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Fig. 1. Spatial correlation in media leads to non-exponential light transport, which significantly affects appearance. The image shows volumetric renderings of
translucent dragons made of materials with the same density per unit differential volume µ = 10 (isotropic, albedo Λ = .8), but different correlations. Left:
using classic light transport, where material particles are assumed to be uncorrelated. Middle and right: positive and negative correlation, respectively, using
our novel framework for spatially-correlated materials. The insets show illustrative views of scatterer correlation for each dragon.

We introduce a non-exponential radiative framework that takes into account

the local spatial correlation of scattering particles in amedium.Most previous

works in graphics have ignored this, assuming uncorrelated media with

a uniform, random local distribution of particles. However, positive and

negative correlation lead to slower- and faster-than-exponential attenuation

respectively, which cannot be predicted by the Beer-Lambert law. As our

results show, this has a major effect on extinction, and thus appearance.

From recent advances in neutron transport, we first introduce our Extended

Generalized Boltzmann Equation, and develop a general framework for

light transport in correlated media. We lift the limitations of the original

formulation, including an analysis of the boundary conditions, and present

a model suitable for computer graphics, based on optical properties of the

media and statistical distributions of scatterers. In addition, we present an

analytic expression for transmittance in the case of positive correlation, and

show how to incorporate it efficiently into a Monte Carlo renderer. We show

results with a wide range of both positive and negative correlation, and

demonstrate the differences compared to classic light transport.
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1 INTRODUCTION
Volumetric appearances are ubiquitous in the real world, from

translucent organic materials to clouds, smoke, or densely packed

granular media. Voxel-based representations with anistropic scatter-

ing functions [Heitz et al. 2015; Jakob et al. 2010] have been widely

used in recent years to represent the appearance of complex geome-

tries such as trees [Loubet and Neyret 2017; Neyret 1998], cloth and

hair [Aliaga et al. 2017; Khungurn et al. 2015; Schröder et al. 2011;

Zhao et al. 2011], or particles’ aggregates [Meng et al. 2015; Moon

et al. 2007; Müller et al. 2016].

Many translucent objects and participatingmedia present a strong

spatial correlation between scatterers
1
[Coquard and Baillis 2006;

Knyazikhin et al. 1998; Lovejoy et al. 1995], where scatterers’ densi-

ties are non-uniform within a differential volume. The aerosol of

clouds, for instance, tends to form clusters, resulting in areas with

very different optical thicknesses [Marshak et al. 1998]. As a result,

the probability of a photon interacting with a scatterer inside each

differential volume is also non-uniform, which in turn has a great

effect in the final appearance, as Figure 1 shows.

Most previous works in graphics have assumed an uncorrelated

distribution of scatterers, considering only spatial correlation at a

1
Following other works’ terminology, through the paper we use the term “scatterers”

for all particles in the media, including perfect absorbers.
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correlation on extinction, and the Generalized Boltzmann Equa-

tion (Section 3). Unfortunately, the original formulation of the GBE

presents some simplifying assumptions valid for neutron transport

in reactors, but that limit its applicability in rendering. In Section 4

we present our Extended GBE, which lifts the limitations of the orig-

inal GBE to support more general media, and include a thorough

analysis of its boundary conditions. Finally, in Section 5 we propose

an appearance model for positively-correlated media based on local

optical parameters, which is intuitive and easy to manipulate, and

which can be plugged directly into our Extended GBE.

2 RELATED WORK
Volumetric light transport. Simulating light transport in partic-

ipating media has a long history in computer graphics (see e.g.

[Gutierrez et al. 2008]). Existing methods aim to efficiently solve

the RTE [Chandrasekhar 1960] by means of path tracing [Lafor-

tune and Willems 1996; Veach 1997], photon mapping [Jensen 2001],

photon beams [Jarosz et al. 2011], or a combination of these tech-

niques [Křivánek et al. 2014]. Our framework is independent of

the particular algorithm used for rendering. Jakob et al. [2010] ex-

tended the RTE to account for directional (angular) anisotropy. Later,

Heitz et al. [2015] further extended this model with the SGGX mi-

croflakes distribution. While these works focus on the local angular

dependence of scattering and extinction, they still assume that the

scatterers are uncorrelated, distributed uniformly in the spatial do-

main. Our work is orthogonal to these approaches, focusing on the

effects of spatial correlation.

Volumetric representation of appearance. Volumetric representa-

tions of explicit geometry have been successfully used to approx-

imate complex appearances. Meng et al. [2015] used a classical

radiative approximation of light transport in particulate media for

efficient rendering. Fiber-level cloth appearance models, based ei-

ther on micro-CT geometry [Zhao et al. 2011, 2012] or procedural

modeling [Schröder et al. 2011], have used volumetric anisotropic

representations for rendering high-detailed garments [Aliaga et al.

2017], similar in quality to explicit fiber representations [Khungurn

et al. 2015]. Zhao et al. [2016] presented an optimization-based ap-

proach to downsample volumetric appearance representation by

altering the rendering parameters (scattering and phase function)

to match the desired appearance. All these works make again the

assumption of perfect decorrelation of the scatterers in the medium.

Our theoretical framework departs from this assumption.

Correlated volumetric media. Correlated volumetric media have

been studied in computational transport in fields such as nuclear

engineering [Camminady et al. 2017; Larsen and Vasques 2011; Lev-

ermore et al. 1986], atmospheric sciences [Davis and Marshak 2004;

Davis et al. 1999; Newman et al. 1995], or thermal propagation [Bel-

let et al. 2009; Coquard and Baillis 2006; Taine et al. 2010], leading

to non-classical transport theories [Frank and Goudon 2010; Larsen

2007]. Non-classical transport has been however largely unexplored

in graphics: The first work modeling non-exponential flights in

graphics is the work of Moon et al. [2007], which precomputed

transport functions of granular materials as a set of homogeneous

Fig. 2. Left: Photographs of spatially-correlated media (white fabric, and 
maldon salt), lit from behind using a mobile flash. Right: We evaluate the 
transmittance of different media, by fitting measurements at different optical 
thickness to the exponential decay predicted by the classic Beer-Lambert 
law. As expected, a diluted liquid such as milk (marked with an asterisk) 
shows a very close fit to the exponential decay (measured using the R2 

metric); however, transmittance in spatially-correlated media cannot be 
modeled using classic radiative transfer. Details on the experiment can be 
found in Section S.9 in the supplemental.

macroscopic scale as heterogeneous media. This results in the well-
known exponential transmittance predicted by the Beer-Lambert 
law. However, in the presence of correlation at differential-volume 
scale, the predictions of the Radiative Transfer Equation (RTE) [Chan-
drasekhar 1960] break, and therefore attenuation is no longer ex-
ponential (see Figure 2): In such cases, negatively-correlated media 
lead to faster-than-exponential transmittance, whereas positive cor-
relation leads to slower-than-exponential transmittance [Davis et al. 
1999]. Works rendering granular aggregates observed such non-
exponential transmittance; however, they either formulate it in an 
uncorrelated radiative (exponential) framework [Meng et al. 2015], 
precalculate the full light transport explicitly [Moon et al. 2007], or 
combine both approaches [Müller et al. 2016].

In this work we introduce a theoretical framework for simulating 
light transport in spatially-correlated media, which accounts for 
the local structure of scatterers. Our framework builds upon the 
well-established radiative theory, and leverages recent advances in 
non-classical transport in the neutron transport field: We extend the 
Generalized Boltzmann Equation (GBE) [Larsen 2007], which gener-
alizes the RTE to correlated media, and lift its main limitations, lead-
ing to a general framework suitable for computer graphics. In addi-
tion, we present an analytic expression of transmittance for positive 
correlation, leading to a compact representation of directionally-
dependent spatial correlation based on a gamma distribution of 
scatterers. We also present efficient sampling techniques, enabling 
the use of our model within any existing volumetric renderer. Our 
framework is able to accurately simulate light transport inside corre-
lated media. We show results with a wide range of correlations, both 
negative and positive, and demonstrate the differences with classic 
(uncorrelated) light transport. Our model is general and intuitive, 
and can be seen as complementary in the spatial domain to angular 
anisotropy in media [Heitz et al. 2015; Jakob et al. 2010]. It might 
also be useful in other areas such as volumetric level of detail, or 
accelerating light transport using similarity theory.

