmarks. Hence, we first define the problems and introduce the traditional approach, Local Binary Pattern method, to set our baseline for further study. Our neural networks seem useful but straightfor- ward, which outperform traditional approaches. What is more, these networks have good generalization. However, because our research field is new, the problems we face are not only various unpredictable parameters but also limited and low-quality training data. To address this, we make two observations: (i) we do not need to learn everything from scratch, we know a lot about the image segmentation area, and (ii) we cannot know everything from data, our models should be aware what key features they should learn. This thesis explores these ideas and even explore more. We show how to use end-to-end deep learning models to learn to retrieve watermark bumps and tackle covariates from a few training images data. Secondly, we introduce ideas from synthetic image data and domain randomization to augment training data and understand various covariates that may affect retrieve real-world 3D watermark bumps. We also show how the illumination in synthetic images data to effect and even improve retrieval accuracy for real-world recognization applications
    • …
    corecore