892 research outputs found

    Modelling and Visualisation of the Optical Properties of Cloth

    Get PDF
    Cloth and garment visualisations are widely used in fashion and interior design, entertaining, automotive and nautical industry and are indispensable elements of visual communication. Modern appearance models attempt to offer a complete solution for the visualisation of complex cloth properties. In the review part of the chapter, advanced methods that enable visualisation at micron resolution, methods used in three-dimensional (3D) visualisation workflow and methods used for research purposes are presented. Within the review, those methods offering a comprehensive approach and experiments on explicit clothes attributes that present specific optical phenomenon are analysed. The review of appearance models includes surface and image-based models, volumetric and explicit models. Each group is presented with the representative authors’ research group and the application and limitations of the methods. In the final part of the chapter, the visualisation of cloth specularity and porosity with an uneven surface is studied. The study and visualisation was performed using image data obtained with photography. The acquisition of structure information on a large scale namely enables the recording of structure irregularities that are very common on historical textiles, laces and also on artistic and experimental pieces of cloth. The contribution ends with the presentation of cloth visualised with the use of specular and alpha maps, which is the result of the image processing workflow

    Visual Prototyping of Cloth

    Get PDF
    Realistic visualization of cloth has many applications in computer graphics. An ongoing research problem is how to best represent and capture appearance models of cloth, especially when considering computer aided design of cloth. Previous methods can be used to produce highly realistic images, however, possibilities for cloth-editing are either restricted or require the measurement of large material databases to capture all variations of cloth samples. We propose a pipeline for designing the appearance of cloth directly based on those elements that can be changed within the production process. These are optical properties of fibers, geometrical properties of yarns and compositional elements such as weave patterns. We introduce a geometric yarn model, integrating state-of-the-art textile research. We further present an approach to reverse engineer cloth and estimate parameters for a procedural cloth model from single images. This includes the automatic estimation of yarn paths, yarn widths, their variation and a weave pattern. We demonstrate that we are able to match the appearance of original cloth samples in an input photograph for several examples. Parameters of our model are fully editable, enabling intuitive appearance design. Unfortunately, such explicit fiber-based models can only be used to render small cloth samples, due to large storage requirements. Recently, bidirectional texture functions (BTFs) have become popular for efficient photo-realistic rendering of materials. We present a rendering approach combining the strength of a procedural model of micro-geometry with the efficiency of BTFs. We propose a method for the computation of synthetic BTFs using Monte Carlo path tracing of micro-geometry. We observe that BTFs usually consist of many similar apparent bidirectional reflectance distribution functions (ABRDFs). By exploiting structural self-similarity, we can reduce rendering times by one order of magnitude. This is done in a process we call non-local image reconstruction, which has been inspired by non-local means filtering. Our results indicate that synthesizing BTFs is highly practical and may currently only take a few minutes for small BTFs. We finally propose a novel and general approach to physically accurate rendering of large cloth samples. By using a statistical volumetric model, approximating the distribution of yarn fibers, a prohibitively costly, explicit geometric representation is avoided. As a result, accurate rendering of even large pieces of fabrics becomes practical without sacrificing much generality compared to fiber-based techniques

    Mechanics-Aware Modeling of Cloth Appearance

    Get PDF

    Integrating X-ray computed tomography with chemical imaging to quantify mineral re-crystallization from granulite to eclogite metamorphism in the Western Italian Alps (Sesia-Lanzo Zone)

    Get PDF
    Metamorphic transformations and fabric evolution are the consequence of thermo-dynamic processes, lasting from thousands to millions of years. Relative mineral percentages, their grain size distribution, grain orientation, and grain boundary geometries are first-order parameters for dynamic modeling of metamorphic processes. To quantify these parameters, we propose a multidisciplinary approach integrating X-ray computed microtomography (\u3bc-CT) with X-ray chemical mapping obtained from an Electron MicroProbe Analyzer (EMPA). We used a metapelitic granulite sample collected from the Alpine HP-LT metamorphic rocks of the Mt. Mucrone (Eclogitic Micaschists Complex, Sesia-Lanzo Zone, Western Alps, Italy). The heterogeneous Alpine deformation and metamorphism allowed the preservation of pre-alpine structural and mineralogical features developed under granulite-facies conditions. The inferred granulitic mineral association is Grt + Bt + Sil + Pl + Qtz \ub1 Ilm \ub1 Kfs \ub1 Wm. The subsequent pervasive static eclogite-facies re-equilibration occurred during the alpine evolution. The inferred alpine mineral association is Wm + Omp \ub1 Ky + Qtz + Grt though local differences may occur, strongly controlled by chemistry of microdomains. X-ray \u3bc-CT data extracted from centimeter-sized samples have been analyzed to quantify the volumetric percentage and shape preferred orientation (SPO) for each mineral phase. By combining tomographic phase separation with chemical variation and microstructures (i.e., different grain-size classes for the same phase and morphology of different pre-alpine microdomains) the pre-alpine mineralogical phases from the alpine overprint have been distinguished and quantified. Moreover, the sample preserves 100% of the pre-alpine granulite fabric, which surprisingly corresponds to less than 22% of the corresponding pre-alpine metamorphic assemblages, while the alpine eclogitic static assemblage corresponds to 78% though no new fabric is developed. This contribution demonstrates that the combined use of EMPA X-ray chemical mapping with the X-ray \u3bc-CT shape analysis permits a dynamic approach to constrain the chemistry of the mineral phases linked to the development of metamorphic-related static and dynamic fabrics
    • …
    corecore