Overview . The technical sections of the paper are organized as 
follows: We first present a general background of radiative trans-
port in uncorrelated media, a brief summary of the effect of spatial
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Fig. 3. Difference between heterogeneous and spatially-correlated media,
from a computer graphics perspective. Heterogeneous media assume het-
erogeneity at macroscopic level, but local homogeneity at each differential
volume dV (x) (see "Traditional Heterogeneous", represented as solid colors
per voxel). Instead, our model for spatially-correlated media takes into ac-
count the uneven distribution of scatterers within each dV (x) (represented
on the right as probabilities of extinction p (·)).

shells. However, they required precomputing all light transport oper-

ators rather than attempting to express such non-exponential flights

into a new radiative transport theory, and did not take into account

the effect of correlation at boundaries. Müller et al. [2016] later used

a similar approach in combination with other volumetric estimators

for rendering heterogeneous discrete media. Concurrently to us,

Wrenninge et al. [2017] used non-exponential flights for increased

artist control on volumetric light transport, but omitted the un-

derlying theory, and did not relate their model with the physical

process of extinction. More formally, d’Eon analyzed rigorously

the effect of isotropic non-Poissonian extinction on the diffusion

(multiple scattering) regime [2014b; 2016a], and discussed the con-

nections between graphics and non-classical transport, including

the limitations of such theories to be used in rendering [d’Eon 2014a,

2016b]. We generalize these works, offering a non-classic transport

theory suitable for rendering, and introduce an intuitive formula-

tion for rendering spatially-correlated media based on local optical

parameters.

3 RADIATIVE TRANSPORT IN CORRELATED MEDIA
In this section, we first introduce light transport in participating

media as modeled by the Radiative Transfer Equation (RTE) [Chan-

drasekhar 1960] (Section 3.1). We then describe the notion of spatial

correlation in media, and its effect on light extinction (Section 3.2),

as well as the Generalized Boltzmann Equation (GBE), first proposed

by Larsen [2007] in the context of neutron transport (Section 3.3).

It is important to first clarify the difference between spatially-

correlated media, and heterogeneous media, as commonly used in

computer graphics. As illustrated in Figure 3, heterogeneous media

assume local homogeneity at each differential volume dV (x). In con-

trast, correlatedmedia take into account the average effect of uneven

scatterer distributions within each dV (x). Therefore, a medium can

be statistically homogeneous, meaning that its statistical moments

are invariant over all the volume, but spatially correlated [Kostinski

2001].

3.1 Background: The Radiative Transport Equation
In its integro-differential form, the Radiative Transfer Equation

(RTE) models the amount of radiance L at point x in direction ωo as:

ωo · ∇L(x,ωo ) + µL(x,ωo ) = S(x,ωo ) +Q(x,ωo ), (1)

a) b) c) d)

Fig. 4. Illustration of the effect of spatial correlation in a medium for dif-
ferent hypothetical distributions of scatterers. (a) A random distribution of
scatterers within a differential volume dV (x). (b) In the presence of scat-
terer correlation, the probability of interaction changes within dV (x). (c, d)
This correlation might further exhibit directional behavior, leading to very
different interaction probabilities according to the degree of alignment with
the propagation of light.

where Q(ωo ) is the volume source term, and S is the in-scattered

radiance:

S(x,ωo ) = µs

∫
Ω
L(x,ωi )fr (x,ωi ,ωo ) dωi , (2)

which is the directional integral over the sphere Ω of the light

scattered towards ωo , modeled using the phase function fr ; ωi rep-
resents the incoming direction of light. Note that we have omitted

the spatial dependency of all terms in Equations (1) and (2) for

simplicity. Finally, µ = µa + µs [m
−1
] is the extinction coefficient,

with µa and µs the absorption and scattering coefficients respec-

tively. These terms model the probability of a beam of light to be

attenuated either by absorption or scattering, and are defined as

the product of the number of scatterers per unit volume C [m
−3
],

and the scatterers’ cross section σ [m
2
], assuming that the scatter-

ers are uniformly distributed in the differential volume (Figure 1,

left) (see [Arvo 1993] for a detailed derivation). Jakob et al. [2010]

later generalized the RTE to model directionally anisotropic media,

by taking into account the angular (directional) dependence of the

scatterers’ cross section in media.

3.2 Effect of Spatial Correlation on Extinction
When light propagates through a participating medium, it scatters

as a function of the distribution of the scatterers. When this dis-

tribution is random and uniformly distributed, extinction becomes

a Poissonian process, and the exponential Beer-Lambert law accu-

rately describes the attenuation of light (see [Gallavotti 1972] for

a rigorous derivation). However, the distribution of scatterers in

many media exhibits different forms and degrees of spatial corre-

lation (e.g. clouds [Davis and Marshak 2004; Lovejoy et al. 1995],

textiles [Coquard and Baillis 2006], porous materials [Bellet et al.

2009; Taine et al. 2010], or granular aggregates [Meng et al. 2015]).

This affects light transport, as Figure 4 illustrates; as a consequence,

attenuation is no longer exponential, and light extinction becomes

non-Poissonian.

Negative correlation occurs when the distribution of scatterers

is more uniform than Poisson (as in electrostatic repulsion), and

leads to super-exponential (faster) extinction. Clustered scatter-

ers, on the other hand, yield positive correlation, which leads to

sub-exponential (slower) extinction; this is illustrated in Figure 5.

The reason for such non-exponential transmittance can be further

visualized intuitively in Figure 6: In negatively-correlated media,

absorbers are less likely to "shadow" one another; as a result, more
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Fig. 5. Different types of scatterer correlation, and their effect on transmit-
tance. From left to right, the first three figures depict negative correlation, no
correlation (extinction is a Poissonian process), and positive correlation. The
plot on the right shows extinction, averaged for several procedural realiza-
tions of the media (see Section S.11 in the supplemental) and ray directions:
While uncorrelated media results in the classic exponential extinction, neg-
ative and positive correlation lead to faster- and slower-than-exponential
extinction, respectively.

Negative Correlation Positive Correlation

Fig. 6. Intuitive explanation for non-exponential transmittance in negatively-
(left) and positively-correlated (right) media. Solid squares represent per-
fect absorbers. Although both media have the same number of absorbers,
shadowing (or overlapping) of such scatterers (positive correlation) results
in less (sub-exponential) extinction. Figure inspired from [Kostinski 2002].

light becomes extinct. Positively-correlated media presents the op-

posite case, with many absorbers shadowing others; this creates

empty regions which in turn lead to more light passing through.

More formally, in uncorrelated media (Poissonian process) the

extinction probability after traveling a distance t from the previous

scattering (or emission
2
) event is p (t) = µ exp(−µ t), as predicted

by the Beer-Lambert law. Thus, defining the differential probability

of extinction Σ(t) [m−1
] as [Larsen and Vasques 2011]

Σ(t) = p (t)
1 −

∫ t
0
p (s) ds

, (3)

where the denominator is the physical definition of transmittance

T (t), we obtain Σ(t) = µ, the extinction coefficient of the medium

(uniform for each differential volume, and independent of the dis-

tance t ).
Let us now define a simple positively-correlated (clustered)medium,

composed of regions with a high density of scatterers (extinction

coefficient µ1), and regions with low density (µ2). The probability
of light extinction

3
after traveling a distance t is given by

p (t) = µ1 pτ (µ1) e−µ1 t + µ2 pτ (µ2) e−µ2 t , (4)

1. From this simple example, we can see that p (t) is no longer ex-

ponential, and thus extinction is no longer a Poissonian process

with a constant Σ(t) = µ. Instead, plugging Equation (4) into Equa-

tion (3) leads to a function dependent on t . In other words, spatial

correlation introduces a memory effect [Kostinski 2002], where the
differential probability of extinction depends on the traveled dis-

tance t since the previous scattering event. This has a significant

effect in the final volumetric appearance of the medium, as shown

in Figure 1 and throughout this paper.

3.3 The Generalized Boltzmann Equation
Since Σ(t) is a function of t in the presence of correlation, we

need to introduce the t-dependent flux L(x,ωo , t) [Wm
−2

sr
−1

m
−1
],

the flux at x after traveling a distance t from the last scattering

event. It relates with classic flux L(x,ωo ) [Wm
−2

sr
−1
] as L(x,ωo ) =∫ ∞

0
L(x,ωo , t)dt , and in turn introduces an additional derivative

term in Equation (1), resulting in the Generalized Boltzmann Equa-

tion [Larsen 2007; Larsen and Vasques 2011]

d

dt
L(x,ωo , t) + ωo · ∇L(x,ωo , t) + Σ(t)L(x,ωo , t) = 0,

L(x,ωo , 0) =
∫ ∞

0

Σs (t)
∫
Ω
L(x,ωi , t)fr (ωi ,ωo ) dωi dt︸                                                ︷︷                                                ︸

Inscattering S (x, ωo )

+Q(x,ωo ),

(5)

where Σs (t) = Λ Σ(t) is the probability of a photon being scattered

after traveling a distance t (see Section S.1 in the supplemental for

the full derivation), and Λ represents albedo. The second line of the

equation represents the value for t = 0, in which light is scattered

or emitted. Thus, after each scattering event the memory effect for

the extinction is reset to zero.

As expected, by removing the t-dependency as Σ(t) = Σ, and
integrating Equation (5), we obtain the classic RTE [Equation (1)]

(see Section S.2 in the supplemental). Moreover, Equation (5) can

also support directionally anisotropic media [Jakob et al. 2010] by

formulating Σ as a function of ωo [Vasques and Larsen 2014].

4 OUR EXTENDED GBE

4.1 Limitations of the GBE
Unfortunately, Equation (5) relies on a set of simplifying assump-

tions, which limit its applicability in rendering applications. In par-

ticular [Larsen 2007; Larsen and Vasques 2011]:
4

(1) The medium is statistically homogeneous, and infinite; no

system boundaries exist.

(2) The phase function fr (ωi ,ωo ) and albedo Λ are independent

of t . For example, in a mixture of two types of scatterers with

different phase function or albedo, this assumes that both

types have the same structure.

(3) The source term Q(x,ωo ) is correlated with the scatterers in

the volume. This assumption does not hold in most cases, as

illustrated in Figure 7.

4
Larsen and Vasques also assume a monoenergetic system; for simplicity, we assume

also a single wavelength, although removing this limitation is straight forward.

with pτ (µ1) and pτ (µ2) the probability of traversing a region with ex-
tinction coefficients µ1  and µ2  respectively, where pτ (µ1) +pτ (µ2) =
2
We will refer only to scattering events from now on for simplicity.

3
The probability of extinction p (t ) is also termed in the literature “path length distri-
bution”, “free path distribution”, or “chord length distribution”.
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Fig. 7. Left: An uncorrelated light source Q (x) in a positively-correlated
medium. The differential probability of extinction Σ(x, t ) is therefore differ-
ent for each, which significantly modifies light transport, as shown in the
right, where transmittance is numerically computed from several procedu-
rally generated media with identical positive correlation. This difference is
not captured in Larsen’s original GBE [Larsen and Vasques 2011].

In order to make the GBE useful for rendering, we need to extend it

beyond these limiting assumptions. We describe this in the rest of

this section, introducing our novel Extended GBE.

4.2 Extending the GBE
To lift the first and second limitations of the standard GBE, we

first reformulate Σ, Λ, and fr as functions of the spatial position

and the traveled distance, as Σ(x, t), Λ(x, t), and fr (x,ωi ,ωo , t) re-
spectively. This means that, depending on the traveled distance t ,
light will be scattered differently, according to the different spa-

tial correlation of the scatterers. Note that some previous works in

graphics [Frisvad et al. 2007; Sadeghi et al. 2012] have included a

mixture of scatterer sizes in the medium, but not spatial correla-

tion. Defining the directional scattering operator B(x,ωi ,ωo , t) =
Λ(x, t) Σ(x, t)fr (x,ωi ,ωo , t) for compactness, Equation (5) becomes

d

dt
L(x,ωo , t) + ωo · ∇L(x,ωo , t) + Σ(t)L(x,ωo , t) = 0,

L(x,ωo , 0) =
∫ ∞

0

∫
Ω
L(x,ωi , t)B(x,ωi ,ωo , t) dωi dt +Q(x,ωo ),

(6)

where we assume an isotropic formulation to avoid cluttering.

Lifting the third assumption, on the other hand, requires a more

significant change of Equation (5). In Larsen’s original formulation

of the GBE, since L(x,ωo , 0) includes both scattering S(x,ωo ) and
light emitted by sources Q(x,ωo ), both terms implicitly share the

same differential probability of extinction Σ(x, t). However, this
would only be true if they present the exact same correlation (e.g.

the scattering and the emissive particles are the same); in the gen-

eral case, Σ(x, t) is different for S andQ . Moreover, different sources

Q might correlate differently with the medium, leading to differ-

ent Σ(x, t) per source. Figure 7 shows how having different Σ(x, t)
for scatterers and sources significantly affects light transport. This

different correlation between sources and scatterers is in fact very

important for rendering since, as we show later in Section 4.3, re-

flections at media boundaries act as uncorrelated sources.

Taking all this into account, we can express radiance L(x,ωo , t)
as

L(x,ωo , t) = LS (x,ωo , t) +
∑
j
LQ j (x,ωo , t), (7)

where LS (x,ωo , t) is the scattered radiance reaching x after trav-

eling a distance t since the last scattering event, and LQ j (x,ωo , t)
is the unscattered radiance directly emitted by source Q j , which

has traveled a distance t since emission. We can then transform

Equation (6) into our Extended GBE as

d

dt
L(x,ωo , t) + ωo · ∇L(x,ωo , t) + ΣS (x, t)LS (x,ωo , t)

+
∑
j
ΣQ j (x, t)LQ j (x,ωo , t) = 0, (8)

where ΣS (x, t) and ΣQ j (x, t) are the differential extinction probabili-

ties for the scattered photons and the (unscattered) photons emitted

by light source Q j , respectively. Then, for t = 0 we have

LS (x,ωo , 0) =
∫ ∞

0

∫
Ω

(
BS (x,ωi ,ωo , t)LS (x,ωi , t) (9)

+
∑
j
BQ j (x,ωi ,ωo , t)LQ j (x,ωi , t)

)
dωi dt ,

LQ j (x,ωo , 0) = Q j (x,ωo ), (10)

whereBS (x,ωi ,ωo , t) = ΛS (x, t) ΣS (x, t)fr,S (x,ωi ,ωo , t) is the scat-
tering operator for scattered photons (thus representing a multiple
scattering operator), and BQ j (x,ωi ,ωo , t) is the scattering operator

for photons emitted by light source Q j (single scattering operator).

Note how, interestingly, Equation (9) makes the convenient sepa-

ration between multiple and single scattering explicit. Similar to

Σ(x, t), the phase function and albedo terms might also be different,

depending on the correlation between sources and the scatterers. It is

easy to verify that when the sources and scatterers are equally corre-

lated with the rest of the medium, the Extended GBE in Equation (8)

simplifies to Equation (5) (see Section S.3 in the supplemental).

Integral form of the Extended GBE. In order to get an integral

formulation of our Extended GBE usable in a general Monte Carlo

renderer, we solve Equation (8) for the incoming radiance at point

x as (see Section S.4 in the supplemental for the full derivation)

L(x,ωo ) =
∫ ∞

0

TS (x, xt )S(xt ,ωo ) (11)

+
∑
j
TQ j (x, xt )Q j (xt ,ωo ) dt ,

where xt = x − ωo t . The terms TS (x, xt ) = e−
∫ t
0
ΣS (x,s)ds

and

TQ j (x, xt ) = e
−
∫ t
0
ΣQj (x,s)ds

represent transmittance between x
and xt for the scattered and emitted radiance, respectively. Last,

S(xt ,ωo ) is

S(xt ,ωo ) =
∫ ∞

0

∫
Ω

(
BS (xt ′ ,ωi ,ωo , t ′)S(xt ′ ,ωi )TS (xt , xt ′)

+
∑
j
BQ j (xt ′ ,ωi ,ωo , t

′)Q j (xt ′ ,ωo )TQ j (xt , xt ′)
)
dωi dt

′,

(12)
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between scatterers and sources. To use it for rendering, the required

differential extinction probabilities can be tabulated [Frank and

Goudon 2010; Larsen and Vasques 2011] by simulating via Monte

Carlo an estimate of p (t), based on an explicit representation of

the volume. This is a similar approach to our numerical results in

Section S.11 in the supplemental, and the validation curves com-

puted by Meng et al. [2015, Figure 6] to validate their uncorrelated

radiative transfer-based approximation. Alternatively, an empirical

p (t) can be used, fitting the observed transmittance in experimental

setups, as is common in atmospheric sciences [Davis et al. 1999]. In

both cases, Σ(x, t) is computed by inverting p (t) via Equation (3).

In computer graphics, participating media are usually described

in terms of their optical parameters. However, in our current formu-

lation of the Extended GBE, there is no explicit connection with such

parameters. In the following, we provide the missing connection:

We formulate a model for correlated media based on the optical pa-

rameters commonly used in rendering, which is intuitive to use and

easy to plug into our Extended GBE. Then, we propose a simplified

version of the model based on the assumption of positive correlation,

which is easy to use and efficient to sample and evaluate.

5.1 Modeling Correlated Media from Optical Parameters
In a rendering context, the optical properties of a participating

medium (e.g. extinction coefficients, scattering albedo, or phase

function) are usually defined locally. Unfortunately, at the heart

of our Extended GBE [Equation (8)] lies the differential extinction

probability Σ(x, t), whose memory effect depends on the spatial

correlation at neighboring points, and thus cannot be defined locally.

Our goal then is to model Σ(x, t) and its derived quantities p (t) and
T (t), based on probability distributions of extinction pτ (µ). In the

following, we assume both homogeneity in the neighborhood of

x and isotropy, so we remove the spatial and angular dependence

from the following derivations for clarity.

Given a ray r in a medium, we can define its input radiance as

Li (r), and its attenuation as T(τt (r)), the ratio of input and output

radiance of a single ray r defined as a probabilistic function, which

depends on the ray’s optical depth τt (r). Considering now a beam of

light R composed of several parallel rays r ∈ R (see Figure 10), the

total radiance Lo (t) traveling a distance t in a correlated medium

can be expressed as

Lo (t) =
∫
R
Li (r) T (τt (r)) dr. (13)

In granular media [Moon et al. 2007], where the correlation length

is larger than a differential distance dt (and usually larger than the

granular particle’s size), the probability of extinction p (t) depends
on the distribution of scatterers along the direction of propagation

of light, and needs to be taken into account explicitly. However,

local correlation is assumed to be smaller than dt ; this means that

the exact position of the scatterers within the volume becomes

irrelevant, and only their projection onto the plane P perpendicular

to the propagation direction beam R matters. We can then simplify

the expression for the optical depth
5
to the homogeneous case

5
“Optical depth” is a standard term in physics, defined as the natural logarithm of the

ratio of incident to transmitted radiant power through a material.

Fig. 8. Schematic example of the different boundary conditions: a) light 
entering a medium (Vacuum to Medium); b) light being reflected from a 
boundary back into the medium (Medium to Surface); and c) light crossing 
the interface between two different media (Medium to Medium). Refer to 
the text for details.

where xt ′ = xt + ωi t ′. Next, we describe boundary conditions, and 
how they affect light transport.

4.3 Boundary Conditions
The assumption that the medium is infinite and homogeneous ig-
nores changes in correlation that occur at boundaries, such as pho-
tons entering a medium, the presence of surfaces inside, or the 
interface between two different m edia. Figure 8 illustrates the dif-
ferent boundary conditions and their effects in light transport. Here, 
we describe them and show how to incorporate them to our model.

Vacuum to Medium (Figure 8a): This is the simplest case, where an 
uncorrelated photon (from an uncorrelated medium or the vacuum) 
enters a correlated medium. It can be modeled as a source Q1(x, ωo ) 
at the entry boundary point x, with t = 0.

Medium to Surface (Figure 8b): This case accounts for the interac-
tion with surfaces such as a dielectric boundary, or an object placed 
inside the medium. Such surfaces are uncorrelated with respect 
to the medium. We can model this as a new source Q2(x, ωo ) =
LS (x, ωi )f (x, ωi , ωo ), with LS (x, ωi ) and f (x, ωi , ωo ) the incoming 
radiance at x and the BSDF respectively, and setting t = 0.

Medium to Medium (Figure 8c): A photon crosses the interface 
between two different homogeneous media of different structure 
and correlation (this boundary condition therefore enables modeling 
heterogeneous media as well). The probability of extinction in the 
second medium p2(t) depends not only on its correlation η2 and 
the correlation of the first medium η1, but also on the correlation 
between the two media η1,2.
Figure 9 shows results for all three boundary conditions; please 

refer to Section S.11.3 in the supplemental for a more exhaustive set 
of examples.

5 RENDERING WITH THE EXTENDED GBE
Up to this point, we have extended Larsen’s original GBE formula-

tion [Equation (5)], lifting the assumptions that made it unsuitable 
for rendering, presenting it also in integral form. Our Extended GBE 
[Equations (8) and (11)] supports an arbitrary mixture of scatterers 
(see Appendix A), and accounts for the effect of different correlation
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Fig. 9. Probability of extinction p (t ) (blue) and transmittance T (t ) (orange) as a function of t , for example cases of our three different boundary conditions.
The vertical dotted line indicates the boundary. The first medium has a negative correlation η1 = −0.5 on the top row, and positive η1 = 0.5 on the bottom
row. (a) Vacuum to Medium. When light enters the medium, it acts as a source term Q (x, ωo ), which depends on the angle of incidence θ , since correlation
might present some directionality (see Figure 8). (b) Medium to Surface. As light is reflected on a surface boundary and changes direction, it acts as a
directionally-resolved source Q (x, ωo ) which depends on the surface BSDF. c) Medium to Medium, for a varying correlation η1,2 = [−0.9, 0.9] between the
two media. For increasingly positive correlation η1,2 (high probability of the first medium shadowing the second), p2(t ) becomes lower. For increasingly
negative correlation η1,2 (low shadowing probability), p2(t ) becomes higher near the boundary (then depends on η2). For uncorrelated media (η1,2 = 0),
incoming photons can be modeled as sources at the entry boundary points, with Q (x, ωo ) dependent on the correlation of the second medium η2. For all
cases modeled as light sources Q (x, ωo ), t is set to 0. Refer to the supplemental material for a more comprehensive set of examples.

d
t

≡ ≡
r ∈ R

P

Fig. 10. Left and center: Examples of two differential volumes in a medium,
each with different distributions of scatterers, but with a similar projection
on the plane perpendicular to the direction of propagation (right).

where τt (r) = µ(r) t , with µ(r) the density of scatterers found by an

individual ray r when traversing the medium.

However, explicitly integrating over all rays in R is not practical.

Instead, we would like to find a compact way of relating Li (r) to the
extinction coefficient µ(r). We can remove its dependence on ray r

by modeling Li as a probability distribution pL(Li ) (e.g. by taking

the histogram of Li (r)), and explicitly relating it with the extinction

coefficient µ via a conditional probability distribution pτ (µ;Li ). We

therefore transform Equation (13) into

Lo (t) =
∫ ∞

0

∫ ∞

0

pL(Li )pτ (µ;Li )Li T(µ t) dµ dLi . (14)

Defining L̂i =
∫
R Li (r) dr =

∫ ∞
0

pL(Li )Li dLi , and using T (t) =
Lo (t )
L̂i

we get

T (t) =
∫ ∞

0

∫ ∞

0

pL(Li )pτ (µ;Li )
Li

L̂i
T(µ t) dµ dLi , (15)

which models transmittance T (t) as a function of the correlation

between the light and the distribution of local scatterers. Finally,

from Equation (15) we can compute the probability of extinction

as p (t) =
��� dT (t )

dt

���, while Σ(t) can be obtained as Σ(t) = p (t) /T (t)
[Equation (3)].

5.2 An intuitive local model for positively-correlated media
Equation (15) is general and can model any type of correlation; for

the common case of positive correlation, we can set T(µ t) = e−µ t

(see [Kostinski 2002] for details), and assume that pL(Li ) and pτ (µ)
are independent, so that pτ (µ;Li ) = pτ (µ). We can then rewrite

Equation (15) as (see Section S.5 in the supplemental)

T (t) =
∫ ∞

0

e−µ tpτ (µ)dµ . (16)

Using again the relationship in Equation (3), we obtain the differen-

tial extinction probability

Σ(t) = p (t)
T (t) =

∫ ∞
0

µe−µ tpτ (µ)dµ∫ ∞
0

e−µ tpτ (µ)dµ
. (17)

Note that this form of p (t) [numerator in Equation (17)] is a gener-

alization of the simple example in Equation (4) for a mixture of two

different extinction coefficients. Assuming that the light distribution

pL(Li ) from both sources Q j and scatterers S is uncorrelated with

the scatterers distribution pτ (µ) , then Σ(t) = ΣS (t) = ΣQ j (t).

Finding a good distribution pτ (µ). To be able to use Equations (16)
and (17), we need to find a good optical depth distribution pτ (µ) for
the medium. Taking the average scatterers’ cross section σ , we can
define

µ pτ (µ) = C pC(C)σ , (18)

where C is the scatterers concentration and pC(C) its probability
distribution. To find a practical pC(C) we analyzed a wide range of

high-resolution volumes exhibiting different correlation (see Fig-

ure 11 for some examples). We observed that a gamma distribution

fits pC(C) reasonably well, so that

pC(C) ≈ Γ(C;α , β) = βαCα−1e−Cβ

γ (α) , (19)
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Fig. 11. Transmittance in high-resolution volumes of locally-correlated me-
dia (procedurally generated after [Lopez-Moreno et al. 2015]). Beams of
light travel through each volume, aligned in succession to the x , y , and z
axes. Ground-truth transmittance (red, green, and blue solid lines) has been
computed by brute force regular tracking [Amanatides andWoo 1987], while
our simulation (dotted lines) uses the gamma distribution proposed in Equa-
tion 19. Classic transport governed by the RTE significantly overestimates
extinction through the volume, resulting in an exponential decay (purple
line). In contrast, our model matches ground-truth transmission much more
closely. The black dotted line is the result of isotropic correlation, which is
clearly also non-exponential. Please refer to Figure S.13 in the supplemental
for more examples.

with α = C2 · Var(C)−1, β = C · Var(C)−1, and γ (α) the gamma

function. Moreover, previous research has shown that the gamma

distribution is also very adequate for modeling the concentration of

turbulent media such as clouds [Barker et al. 1996], or particulate

media [Peltoniemi and Lumme 1992].

Equation (19) provides a compact and intuitive description of the

statistical properties ofpC(C) [and in turn ofpτ (µ) in Equation (18)],
by only using its mean C and variance Var(C) (intuitively, a higher
variance indicates clusters of scatterers with gaps between them). In

contrast, traditional (uncorrelated) media depend only on the mean

concentration C, and assume Var(C) = 0. For simplicity, we have

assumed that both pC(C) and σ are isotropic. Appendix B shows

how to add directional dependencies as pC(C;ωo ) and σ (ωo ).

Rendering. Using Equations (19) and (16), and noting that the lat-

ter is related with the moment distribution function M(t) of pC(C)
as T (t) = M(−σ t) [Davis and Xu 2014], we can compute the trans-

mittance, probability of extinction, and differential probability of

extinction as

T (t) =
(
1 +

σ

β
t

)−α
, (20)

p (t) = α σ

β

(
1 +

σ

β
t

)−(1+α )
, (21)

Σ(t) = α σ

β

(
1 +

σ

β
t

)−1
. (22)
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Fig. 12. Comparison between traditional transmittance as predicted by the
Beer-Lambert law, and our transmittance for correlated media. The scene
consists of a cube embedding a participating medium, placed in front of a
light source. The medium has a constant cross section σ = 1, and increasing
scatterers concentration C and correlation (i.e. density variance Var(C))
along the horizontal and vertical axes, respectively. Correlation does not
affect transmittance in the classic model, which follows the Beer-Lambert
law as shown in the log-scale plots on the right. In contrast, our model
captures the slower-than-exponential decay as variance Var(C) increases.
We use C = 1 for the plots. Figure after [Novák et al. 2014].

explores our closed-form of transmittance: As variance increases,

the slower-than-exponential behavior becomes more pronounced,

as observed by Davis and Mineev-Weinstein [2011] when analyzing

the frequency of density fluctuations in correlated media. This effect

is not captured by classic light transport.

In aMonte Carlo renderer, we can compute a randomwalk by sam-

pling transmittance using the probability defined in Equation (21).

However, as opposed to the classic exponential transmittance in the

Beer-Lambert law, p (t) is not proportional to T (t), which may lead

to increase the variance of the estimate. To sample with a probability

p (t) ∝ T (t), assuming α > 1 (i.e. C >
√
(Var(C)) we can define p (t)

as

p (t) = −σ 1 − α

β
(1 + σ

β
t)−α = −σ 1 − α

β
T (t), (23)

which can be sampled using its inverse cdf

t(ξ ) = − β

σ

(
1 − 1−α

√
1 − ξ

)
, (24)

with ξ ∈ [0, 1] a uniform random value. When the sampled dis-

tance t is longer than the distance t ′ to a boundary condition, the

probability of an intersection at t ′ becomes

p
(
t ′
)
=

(
1 +

σ

β
t ′
)
1−α
. (25)

We refer to Section S.7 in the supplemental for more detailed deriva-

tions, including the general case where α > 0.

Implementation. While correlated media can be implemented as a

volumetric definition in most renderers, there are a few details that

need to be taken into account. The most important one is that the

constants used when solving the classic RTE (e.g. Λ or Σ(t) = µ) are
now defined as a function of t . As such, most of the optimizations

In Figure 11 we analyze the performance of our analytic expres-
sion of transmittance for correlated media in Equation (20), against 
the exponential transmittance predicted by the Beer-Lambert law, 
and ground-truth transmittance computed by brute force regular 
tracking [Amanatides and Woo 1987]. Our model is much closer to 
the ground truth than the result of classic light transport, which 
significantly overestimates extinction through the volume. Figure 12
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Fig. 13. Materials with different types of probability distributions of extinc-
tion p (t ) (shown in the the bottom plots in blue, while transmittance T (t )
is shown in orange; both cases are in log-scale). From left to right: Negative
correlation with linear extinction; a power-law p (t ) resulting from our local
model (Section 5.2), with Var(C(x)) = 1; and an example of one empirical
p (t ) following a gamma distribution with Var(t ) = .1 (see Section S.8 in
the supplemental for details). In all cases we use mean extinction µ =2m−1,
albedo Λ = .8, and isotropic phase function.

Fig. 14. Rendering of an iceberg made of compacted snow (with snow’s
spectral cross section σ and albedo Λ after Frisvad and colleagues [2007]),
using our model in Section 5.2.

typically done in the photon’s random walk due to terms cancel-

lation cannot be directly applied here. Additionally, the different

correlations between scatterers and sources in Equation (11) require

keeping track of the previous vertex of the path when sampling a

new one (via selecting either pQ (t) or pS (t)). This is also important

when connecting with the light source via next-event estimation,

where the source’s transmittance and differential scattering proba-

bility need to be applied.

Table 1. Computational cost for the images shown in the paper, for both
uncorrelated (traditional model) and correlated media (ours). When differ-
ent types of correlation are used, we show two measurements (positive /
negative).

Figure # Samples Uncorrelated Correlated

1 4096 53 m 45 m / 58 m

13 4096 30 m 33 m / 35 m

14 2048 185 m 213 m

15 4096 26 m 28 m

16 2048 5.6 m 5.8 m

17 8192 70 m 82 m

18 4096 17.71 m 18.8 m

6 RESULTS
In this section we show results using our new model for spatially-

correlated participating media, including comparisons against the

traditional RTE. We have implemented the integral form of our

Extended GBE [Equation (11)] as a volumetric definition in Mit-

suba [Jakob 2010]. For materials with negative correlation we have

used a linear transmittance decay (see Section S.8 in the supplemen-

tal for details); for positive correlation, we used our local model

in Section 5.2. Unless stated otherwise, we assume positively-

correlated media in our results. All our tests were performed on an

Intel Core i7-6700K at 4GHz with 16 GB of RAM.

The cost introduced by sampling and evaluating the correlated

transmittance with respect to classical transmittance is negligible in

comparison to the cost of tracing samples. Simulation parameters

and timings are shown in Table 1; note that negatively-correlated

media tend to create longer paths, therefore increasing the total

rendering cost. In terms of convergence, in some cases the pdf

might not be proportional to the sampled transmittance [e.g. in

Equation (25)], which in turn might increase variance; however we

did not observe a strong effect in convergence when incorporating

non-exponential transport. In Section S.10 in the supplemental we

analyze the convergence experimentally.

Figure 1 shows volumetric renderings of translucent dragons

made of materials with the same density, but different correlation.

The middle image shows positive correlation, following a gamma

distribution with Var(C) = 40. On the right we show negative corre-

lation, exhibiting linear transmittance. In the three cases the media

have scattering albedo Λ = .8, and mean extinction µ = 10m−1
. The

net effect, due to the faster-than-exponential (negative correlation)

and slower-than-exponential transmittance (positive correlation), is

clearly visible in the final images.

Figure 13 highlights the versatility of our framework, with dif-

ferent scatterers correlation: negative correlation with linear trans-

mittance decay, positive correlation according to our model, and

an empirical distribution of p (t) (modeled as a gamma distribution,

see Section S.8 in the supplemental). The mean extinction is in all

cases µ =2m−1
, with albedo Λ = .8. Both the particles concentra-

tion and the cross section are isotropic. Figure 14 shows another

non-exponential probability of extinction on granular compacted

snow, using our model in Section 5.2. Optical parameters of the

snow have been computed after Frisvad et al. [2007].
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Fig. 16. Effect of directionally-dependent correlation on transmittance. The prism rotates around the y-axis. With uncorrelated media, appearance does not
change with rotation. With a highly-correlated medium, appearance changes significantly as the prism rotates, according to the degree of alignment between
the correlation and the view vector. The figure shows the case of x-axis-aligned correlation. Illustrative examples of the distribution of particles for each case
are shown in Figure 4. Please refer to the supplemental for the video.

the up-vector). These four scenarios roughly correspond to the ones

depicted in Figure 4.

Last, in Figure 18 we investigate if adjusting the optical param-

eters of an uncorrelated medium and using the classic RTE could

produce the same results as our model for correlated media. In

particular, we render the first statue with a correlated material

(mean extinction C = 20, isotropic phase function, and scattering

albedo Λ = .8, .1, .1), and render an uncorrelated version adjusting

C = 45, with the same phase function and scattering albedo. Al-

though tweaking the parameters of the RTE can lead to an overall

similar appearance, it cannot correctly reproduce the details due

to the different extinction curves and diffusive behavior in both

models (see also [d’Eon 2014b]).

7 CONCLUSIONS
We have introduced a novel framework to simulate light transport in

spatially-correlated media, where the probability of extinction and

transmittance no longer follow an exponential decay, as predicted

by the Beer-Lambert law. We have presented the Extended General-

ized Boltzmann Equation, lifting the main limiting assumptions of

the original GBE, and making it suitable for rendering applications.

Our framework supports multiple sources, mixtures of particles,

and directional correlation. In addition, we have proposed an intu-

itive model based on local optical properties for the most common

case of positive correlation, providing a closed-form solution for

In Figure 15 we analyze the effect of correlation with increasing 
variance [increasing Var(C) in Equation (19)]. The top half of the jars 
has been rendered with the classic RTE, and thus remain constant 
independent of the degree of correlation, as expected. The bottom 
half shows the result of our model; note that for Var(C) = 0 the 
result converges to classic light transport.
Figure 16 shows the effect of directional correlation. The scene 

is made up of a volumetric prism with very low scattering albedo, 
so the dominant effect is transmittance, and a strong rectangular 
area light placed behind it. The prism rotates around its y-axis. 
The first prism is made up of an uncorrelated medium, while the 
other three show a strong positive correlation along the x-axis, 
with Var(C) = .5; when the rotation angle is θ = 0◦, correlation is 
perfectly aligned with the x-axis [similar to the situation depicted 
in Figure 4 (c)]. Both uncorrelated and correlated media have a 
mean particles concentration C = {.8, 1.6, .7} (RGB), and a mean 
cross section σ = 1. For the uncorrelated medium, no changes 
occur in appearance as the prism rotates, as expected. For the x-
aligned correlation, transmittance varies significantly as correlation 
progressively becomes unaligned with the view vector. We refer the 
reader to the supplemental video for the full animation, including 
other directions of correlation. Figure 17 systematically analyzes 
the effect of directional correlation for varying scattering albedo 
Λ, including uncorrelated media, isotropic correlated media, and 
directionally-correlated media aligned with the x and z axes (y being
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Fig. 17. Effect of directional correlation with varying scattering albedo Λ. From left to right: Uniformly distributed media, directionally-correlated in the x -axis
(aligned to the camera view vector), directionally-correlated in z-axis, and isotropic correlation. For all cases we use positive correlation, and keep C = 10,
σ = 1, and Var(C) = 10 in the main axis of correlation, while for the remaining directions Var(C) ≈ 0 (so the mean free path is similar to the predicted by the
Beer-Lambert law). To the right we plot intensity values (green scanline shown in one of the dragons) for each medium.

a) Correlated b) Uncorrelated

Fig. 18. Left: Render using our framework for correlated materials. Right:
Render using the RTE, where the optical parameters of the material have
been adjusted trying to match the appearance of the correlated case. Dis-
similarities are evident, specially in thinner areas, since the extinction curves
and diffusive behavior in both models are different (see false-color inset and
zoomed-in areas).

transmittance, without the need for costly numerical simulation or

precomputations, allowing to model Σ(t) based on local definitions

of µ. Interestingly, Davis and Xu [2014] empirically proposed a sim-

ilar expression to this model for transmittance in clouds. However,

the authors stated that an integro-differential counterpart of their

formulation was yet unknown. Our Equation (17) links this form of

transmittance with the GBE, which is in turn an integro-differential

equation.

Limitations and future work. Our theoretical framework in Sec-

tion 4 is general, and supports heterogeneous media through the

medium-to-medium boundary condition. However, practical im-

plementation of such heterogeneities for continuous media is still

challenging. This is because the differential probability of extinc-

tion Σ(x) at point x affects Σ(x + ωo dt), according to the scatterers

correlation at points x and x + ωo dt , and to the cross-correlation

between these two points. This means that the probability of extinc-

tion in correlated heterogeneous media cannot be modeled as the

integral of the local differential extinction probabilities along the

ray, as in uncorrelated heterogeneous media. In concurrent work,

Camminady et al. [2017] proposed a solution for the simplest case,

where the two media have identical structure η1 = η2 = η1,2, and
therefore the probability of extinction p (t) only varies due to the dif-
ferent media density; however, finding an efficient, general solution

remains a challenging problem. Revisiting numerical techniques

for computing unbiased transmittance in heterogeneous media is

thus an interesting topic of future work, since it is unclear how the

underlying theory of virtual particles in existing methods [Coleman

1968; Kutz et al. 2017; Novák et al. 2014; Szirmay-Kalos et al. 2017;

Woodcock et al. 1965] could be adapted to correlated scatterers.

From a physical point of view, it would also be interesting to in-

troduce in our Extended GBE [Equation (8)] support for refractive

media [Ament et al. 2014; Gutierrez et al. 2006], as well as vector or

bispectral scattering [Jarabo and Arellano 2018].

Other open problems include extending our local model [Equa-

tion (16)] to the case of negatively-correlated media, thus removing

precomputation or the definition of an empirical p (t), or finding a
model for the continuous transition between correlated and partic-

ulate media. While for perfect negative correlation we can model

light-particle interactions as a Bernoulli process (see Section S.8.1
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in the supplemental), for other degrees of negative correlation this

process is not obvious: We hypothesize that such cases could be

modeled as a mixture of Poissonian and Bernoulli processes, al-

though an analytical model for negative correlation remains an

open challenge that deserves a more in-depth exploration. Finally,

for our final model we have chosen a gamma distribution for pτ (µ);
however other probability distributions might work better depend-

ing on the scenario. Moreover, our directionally-resolved model for

the variance of the distribution might be too smooth for materials

with high-frequency details: in such cases, a mixture of ellipsoids

(similar to the approach of Zhao et al. [2016]) could result in a more

accurate fit.

Our definition of locally-correlated light transport may be suit-

able for filtering volumetric appearances, avoiding costly optimiza-

tion procedures [Zhao et al. 2016], or ad-hoc shadowing func-

tions [Schröder et al. 2011]. Accelerating rendering of particulate

media [Meng et al. 2015; Müller et al. 2016] is another area that

could benefit from our locally-correlated model. Introducing our

compact representation into the shell transport functions proposed

by Moon et al. [2007] and Müller et al. [2016] could significantly

decrease the storage cost of these representations. Last, similarity

theory [Wyman et al. 1989; Zhao et al. 2014] is an important tool for

accelerating light transport within the RTE. Redefining this theory

within locally-correlated radiative transport is another interesting

avenue of work, specially given the additional degrees of freedom

introduced by the non-exponential probability of extinction p (t).

A MIXTURES OF SCATTERERS
For media made up of a mixture of scatterers P, we compute the

differential extinction probabilities Σ(x, t) (for both scatterer-to-

scatterer and source-to-scatterer transport) as

Σ(x, t) =
∑
k ∈P

wkΣk (x, t), (26)

where the weightswk represent the probability of having a scatterer

of type k ∈ P (

∑
k ∈P wk = 1), and Σk (x, t) is the differential extinc-

tion probability of each type. For the phase function and scattering

albedo, we have

Λ(x, t) =
∑
k ∈P

wk Σk (x, t)∑
k ∈P wk Σk (x, t)

Λk (x, t), (27)

fr (x,ωi ,ωo , t) =
∑
k ∈P

wk Σk (x, t)Λk (x, t)∑
k ∈P wk Σk (x, t)Λk (x, t)

fr,k (x,ωi ,ωo , t).

(28)

Last, using Equations (26) to (28), we can compute the scattering

operator for a mixture of scatterers as

B(x,ωi ,ωo , t) =
∑
k ∈P

wk Bk (x,ωi ,ωo , t). (29)

both pC(C) and σ , we transform Equation (18) into:

µ pτ (µ;ωo ) = C pC(C;ωo )σ (ωo ), (30)

where pC(C;ωo ) and σ are the probability distribution of the con-

centration and the mean cross section along ωo respectively.

To model pC(C;ωo ), we noted that its only varying parame-

ter is its variance, which we redefine as a directional function

Var(C;ωo ) ∈ Ω. Following the same approach as the SGGX model

[Heitz et al. 2015], we model Var(C;ωo ) as a zero-mean ellipsoid,

using the matrix V defining the eigenspace of the variance of the

projected concentration in Ω (see [Heitz et al. 2015] for details). We

thus obtain:

Var(C;ωo ) =
√
ωTo Vωo . (31)

For each direction ωo , we first obtain the projected variance, and

then define the corresponding gamma distribution Γ(C;α(ωo ), β(ωo ))
with α(ωo ) and β(ωo ) computed from C and Var(C;ωo ). This has
several benefits over other directional distributions: it is compact

and efficient to evaluate; it supports anisotropy on the main axes; it

is symmetric, smooth and non-negative in the full domain Ω; and it

is intuitive to characterize.

ACKNOWLEDGMENTS
We thank Miguel Angel Otaduy, Carlos Castillo and Jorge Lopez-

Moreno for comments and discussions on early stages of the project

and the dataset in Figure 11; Julio Marco, Adolfo Muñoz, and Ibón

Guillén for discussions throughout the project; Pilar Romeo for help

with the figures; all the members of the Graphics & Imaging Lab

that helped with proof-reading; and the reviewers for the in-depth

reviews. The Iceberg was modeled by Tora2097 from TurboSquid,

while the Dragon and Lucy are from the Stanford 3D Scanning

Repository. This project has been funded by the European Research

Council (ERC) under the EU’s Horizon 2020 research and innova-

tion programme (project CHAMELEON, grant No 682080), DARPA

(project REVEAL), and the Spanish Ministerio de Economía y Com-

petitividad (projects TIN2016-78753-P and TIN2014-61696-EXP).

REFERENCES
Carlos Aliaga, Carlos Castillo, Diego Gutierrez, Miguel A. Otaduy, Jorge Lopez-Moreno,

and Adrian Jarabo. 2017. An Appearance Model for Textile Fibers. Computer
Graphics Forum (Proc. EGSR 2017) 36, 4 (2017).

John Amanatides and Andrew Woo. 1987. A fast voxel traversal algorithm for ray

tracing. In Eurographics, Vol. 87. 3–10.
Marco Ament, Christoph Bergmann, and Daniel Weiskopf. 2014. Refractive radiative

transfer equation. ACM Trans. Graph. 33, 2 (2014).
James Arvo. 1993. Transfer equations in global illumination. SIGGRAPH ‘93 Course

Notes 2 (1993).
Howard W Barker, Bruce A Wiellicki, and Lindsay Parker. 1996. A parameterization for

computing grid-averaged solar fluxes for inhomogeneous marine boundary layer

clouds. Part II: Validation using satellite data. Journal of the Atmospheric Sciences
53, 16 (1996).

Fabien Bellet, Elie Chalopin, Florian Fichot, Estelle Iacona, and Jean Taine. 2009. RDFI

determination of anisotropic and scattering dependent radiative conductivity tensors

in porous media: Application to rod bundles. International Journal of Heat and Mass
Transfer 52, 5 (2009), 1544–1551.

Thomas Camminady, Martin Frank, and Edward W. Larsen. 2017. Nonclassical Particle

Transport in Heterogeneous Materials. In International Conference on Mathematics
& Computational Methods Applied to Nuclear Science & Engineering.

Subrahmanyan Chandrasekhar. 1960. Radiative Transfer. Dover.
WA Coleman. 1968. Mathematical verification of a certain Monte Carlo sampling

technique and applications of the technique to radiation transport problems. Nuclear
science and engineering 32, 1 (1968), 76–81.

B MODELING DIRECTIONAL CORRELATION
Similar to the anisotropy on the cross section described by Jakob et 
al. [2010], the scatterers correlation might also have an important 
directional effect, as illustrated in Figure 4 and observed by Vasques 
and Larsen [2014]. By considering the directional dependency on



A Radiative Transfer Framework for Spatially-Correlated Materials • 83:13

R Coquard and D Baillis. 2006. Radiative properties of dense fibrous medium containing

fibers in the geometric limit. Journal of heat transfer 128, 10 (2006), 1022–1030.
Anthony B Davis and Alexander Marshak. 2004. Photon propagation in heteroge-

neous optical media with spatial correlations: enhanced mean-free-paths and wider-

than-exponential free-path distributions. Journal of Quantitative Spectroscopy and
Radiative Transfer 84, 1 (2004).

Anthony B Davis, Alexander Marshak, H Gerber, and Warren J Wiscombe. 1999. Hor-

izontal structure of marine boundary layer clouds from centimeter to kilometer

scales. Journal of Geophysical Research: Atmospheres 104, D6 (1999).
Anthony BDavis andMark BMineev-Weinstein. 2011. Radiation propagation in random

media: From positive to negative correlations in high-frequency fluctuations. Journal
of Quantitative Spectroscopy and Radiative Transfer 112, 4 (2011).

Anthony B Davis and Feng Xu. 2014. A Generalized Linear Transport Model for

Spatially Correlated Stochastic Media. Journal of Computational and Theoretical
Transport 43, 1-7 (2014).

Eugene d’Eon. 2014a. Computer graphics and particle transport: our common heritage,

recent cross-field parallels and the future of our rendering equation. In Digipro 2014.
Eugene d’Eon. 2014b. Rigorous asymptotic and moment-preserving diffusion approxi-

mations for generalized linear Boltzmann transport in arbitrary dimension. Transport
Theory and Statistical Physics 42, 6-7 (2014), 237–297.

Eugene d’Eon. 2016a. Diffusion approximations for nonclassical Boltzmann transport in
arbitrary dimension. Technical Report.

Eugene d’Eon. 2016b. A Hitchhiker’s Guide to Multiple Scattering.
Martin Frank and Thierry Goudon. 2010. On a generalized Boltzmann equation for

non-classical particle transport. Kinetic and Related Models 3 (2010).
Jeppe Revall Frisvad, Niels Jørgen Christensen, and Henrik Wann Jensen. 2007. Com-

puting the scattering properties of participating media using Lorenz-Mie theory.

ACM Trans. Graph. 26, 3 (2007).
Giovanni Gallavotti. 1972. Rigorous Theory Of The Boltzmann Equation In The Lorentz

Gas. Technical Report. Istituto di Fisica, Univ. di Roma.

Diego Gutierrez, Adolfo Munoz, Oscar Anson, and Francisco Seron. 2006. Simulation

of Atmospheric Phenomena. Computers & Graphics 20, 6 (2006), 994:1010.
Diego Gutierrez, Srinivasa G. Narasimhan, Henrik Wann Jensen, and Wojciech Jarosz.

2008. Scattering. In ACM SIGGRAPH ASIA 2008 Courses.
Eric Heitz, Jonathan Dupuy, Cyril Crassin, and Carsten Dachsbacher. 2015. The SGGX

Microflake Distribution. ACM Trans. Graph. 34, 4, Article 48 (2015). http://doi.acm.

org/10.1145/2766988

Wenzel Jakob. 2010. Mitsuba renderer. http://www.mitsuba-renderer.org.

Wenzel Jakob, Adam Arbree, Jonathan T Moon, Kavita Bala, and Steve Marschner. 2010.

A radiative transfer framework for rendering materials with anisotropic structure.

ACM Trans. Graph. 29, 4 (2010).
Adrian Jarabo and Victor Arellano. 2018. Bidirectional Rendering of Vector Light

Transport. Computer Graphics Forum To appear (2018).

Wojciech Jarosz, Derek Nowrouzezahrai, Iman Sadeghi, and Henrik Wann Jensen. 2011.

A Comprehensive Theory of Volumetric Radiance Estimation Using Photon Points

and Beams. ACM Trans. Graph. 30, 1 (2011).
Henrik Wann Jensen. 2001. Realistic Image Synthesis Using Photon Mapping. AK Peters.

Pramook Khungurn, Daniel Schroeder, Shuang Zhao, Kavita Bala, and Steve Marschner.

2015. Matching Real Fabrics with Micro-Appearance Models. ACM Trans. Graph.
35, 1 (2015).

Yuri Knyazikhin, JöRn Kranigk, Ranga B Myneni, Oleg Panfyorov, and Gode Graven-

horst. 1998. Influence of small-scale structure on radiative transfer and photosynthe-

sis in vegetation canopies. Journal of Geophysical Research 103 (1998), 6133–6144.

Alexander B Kostinski. 2001. On the extinction of radiation by a homogeneous but

spatially correlated random medium. JOSA A 18, 8 (2001).

Alexander B Kostinski. 2002. On the extinction of radiation by a homogeneous but

spatially correlated random medium: reply to comment. JOSA A 19, 12 (2002),

2521–2525.

Jaroslav Křivánek, Iliyan Georgiev, Toshiya Hachisuka, Petr Vévoda, Martin Šik, Derek

Nowrouzezahrai, and Wojciech Jarosz. 2014. Unifying points, beams, and paths in

volumetric light transport simulation. ACM Trans. Graph. 33, 4 (2014).
Peter Kutz, Ralf Habel, Yining Karl Li, and Jan Novák. 2017. Spectral and Decomposition

Tracking for Rendering Heterogeneous Volumes. ACM Trans. Graph. 36, 4 (2017).
Eric P Lafortune and Yves D Willems. 1996. Rendering participating media with

bidirectional path tracing. In Rendering TechniquesâĂŹ 96.
Edward W Larsen. 2007. A generalized Boltzmann equation for non-classical parti-

cle transport. In Proceedings of the International Conference on Mathematics and
Computations and Supercomputing in Nuclear Applications.

Edward W Larsen and Richard Vasques. 2011. A generalized linear Boltzmann equa-

tion for non-classical particle transport. Journal of Quantitative Spectroscopy and
Radiative Transfer 112, 4 (2011).

C D Levermore, G C Pomraning, D L Sanzo, and J Wong. 1986. Linear transport theory

in a random medium. Journal of mathematical physics 27, 10 (1986).
Jorge Lopez-Moreno, David Miraut, Gabriel Cirio, and Miguel A. Otaduy. 2015. Sparse

GPU Voxelization of Yarn-Level Cloth. Computer Graphics Forum 36, 1 (2015).

Guillaume Loubet and Fabrice Neyret. 2017. Hybrid mesh-volume LoDs for all-scale

pre-filtering of complex 3D assets. Computer Graphics Forum 36 (2017).

S Lovejoy, G Brosamlen, and B Watson. 1995. Scattering in multifractal media. In

Particle Transport in Stochastic Media.
Alexander Marshak, Anthony Davis, Warren Wiscombe, and Robert Cahalan. 1998.

Radiative effects of sub-mean free path liquid water variability observed in stratiform

clouds. Journal of Geophysical Research: Atmospheres 103, D16 (1998), 19557–19567.
Johannes Meng, Marios Papas, Ralf Habel, Carsten Dachsbacher, Steve Marschner,

Markus Gross, and Wojciech Jarosz. 2015. Multi-Scale Modeling and Rendering of

Granular Materials. ACM Trans. Graph. 34, 4 (2015).
Jonathan T Moon, Bruce Walter, and Stephen R Marschner. 2007. Rendering discrete

random media using precomputed scattering solutions. In Proceedings of EGSR.
Thomas Müller, Marios Papas, Markus Gross, Wojciech Jarosz, and Jan Novák. 2016.

Efficient Rendering of Heterogeneous Polydisperse Granular Media. ACM Trans.
Graph. 35, 6 (2016).

William I Newman, Jeffrey K Lew, George L Siscoe, and Robert G Fovell. 1995. Systematic

effects of randomness in radiative transfer. Journal of the atmospheric sciences 52, 4
(1995).

Fabrice Neyret. 1998. Modeling, animating, and rendering complex scenes using vol-

umetric textures. IEEE Transactions on Visualization and Computer Graphics 4, 1
(1998), 55–70.

Jan Novák, Andrew Selle, and Wojciech Jarosz. 2014. Residual Ratio Tracking for

Estimating Attenuation in Participating Media. ACM Trans. Graph. 33, 6 (2014).
Jouni I Peltoniemi and Kari Lumme. 1992. Light scattering by closely packed particulate

media. JOSA A 9, 8 (1992).

Iman Sadeghi, Adolfo Munoz, Philip Laven, Wojciech Jarosz, Francisco Seron, Diego

Gutierrez, and Henrik Wann Jensen. 2012. Physically-based simulation of rainbows.

ACM Trans. Graph. 31, 1 (2012).
Kai Schröder, Reinhard Klein, and Arno Zinke. 2011. A Volumetric Approach to

Predictive Rendering of Fabrics. Computer Graphics Forum 30, 4 (2011).

László Szirmay-Kalos, Iliyan Georgiev, Milán Magdics, Balázs Molnár, and Dávid Lé-

grády. 2017. Unbiased Estimators to Render Procedurally Generated Inhomogeneous

Participating Media. Computer Graphics Forum 36, 2 (2017). EUROGRAPHICS 2017.

Jean Taine, Fabien Bellet, Vincent Leroy, and Estelle Iacona. 2010. Generalized radiative

transfer equation for porous medium upscaling: Application to the radiative Fourier

law. International Journal of Heat and Mass Transfer 53, 19 (2010), 4071–4081.
Richard Vasques and Edward W Larsen. 2014. Non-classical particle transport with

angular-dependent path-length distributions. I: Theory. Annals of Nuclear Energy
70 (2014), 292–300.

Eric Veach. 1997. Robust Monte Carlo methods for light transport simulation. Ph.D.

Dissertation. Stanford.

E. Woodcock, T. Murphi, P. Hemmings, and S. Longworth. 1965. Techniques used in the

GEM code for Monte Carlo neutronics calculations in reactors and other systems of

complex geometry.. In Proc. Conf. Applications of Computing Methods to Reactors,
ANL-7050.

Magnus Wrenninge, Ryusuke Villemin, and Christophe Hery. 2017. Path Traced Sub-
surface Scattering using Anisotropic Phase Functions and Non-Exponential Free Flights.
Technical Report Pixar Technical Memo 17-07. Pixar Inc.

Douglas R Wyman, Michael S Patterson, and Brian C Wilson. 1989. Similarity relations

for the interaction parameters in radiation transport. Applied optics 28, 24 (1989),
5243–5249.

Shuang Zhao, Wenzel Jakob, Steve Marschner, and Kavita Bala. 2011. Building volu-

metric appearance models of fabric using micro CT imaging. ACM Trans. Graph. 30,
4 (2011).

Shuang Zhao, Wenzel Jakob, Steve Marschner, and Kavita Bala. 2012. Structure-aware

synthesis for predictive woven fabric appearance. ACM Trans. Graph. 31, 4 (2012).
Shuang Zhao, Ravi Ramamoorthi, and Kavita Bala. 2014. High-order similarity relations

in radiative transfer. ACM Transactions on Graphics (TOG) 33, 4 (2014).
Shaung Zhao, Lifan Wu, Frédo Durand, and Ravi Ramamoorthi. 2016. Downsampling

Scattering Parameters for Rendering Anisotropic Media. ACM Trans. Graph. 35, 6
(2016).

http://doi.acm.org/10.1145/2766988
http://doi.acm.org/10.1145/2766988

	Abstract
	1 Introduction
	2 Related Work
	3 Radiative Transport in Correlated Media
	3.1 Background: The Radiative Transport Equation
	3.2 Effect of Spatial Correlation on Extinction
	3.3 The Generalized Boltzmann Equation

	4 Our Extended GBE
	4.1 Limitations of the GBE
	4.2 Extending the GBE
	4.3 Boundary Conditions

	5 Rendering with the Extended GBE
	5.1 Modeling Correlated Media from Optical Parameters
	5.2 An intuitive local model for positively-correlated media

	6 Results
	7 Conclusions
	A Mixtures of scatterers
	B Modeling directional correlation
	References

